Selecting Trustworthy Content Using Tags

  • 1,866 views
Uploaded on

How to offer digital content to mobile users by combining tagging with reputation systems

How to offer digital content to mobile users by combining tagging with reputation systems

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
1,866
On Slideshare
0
From Embeds
0
Number of Embeds
2

Actions

Shares
Downloads
21
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. U C L daniele quercia & licia capra & valentina zanardi
  • 2. I’m doing my PhD @
  • 3. U niversity C ollege L ondon
  • 4. <MobiSys>
  • 5. We research distributed sys
  • 6. We blog mobblog ucl
  • 7. Web 2.0 (mobile: $22.4bn)
  • 8. Location?
  • 9. The next big thing!
  • 10.  
  • 11. $8.1 bn
  • 12. $8.1 bn
  • 13. This talk is about tools for...
  • 14. Consuming content on the move
  • 15. Content Creation: By publishers?
  • 16. People Mainly: people
  • 17. People Mainly: people
  • 18. People
  • 19.  
  • 20.  
  • 21.  
  • 22. create a ...
  • 23. Digital Tapestry
  • 24. Creation: Distributed!
  • 25. Consumption: Centralized!
  • 26. Why?
  • 27. Money!
  • 28. Making Money? No, short of ideas!
  • 29. Wisdom of the (Programming)Crowd
  • 30. API
  • 31. wired freedom by APIs
  • 32.  
  • 33. Creation: Distributed!
  • 34. What if...
  • 35. Consume: centralized  decentralized
  • 36.  
  • 37. Existing Tools for Internet
  • 38. Tools for decentralized consumption
  • 39. <1> Query matching <2> Ratings for sources
  • 40. <1> Query matching
  • 41.  
  • 42.  
  • 43.  
  • 44. Centralized Solutions
  • 45. similarity(query,item) query item
  • 46. similarity(query,item) query item Coverage (digg out content) + Accuracy (no good content) -
  • 47. Idea behind SocialRanking [RecSys08] Social Ranking:Finding Relevant Content in Web 2.0
  • 48. sim(query,item) +
  • 49. sim(query,item) + sim(issuer,tagger)
  • 50. issuer tagger similarity(issuer,tagger)
  • 51. issuer tagger similarity(issuer,tagger) Coverage (digg out content) Accuracy (good content) + +
  • 52. Future: Decentralized!
  • 53. <2> Ratings for sources
  • 54. Store & Use & Categories
  • 55. Store & Use & Categories
  • 56. How to store ratings?
  • 57. 1.Log (credentials) 2. Gossip (to check each credential)
  • 58. 1.Log (credentials) 2. Gossip (to check each credential)   Impractical 
  • 59. Idea behind MobiRate [Ubicomp08] MobiRate: Making Mobile Raters Stick to their Word
  • 60. 1.Sealed Log (of credentials) 2. Gossip (to check seals only)
  • 61. 1.Sealed Log (of credentials) 2. Gossip (to check seals only)    Practical
  • 62.
      • works?
  • 63. Security: It outperforms existing solutions
  • 64. “ heaviest” protocol runs < 2sec
  • 65. “ longest” protocol completed in 2.5ms (if Bluetooth 100kb/s)
  • 66. Store & Use & Categories
  • 67. Use ratings to make predictions
  • 68. Daniele Quercia
    • Traditional way:
    • Trust propagation
    ? A B C
  • 69. Daniele Quercia
    • That way works on
    • Web & “binary” ratings
  • 70. Idea behind LDTP [ICDM07] Lightweight Distributed Trust Propagation
  • 71. Daniele Quercia 1 ? A B C 2
  • 72. Daniele Quercia 1 ? A B C 2 ? new graph f 1 2 A  B A  C C  B
  • 73. Daniele Quercia 1 ? A B C 2 ? new graph “ good” rating function f 1 2 A  B A  C C  B
  • 74.
      • works?
  • 75. Daniele Quercia Useful? Tested on real data (Advogato: > 55K user ratings)
  • 76. Daniele Quercia Useful? Tested on real data (Advogato: > 55K user ratings)
  • 77. Daniele Quercia Fast and “Light”?
  • 78. Daniele Quercia Fast and “Light”?
      • For propagating A  B
      • (worst case)
      • Transmit 30KB
      • & run for 2.8ms
  • 79. Store & Use & Categories
  • 80. Greek Coins Roman Coins Coins Chairs Antiques universal ontology 
  • 81. Idea behind TRULLO [MobiQuitous07] TRULLO - local trust bootstrapping for ubiquitous devices
  • 82. Daniele Quercia
    • Users learn from their ratings
  • 83. Daniele Quercia
    • Users learn from their ratings
    How?
  • 84. Daniele Quercia
    • S ingular
      • V alue
      • D ecomposition
  • 85. Daniele Quercia SVD
  • 86.
      • works?
  • 87. Daniele Quercia
    • Good “porting” upon few ratings
  • 88. Daniele Quercia Nokia 3230
  • 89. Daniele Quercia
  • 90. Daniele Quercia
  • 91. Store & Use & Categories
  • 92.  
  • 93. Issues: many!
  • 94. Issue 1: Evaluation
  • 95. Issue 2: Privacy
  • 96. If you are looking for Kinky boots
  • 97. whether you are …
  • 98. a woman…
  • 99. or a man a woman…
  • 100. Thorny problem:
  • 101. … or a woman… How to keep it secret
  • 102. Issue 2: Privacy
  • 103.  
  • 104. All this on ... mobblog ucl