Números Complexos

3,441 views
3,287 views

Published on

Published in: Education, Technology
1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total views
3,441
On SlideShare
0
From Embeds
0
Number of Embeds
63
Actions
Shares
0
Downloads
46
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Números Complexos

  1. 1. Números Complexos  Uma abordagem histórica
  2. 2. Como surgiram os Números Complexos? Quando confrontadas com esta questão, a maioria das pessoas responde que os números complexos surgiram para resolver as equações de 2º grau da forma x2 + a =0, a > 0. No entanto, esta ideia está errada! Apesar da abordagem aprofundada dos números complexos ter sido feita a partir do séc. XVIII, esse problema já tinha sido percebido por outros matemáticos antes dessa época. No entanto, dada à incompreensão e o desconhecimento destes números, tais matemáticos abandonaram o seu estudo.
  3. 3. Até onde se sabe, o primeiro matemático que enfrentou um problema envolvendo números complexos foi Héron de Alexandria (séc. I dC) no livro Stereometrica. Este pretendia resolver mas como não havia o domínio atual sobre estes números, abandonou o seu cálculo. Por volta do ano 275 dC, ao resolver um problema, Diophanto (200-284 aprox.) deparou-se com a equação 24x2 - 172x + 336 = 0 Como concluiu que não tinha soluções reais, não viu necessidade de dar sentido à raiz .167− (81 144) ( 63)− = −
  4. 4. Na Índia, por volta do ano 850, Mahavira (800- 870 aprox.) escrevia: "(...) como na natureza das coisas um negativo não é um quadrado, ele não tem, portanto, raiz quadrada." Ou seja, negou à partida, a existência de números negativos cuja raiz quadrada devolve um outro número. Bhaskara(1114-1185 aprox.), um dos indianos que mais perto chegou das ideias da álgebra moderna (conhecia a regra "menos por menos dá mais", trabalhava com coeficientes negativos, etc.) reconhecia que a equação x2 - 45x = 250 era satisfeita por dois valores x = 5 e x = -5, mas dizia que não considerava a segunda, pois as pessoas não "apreciavam" raízes negativas.
  5. 5. Gerônimo Cardano (1501-1576) considerava que o aparecimento de raízes quadradas de números negativos na resolução de um problema indicava que o mesmo não tinha solução. No entanto, foi Cardano que, em 1545, mencionou pela primeira vez os números complexos. Na sua obra Ars Magna de Cardano, falava do seguinte problema: "Determinar dois números cuja soma seja 10 e o produto seja 40". Para tal, considerou as expressões Cardano ficou por aqui, não dando significado a estas expressões, pondo de lado a "tortura mental" envolvida, mas, teve o mérito de ter sido o primeiro a considerá-las, até porque neste tempo os números negativos eram evitados. 5 + 15 e 5 15− −
  6. 6. A partir disto é possível derrubar a ideia errada de que os números complexos surgiram com as equações do segundo grau. Os números complexos apareceram sim, a partir das equações de terceiro grau. Mas, foram preciso cerca de 25 anos para este tema ser de novo considerado, por Raffaelle Bombelli (1526-1572) numa obra de nome Algebra.
  7. 7. Ao resolver a equação x3 = 15x + 4, Bombelli utilizou a "fórmula de Cardano" obtendo a seguinte solução (em notação moderna): Ele achou estranho este resultado porque conhecia todas as raízes da equação, entre as quais x = 4. Teve então a estranha ideia de procurar a e b positivos tais que: Com alguma manipulação algébrica, usando as mesmas regras que usava para os números reais, mais a propriedade , chegou ao resultado a = 2 e b = 1, donde sai x = 4. 3 3 (2 121) (2 121)x = + − + − − 3 3 a+b 1= (2 121) a-b 1= (2 121) − + − − − − 2 ( 1) 1− = −
  8. 8. O próprio Bombelli não estava bem seguro do que havia criado. Para os demais matemáticos da época, os números complexos eram vistos com suspeita e quanto muito tolerados, na falta de melhor coisa. É de referir que alguns matemáticos da época procuraram maneiras de evitar o uso de tais números. Entre eles, Cardano foi o que mais tentou evitar as "torturas mentais" envolvidas no uso de raízes quadradas de negativos. No seu livro De  Regula  Aliza, de 1570, procurou artifícios que contornassem o uso de tais raízes na resolução de equações de 3º grau obtendo, somente, resultados vagos.
  9. 9. Raffaelle Bombelli apresentou na sua obra Algebra as leis algébricas que regiam os cálculos entre números da forma . Em particular, mostrou que as 4 operações aritméticas sobre números complexos produzem números desta forma. Ou seja, o conjunto dos complexos é fechado para estas operações. a+b 1−
  10. 10. Em 1629, Albert Girard (1595-1632) utiliza, efetivamente, o símbolo quando enuncia as relações entre raízes e coeficientes de uma equação. Um grande passo no estudo dos números complexos foi a sua representação visual. Em 1797, o dinamarquês Caspar Wessel (1745-1818) representou, pela primeira vez, geometricamente os números complexos, estabelecendo uma correspondência bijectiva entre estes e os pontos do plano. Este trabalho foi levado ao esquecimento, talvez por ter sido publicado em dinamarquês e só por volta de 1806, quando publicado em francês por Jean Argand (1768-1822) ganhou o devido respeito. Por este motivo, esta representação ficou, indevidamente, ligada ao nome de Argand. 1−
  11. 11. O símbolo i, para a representação de , foi criado por Leonard Euler mas, só após o seu uso por Gauss (1777-1855), em 1801, é que foi aceito. A expressão número complexo foi introduzida em 1832, por Gauss. É possível dizer que, apesar da sua história ser recente, os números complexos envolveram o trabalho de vários matemáticos, continuando, ainda hoje, com muitas questões em aberto. 1−
  12. 12. Referência:  http://www.educ.fc.ul.pt/docentes/opombo/sem   Daiana A. de Siqueira Canello.

×