QCrypt

711 views
575 views

Published on

This project aims to considerably improve cryptography on both the key distribution level and the encryption level. Quantum Key Distribution (QKD) is a secure way to generate and distribute keys, which is based on the fundamental laws of quantum mechanics. However, existing systems are too slow. The new QKD system will be capable of producing keys at 1 Mbps rate, which means it will allow 1 MHz OTP encryption for high-level applications.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
711
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

QCrypt

  1. 1. QCRYPT Secure High-Speed Communication based on Quantum Key Distribution
  2. 2. What is quantum communication <ul><li>Quantum Communication is the art of transferring a quantum state from one location, Alice, to a distant one, Bob. </li></ul><ul><li>A quantum state can’t be copied, hence the original is necessarily destroyed and there remains no copy. </li></ul><ul><li>Copying quantum states would violate both Heisenberg’s uncertainty relations and the impossibility of faster than light signaling. Hence, the impossibility of “Q cloning” is one of the best established facts in Science . </li></ul>Alice Bob
  3. 3. What is quantum communication <ul><li>Quantum Communication is the art of transferring a quantum state from one location, Alice, to a distant one, Bob. </li></ul>photon splitter detectors The photon explores both paths Quantum randomness Quantum nonlocality (entanglement)
  4. 4. Used daily by some Swiss banks Spin-off from the University of Geneva, 2001 67 km
  5. 5. The QCrypt Concept 100 Gb/s 1 Mb/s OTP High-speed Q uantum Key Distribution (1.25 Gbps pulse rate) + 40 – 100Gbps en CRYPT ion + WDM Secure high-speed communication for the 21 st century
  6. 6. <ul><li>Simple and robust scheme </li></ul><ul><li>Coherent faint laser pulses resistant to photon number splitting attacks </li></ul><ul><li>625 MHz rate (1.25 GHz pulse rate) </li></ul><ul><li>1 Mbit/s secret key rate @ 25km </li></ul>Q uantum Key Distribution Coherent-One-Way (COW) scheme
  7. 7. Optical scheme: coherent one way
  8. 8. Pulse generation High-Speed Intensity modulation 250 ps  T fwhm =138 ps
  9. 9. Rapid sine-gating single photon counter Short gates (100 ps) Low noise and afterpulsing High count rates (10 MHz) Rapid gating detector
  10. 10. AES-GCM Encryption <ul><li>Basic AES: 1 – 2 Gbps </li></ul><ul><li>x20 pipelining: requires feedback-free Encryption mode </li></ul><ul><li>x4 parallelization: data-independent partitioning </li></ul><ul><li> Counter Mode </li></ul><ul><li>Basic Authentication: 4 – 8 Gbps </li></ul><ul><li>x4 pipelining </li></ul><ul><li>x4 parallelization </li></ul><ul><li> 4 Galois field multipliers </li></ul><ul><li>(x 128 +x 7 +x 2 +x+1) </li></ul><ul><li>Two engines for En- and Decryption </li></ul>How to reach 100 Gbps
  11. 11. AES-GCM Encryption <ul><li>Basic AES: 1 – 2 Gbps </li></ul><ul><li>pipelining: 20x speedup: 32 Gbps mode </li></ul><ul><li>x4 parallelization: data-independent partitioning </li></ul><ul><li> Counter Mode </li></ul><ul><li>Basic Authentication: 4 – 8 Gbps </li></ul><ul><li>x4 pipelining: 4x speedup: 28 Gbps </li></ul><ul><li>x4 parallelization </li></ul><ul><li> 4 Galois field multipliers </li></ul><ul><li>(x 128 +x 7 +x 2 +x+1) </li></ul><ul><li>Two engines for En- and Decryption </li></ul>How to reach 100 Gbps
  12. 12. AES-GCM Encryption <ul><li>Basic AES: 1 – 2 Gbps </li></ul><ul><li>pipelining: 20x speedup: 32 Gbps nc </li></ul><ul><li>x4 parallelization: 4x speedup: 128 Gbps </li></ul><ul><li>Basic Authentication: 4 – 8 Gbps </li></ul><ul><li>x4 pipelining: 4x speedup: 28 Gbps </li></ul><ul><li>parallelization: 4x speedup 112 Gbps </li></ul>How to reach 100 Gbps
  13. 13. AES-GCM Encryption <ul><li>Final AES up to 128 Gbps </li></ul><ul><li>Using Counter Mode Advantage: no feedback loops </li></ul><ul><li>x4 In combination with Galois Field Authentication : Galois/Counter Mode </li></ul><ul><li>(GCM) </li></ul><ul><li>Final Authentication up to 112 Gbps </li></ul><ul><ul><li>Based on operations on the Galois Field defined by x 128 +x 7 +x 2 +x+1 </li></ul></ul><ul><li>Two engines for En- and Decryption </li></ul>How to reach 100 Gbps
  14. 14. AES-GCM Encryption Performance of Encryption core Resource usage in target FPGA ALM = adaptive logic module (2 Flipflops / 1 8-Input Lookup Table / 2 Adders) AES AES-GCM Target Max. Frequency 250 MHz 220 MHz 200 MHz Max. Throughput 128 Gbps 112 Gbps 102 Gbps AES AES-GCM Stratix IV GT Logic usage 10 kALM 30 kALM 212 kALM Block Rams (9kbit blocks) 322 322 1’280
  15. 15. 100Gbps Interface User side : 10 x 10Giga Ethernet channels through 10 SPF+ optical modules Client side : 1 x 100Gbps channel using WDM optical module feeds with 10 high-speed serial links @ 10Giga All synchronization and channels splitting made into the FPGA FPGA Design
  16. 16. 100G Fast Encryption Board PCB: 24 layers, 52 high-speed serial links, 10 power supplies FPGA main power supply : 0,95V @ 40Amp Communication links: 8x SFP+ & 2x XFP @ 10Giga 1x CXP & 1x CFP @ 100Giga 22x High-speed serial @ 6.5Giga
  17. 17. Case 19 '' and 4U with embedded PC Hardware (24 layers) with a FPGA (1932 balls) 1 to M Network Ports Ethernet 1/10/40/100 G 1 to N Local Ports Ethernet 1/10/40/100 G FC 1/2/4/8/10 Key Manager with Quantum and/or Conventionals Keys 1 to M Network Ports Ethernet 1/10/40/100 G 1 to N Local Ports Ethernet 1/10/40/100 G FC 1/2/4/8/10 enCryptor First tests for the encryption hardware at start of 2011! Software VHDL enCryption Highlights
  18. 18. Conclusions <ul><li>Quantum optics offers true randomness and intrinsic confidentiality  Let’s exploit those gifts of Nature ! </li></ul><ul><li>Goal: Secure high-speed communication for the 21st century. 1.25 Gbps on the quantum level 0.128 Tbps on the classical level </li></ul><ul><li>Complex project involving : - advanced classical optics - world level high rate single photon detection - world level fast cryptographic algorithms - highly nontrivial interfaces </li></ul>

×