• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Ea of cw, ct & cond. system
 

Ea of cw, ct & cond. system

on

  • 476 views

 

Statistics

Views

Total Views
476
Views on SlideShare
476
Embed Views
0

Actions

Likes
0
Downloads
7
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Ea of cw, ct & cond. system Ea of cw, ct & cond. system Presentation Transcript

    • A PRACTICAL APPROACH toENERGY AUDIT IN CW, CT & CONDENSER SYSTEM in THERMAL POWER STATIONS D.Pawan Kumar And R.Virendra
    • 1.0 BACKGROUND Cooling Water Circuit and System performance, holds the key in maintaining optimum vacuum in a thermal or a GT combined cycle plant. In current times, there is an increasing demand on power plant professionals, to address concurrently, complex tasks like ; Cooling water Consumption optimization, Achieving vacuum conditions and Optimizing power consumption in CW pumps and CT fans, despite plant side variations, like frequency, cooling water quality, availability, load variations, O & M demands, etc. While it is a challenge, experiences show that with the level of infrastructure and information available at most sites, it should be possible to conduct a reasonably detailed and functional energy audit, deploying in- house resources, to bring out improvement options.
    • 2.0 AUDIT FOCUS CW / CT system and condenser vacuum being focal points for energy audit study, the various improvement issues addressed in the CW audit include ;2.1 Condenser Related  Cleanliness of tube surfaces  Tube leakages  High inlet water temperature  CW flow adequacy
    • 2.2 CW Pump Related  Efficiency of CW pumps  Fore bay level inadequacy  Mains frequency related  CW flow tapping for other purposes  Parallel operations and effects2.3 Cooling Tower Related  Approach, range of cooling towers  L/G ratio of cooling towers  Tuning scope in cooling towers, with seasonal variations with regard to water load, CT fan blade angle, etc.  Maintenance of fills  Quality of Cooling Water and COC improvement  CT fan blade material such as FRP/GRP, etc.
    • 2.4 Overall Optimization related such as ;  Optimize CW pump operations with respect to thermal load  Optimizing L/G ratios during various seasons  Optimize CW pump efficiency through need based maintenance, retrofit, replacement options.  Optimize condenser operations through O & M
    • 3.0 Based on experiences at various plants The following steps are envisaged as illustrative help tools for the CW / CT audit teams in conduct of energy audit in thermal power plants and GT based combined cycle plants.
    • 3.1 Scope of AuditThe scope of audit pertains to Energy Audit of Cooling Water Systemincluding Cooling Towers & Condenser is made into systems as given below : CW System : Audit for water consumption Cooling Tower : Audit for CT effectiveness Condenser : Audit for condenser heat load, CW flow & VacuumThe energy audit on above system will be carried out to determine mainfeatures such as :1. Consumption of circulating water flow2. Performance of CW pumps w.r.t. CW flow3. CT effectiveness and L/G ratio4. Performance of condenser w.r.t. heat load and vacuum and CW pressure drop across condenser.5. Comparison of measured performance with reference to designed / rated values.6. Recommendations based on the performance of the above system.
    • 3.2 Methodology for Energy Audit1. Discussion with operation, Electrical Maintenance, Mechanical Maintenance, C&I and Chemistry2. Selection of equipments and instruments for power measurement for CW pumps & CT fans3. Data collection based on power measurement, DBT / WBT measurement for cooling performance, UCB data collection for heat load calculation4. Analysis of data5. Calculation of performance to determine key indicators for assessing the performance of various systems. Contd..
    • 3.3 Preparations for Audit Selection of appropriate time for conducting audit. Selection of units for audit. Selection of equipments & instruments for measurement. Calibration of instruments for pressure & temperature measurement in DAS. Assistance from O & M personnel. Design / rated parameters from technical operating manuals, equipments name plates, etc.
    • 3.4 DESIGN DATA COLLECTION3.4.1 DESIGN DATA – CONDENSER S. DESCRIPTION DATA NO 1. Tube Material 2. Tube Outside dia (mm) 3. Tube Thickness (mm) 4. Total Number of Tubes 5. Tube Length (Meters) 6. No. of Plugged Tubes 7. No. of Passes 8. Design Surface Area (SQM)3.4.2 DESIGN DATA – STEAM SIDE 9. Back Pressure (kg / sq. cm) 10. Condenser Duty
    • 3.4.3 DESIGN DATA – WATER SIDE S. DESCRIPTION DATA NO 11. Cooling Water Flow 12. CW Inlet Temperature 13. CW Outlet Temperature 14. Design Water Velocity 15. CW Pressure Drop 16. CW Source 17. Design Cleanliness Factor3.4.4 DESIGN DATA – GENERATOR S. DESCRIPTION DATA NO 18. Design Heat Rate kCal / kWh at ….. MW 19. Gross Power Generated MW
    • 3.4.5 WATER CHEMISTRY - DESIGN VALUES S. DESCRIPTION DATA NO 1. PH at 250C 2. Conductivity 3. T.D.S 4. Total hardness 5. Calcium Hardness 6. Magnesium Hardness 7. P-Alkalinity 8. M-alkalinity 9. Chloride 10. Sulphate 11. Cycle of Concentration 12. L.S.I
    • 3.5 Equipments & MeasurementsThe following instruments are typically used for measuring variousparameters in the context of energy audit of CW, CT & Condenserperformance.Intake air DBT & WBT at each cell (ground level) PsychrometerCW inlet temperature common) (risers or CT top) Hg in glass thermometerCW outlet temperature (common) (fills bottom) Hg in glass thermometerCW sump / basin temperature (overall) - Do -UCB Data : MW load, frequency, condenser, inlet / DASoutlet temperature, condenser vacuum, extractionsteam flow from heaters, etc.CW pump elect. Data : Motor amps, volts, power Measurement by powerfactor, kilo watt analyserCT pump house fore-bay level Physically measuredCW pump readings for TDHCT fans : Amps Tong testerCT transformer – Amp., Volts, PF, kW Power analyserLab analysis data of CW (inlet), OAC and makeup Lab water analysiswater
    • 3.6 AUDIT DATA COLLECTIONThe following parameters are typically chosen for spotobservations.1. UCB Parameters : MW load, frequency, main steam flow, extraction steam flow for various heaters, LPT exhaust steam flow, steam temperatures & pressures, condenser vacuum etc., for calculation of condenser heat load & CW flow.2. ELECTRICAL Parameters : Measurement of voltage, power factor & kW for CW pumps, CT transformer & CT fans.3. MECHANICAL Parameters CW PUMPS : Measuring data for TDH of CW pumps and Fore bay level.4. CHEMICAL / THERMAL Parameters : Measurement of DBT / WBT of air at cooling tower, CT basin water temperature, CW quality I.e., TDS & COC for CT performance & CW system water consumption.
    • SAMPLE DATA SHEET – 1S. Parameters Unit Design Unit DataNo Value .1. Unit Load MW 210.0 211.02. Frequency Hz 50.0 51.23. M.S. Temperature 0 C 535.0 530.04. M.S. Flow T/Hr. 651.3 730.05. HRH Pr. Kg/Sq. Cm 24.8 24.56. HRH Temperature 0 C 535.0 535.07. CRH Pr. Kg/sq. Cm 28.8 30.38. CRH Temperature 0 C 328.0 324.09. Feed Water Flow T/Hr. 651.3 689.010 F.W. Temperature at Inlet of HPH 5 0 C 167.0 164.0 HPH 6 0 C 182.0 185.0 HPH 7 0 C 225.0 220.011. F.W. temperature at outlet of HPH 5 0 C 182.0 185.0 HPH 6 0 C 225.0 220.0 HPH 7 0 C 248.0 257.1 Contd..
    • SAMPLE DATA SHEET – 1 Contd..S. Parameters Unit Design Unit DataNo Value .12. Drip Temperature from HPH 5 0 C 177.0 171.8 HPH 6 0 C 192.0 202.6 HPH 7 0 C 235.0 236.113. Ex. Steam temperature at inlet to HPH 5 0 C 440.0 455.9 HPH 6 0 C 328.0 323.7 HPH 7 0 C 378.0 415.514. Ex. Steam pressure at inlet to HPH 5 Kg / sq. cm 12.7 12.3 HPH 6 Kg / sq. cm 28.8 28.9 HPH 7 Kg / sq. cm 42.2 40.715. Condensate temperature at inlet of LPH 1 0 C 44.0 58.0 LPH 2 0 C 66.0 59.0 KPH 3 0 C 105.0 97.0 LPH 4 0 C 127.0 119.0 Contd..
    • SAMPLE DATA SHEET – 1 Contd…S.N Parameters Unit Design Value Unit Data o16. Condensate temperature at outlet of LPH 1 0 C 63.0 59.0 LPH 2 0 C 105.0 97.0 KPH 3 0 C 127.0 119.0 LPH 4 0 C 159.0 156.017. Drip temperature from LPH 1 0 C 66.0 59.0 LPH 2 0 C 102.0 105.0 KPH 3 0 C 115.0 117.0 LPH 4 0 C 150.0 158.018. Ex. Steam Temperature at inlet to LPH 1 0 C 95.0 97.0 LPH 2 0 C 177.0 169.0 KPH 3 0 C 252.0 261.0 LPH 4 0 C 352.0 388.019. Ex. Steam pressure at inlet to LPH 1 0 C 0.3 0.2 LPH 2 0 C 1.5 1.8 KPH 3 0 C 3.0 3.3 0
    • SAMPLE DATA SHEET – 1 Contd…S.N Parameters Unit Design Value Unit Data o20. CW inlet temperature 0 C 30.0 32.5 Pass – A 0 C 30.0 32.6 Pass – B 0 C 30.0 32.421. CW outlet temperature 0 C 38.4 44.2 Pass – A 0 C 38.4 44.2 Pass – B 0 C 38.4 44.122. LPT exhaust temperature 0 C 43.2 50.4 Pass – A 0 C 43.2 50.8 Pass – B 0 C 43.2 50.023. CEP suction temperature 0 C 43.0 48.924. Condenser vacuum (as per DAS) Kg/Sq Cm. 0.911 0.87125. Con. Vac (Kinetometer) Cm Hg. 66.95 64.60 Con. Vac (Kinetometer) Kg/Sq. Cm 0.911 0.879 Con. Vac (as per LPT exhaust) Kg/Sq. Cm 0.911 0.87226. Air / Steam mixture temp. (Ejec-A) 0 C 46.0 Air / Steam mixture temp. (Ejec-B) 0 C 42.027. Ejector steam pressure Kg/Sq. Cm 19.1928. CW pressure at condenser inlet Kg/Sq. Cm N/A29. CW pressure at condenser outlet Kg/Sq. Cm N/A CW pressure drop across cond. Tubes Kg/Sq. Cm 0.370 --
    • SAMPLE DATA SHEET – 2CT FAN DUTY Item Ref. Units Design Fan- Fan Fan- Fan- Fan- Fan- Fan- Fan Fan Sum A - B C D E F G -H -IVoltage V 415 418 418 418 418 418 418 418 418 418(measured)Current A 113 90 88 98 0 85 88 90 85 90 714(measured)Motor 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897powerfactorMotor 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9efficiency(Ref.)Fan input kW 67 52.60 51.43 57.27 49.67 51.43 52.60 49.67 52.60 52.16powerCT fan air Kg / 2654 2448 2430 2519 2402 2430 2448 2402 2448 19528flow × 1000 hr
    • SAMPLE DATA SHEET – 3CHEMICAL DATA FOR CIRCULATING WATER Month TDS Na COC pH Turbidity ppm ppm NTU March 150 9.8 1.5 8.3 22 April 174 11.5 1.64 8.31 8.5 May 161 11.5 1.55 8.48 13.0 S.N Quality of Water Effect of Quality o 1. Low COC = 1.6 to 1.8 Less corrosive effect 2. High COC > 2.0 Scale deposition increases 3. Acidic pH Very corrosive 4. pH > 8.5 [A ]. Copper pick increases Material of Condenser tube = Cu 95 % Ni 5 % [B ] Chlorine effect reduces 5. COC V. Low = < 1.3 No scale deposition (because less TDS in CW system); but metal pick increases fast 6. Turbidity MU water turbidity = 20 NTU (make-up water) 7. TDS Values Raw MU Water TDS = 100 / 110 PPM
    • FORMULAE USED FOR CALCULATIONS - A1. Condenser heat load calculation : The following data is required for heat load calculation : a) LPT exhaust flow b) Enthalpy of exhaust steam c) Enthalpy of condensate a) LPT exhaust flow = [Main steam flow – Extraction steam flow – Aux. Steam flow – D/A steam flow – ESV leak-off – Seals leakage] Contd..
    • FORMULAE USED FOR CALCULATIONS - A Extraction steam flow is calculated by heat balance i.e.,Extraction Steam Flow = Feed Water flow (FW I/L temp. - FW O/L temp. Enthalpy of exhaust steam −Drip temperatur e     Condenser heat load = [ LPT exh. Steam enthalpy – Condensate enthalpy] × Exhaust Steam flow rate CW flow can be calculated by heat balance CW Flow = Condenser heat load (k Cal / Hr.) CW temperatur e rise (0 C)
    • FORMULAE USED FOR CALCULATIONS - B2. CW flow calculation as per power measurement : Power input to motor = 3 V I × PF kW 1000 Power input to pump = Motor efficiency × Power input to motor LKW = Pump efficiency × Motor efficiency × Power input to motor CW pump discharge flow = LkW × 3600 M3 / Hr. TDH× 9.81 Actual CW flow thro’ condenser = less than 100 % of CW discharge flow as  Part of CW flow is often used for cooling purposes in turbine side boiler side, ash slurry, etc.
    • FORMULAE USED FOR CALCULATION - C3. CT fan air flow calculation : Power input to motor = 3 V I × PF kW 1000 Power input to fans = Motor efficiency × Power input to motor kW 3   Fan input power   Fan air flow actual =   × Fan rated CMH Rated fan input power    Air flow per fan G/L Ratio = Air flow per cell (by wt.) CW flow per cell (by wt.) Evaporation losses = CT Flow × CT Range M3/Hr. 675 Makeup water = Evaporation loss M3/Hr. (COC- 1) Contd..
    • FORMULAE USED FOR CALCULATION - D4. COC is defined as the ratio of total dissolved solids in basin water to TDS in makeup water. Water Consn. = (Evaporation Losses + Makeup water) M3/Hr. CT Range = CW temp. at CT inlet – CW temp. at bottom fills CT approach = CW temp. at CT outlet – WBT at ground level  Range  % CT effectiven ess =     × 100  Range + Approach    CWT Inlet - CWT Outlet  =   × 100 %   CWT Inlet - WBT  
    • SAMPLE CALCULATION SHEET FOR CONDENSER HEAT LOAD CALCULATIONSteam parameters at salient points :S. Parameters Unit Design Unit DataNo Value .1. Enthalpy of LPT exhaust steam kCal/kg 585.7 619.32. Enthalpy of condenser at CEP kCal/kg 43.2 48.9 suction3. Enthalpy of ex. Steam at HPH 5 I/L kCal/kg 799.2 807.44. Enthalpy of ex. Steam at HPH 6 I/L kCal/kg 733.0 730.25. Enthalpy of ex. Steam at HPH 7 I/L kCal/kg 754.6 776.46. Enthalpy of ex. Steam at LPH 1 I/L kCal/kg 615.9 640.17. Enthalpy of ex. Steam at LPH 2 I/L kCal/kg 675.4 670.38. Enthalpy of ex. Steam at LPH 3 I/L kCal/kg 709.7 713.49. Enthalpy of ex. Steam at LPH 4 I/L kCal/kg 756.9 774.7 Contd.
    • SAMPLE CALCULATION SHEET FOR CONDENSER HEAT LOAD CALCULATIONSteam parameters at salient points :S. Parameters Unit Design Value Unit DataNo.1. Extraction steam flow at HPH 5 T/hr. 16.4 22.82. Extraction steam flow at HPH 6 T/hr. 53.1 45.73. Extraction steam flow at HPH 7 T/hr. 28.6 47.34. Extraction steam flow at LPH 1 T/hr. 16.6 0.85. Extraction steam flow at LPH 2 T/hr. 31.2 31.76. Extraction steam flow at LPH 3 T/hr. 18.1 17.47. Extraction steam flow at LPH 4 T/hr. 25.3 28.38. Auxiliary steam flow T/hr. 17.0 17.09. HPT seal leakage T/hr. 12.0 12.010. HPT ESV leak off T/hr. 2.0 2.011. Ext. to deaerator T/hr. 4.0 4.012. LPT exhaust flow (calculated) T/hr. 436.7 501.113. Av. CW temperature rise 0 C 8.4 11.714. Condenser heat load kCal/kg 542.5 570.415. Condenser heat load × 1000 kCal/kg 236910 28583116. CW flow (CMH) CW Flow = (Heat load / T/hr. 28203.5 24534.8 CW Temperature difference)
    • SAMPLE CW PUMP DUTY ASSESSMENTTotal diff. Head calculation : S. Item Reference Unit Design Unit No. Value Data 1. Fore bay level MSL 279.4 2. Fore bay to floor mWC 4.25 3. Bowl loss (Reference) mWC 0.20 4. Height of pressure gauge mWC 1.33 5. Discharge pressure mWC 21.8 – 22.00 22.6 6. Velocity head @ 1.89 m/s mWC 0.18 7. Total differential head mWC 27.96
    • SAMPLE FLOW BALANCE OF CW PUMP BY MOTORa) LOADING Power measurement by power analyser (Accuracy – Class-I (0.1 %)b) CW flow calculation based on power measurement S. Item Reference Unit Design Unit Data No. Value Pump-A Pump-B 1. Voltage (measured) V 6600 6681 6502 2. Current (measured) A 205 173.98 175.43 3. Power factor (measured) - 0.85 0.6418 0.675 4. Power input to motor kW 2000 1292 1334 5. Power input to pump kW 1221 1260 (@ 94.5% motor efficiency) 6. Average pump input power kW 1241 7. LKW (@ 87 % pump efficiency) 2 × 1130 2159 8. Total CW discharge flow CMH 32350 28332 9. Cooling water for Aux. (15 %) CMH 4850 4250 10. CW flow through condenser CMH 27500 24082 11. CW taken for HP/LP pumps CMH 410 570 12. CW going back to CT CMH 30000 27479 13. CW fans in service CMH 8 8 14. CW flow per cell CMH 3750 3435
    • SAMPLE CT FAN DUTY ASSESSMENTPower Measurement by Power Analyser Accuracy Class-I (0.1 %) S. Item Reference Unit Design Unit Data No. Value 1. Voltage (measured) V 6600 6509 2. Current (measured) A 45.86 3. Motor power factor -- 0.8969 4. Motor efficiency (Ref.) -- 0.9 5. CT Xmer input power kW 603 417.33 6. Ct fan motor input power kW 67 52.16 7. CT fan flow per tower × 1000 Kg/hr 21229 19530 8. Air flow per cell × 1000 Kg/hr 2654 2441
    • SAMPLE CT PERFORMANCE ASSESSMENTS. Design UnitNo. Item Reference Unit Value Data1. Water inlet temperature to CT 0 C 43 452. Water outlet temperature from 0 C 33 31.5 CT3. Wet Bulb temperature @ CT 0 C 28.4 24.5 bottom4. Dry bulb temperature ambient 0 C -- 32
    • SAMPLE CT SYSTEM KEY INDICATORSS. Item Reference Unit Design Unit DataNo. Value1. CT range 0 C 10 13.5 2. CT approach 0 C 4.6 7 3. CT effectiveness 0.685 0.659 4. Water / Air ratio (L/G Ratio) 1.41 1.41 5. Air / Water Ratio (G/L Ratio) 0.71 0.71 6. Evaporation losses CMH 444 550 7. TDS PPM 174 174 8. C.O.C. 2.50 1.64 9. Makeup water CMH 296 85910. Water consumption CMH 741 140811. % water consumption % 2.29 4.97
    • SAMPLE OVERALL SYSTEM KEY INDICATORSS. Item Reference Unit Design Unit DataNo. Value 1. Unit load MW 210 211 2. Frequency Hz 50.0 51.2 3. M.S. flow T/hr 651.3 730 4. F.W. flow T/hr 651.3 689 5. Total C.W. flow T/hr 32350 24535 6. C.W. flow thru condenser T/hr 27500 24535 7. Average CW temperature rise 0 C 8.4 11.7 8. Condenser heat load kCal/hr 236910 285831 × 1000 9. Terminal temperature difference 0 C 4.8 6.2 10. LMTD 0 C 8.30 11.04 11. Condenser vacuum Kg/sq.cm 0.911 0.871 12. CW pump pressure drop Meter 3.70 Not (across condenser) Measurabl e
    • ILLUSTRATIVE COMPARISON : CONDENSERVACUUM AND CW FLOW CHARACTERISTICS Exhaust Design Value Actual Steam Actual CW Actual Condenser Hood Steam Flow to Flow to Condense Vacuum Tempera- Condenser Condenser r Heat ture LoadCase T / Hr. T / Hr. kCal/hr T / Hr. 0 C 1. Reference 436.7 28203 236910 0.91 43.2 × 1000 2. Reference 440 27500 0.91 44 3. Reference 480 27500 0.91 45 4. Reference 480 25000 0.9 46 5. Reference 500 25000 0.9 46.1
    • ILLUSTRATIVE COMPARISON : CW PUMP PERFORMANCES. Item Reference Unit Design UnitNo. Value Data1. Average CW pump motor input kW 1335 13132. Average CW pump LKW kW 1130 1079.53. CW discharge flow CMH 32350 28332 (16175 CMH each Pump)4. CW flow thro’ condenser CMH 27500 240825. CW flow per cell CMH 3750 34456. CT fans on line Nos. 8 8
    • ILLUSTRATIVE COMPARISON : CT FAN PERFORMANCES. Item Reference Unit Design UnitNo. Value Data1. Fan input power kW kW 67 52.172. CT fan air flow per tower Kg/hr × 21229 19530 10003. CT fan air flow per cell Kg/hr × 2654 2441 10004. CW flow per cell Kg/hr × 3750 3445 10005. Water/Air ratio (L/G ratio) 1.41 1.41 Dry air density Kg/M 3 1.0555 CT fans in operation No 8 (for design performance)
    • ILLUSTRATIVE COMPARISON : COOLING TOWER PERFORMANCEDESIGN DATA HP KW CW FLOW 30,000 CMHFAN BHP 76.4 57.0 Hot Water Temp. 109.4 43 CMOTOR HP 90 67.1 F Cold Water Temp. 91.4 F 33 FFan air flow 21229 kg/hr × 1000 Wet Bulb Temp. 83.1 F 28.4 CCT fans in 8 Nos. 22 F 12.2 CoperationCT air flow / 2654 kg/hr × 1000 18 F 10 Ccell 14 F 7.8 C Contd..
    • ILLUSTRATIVE COMPARISON : COOLING TOWER PERFORMANCEDESIGN DATA Units Unit Item Reference Data CT Range 0 C 13.5 Wet bulb temperature 0 C 24.5 (measured) 76.1 F Cold water temperature 0 C 31.5 (measured) Cold water temperature 0 C 32.5 (design)
    • ILLUSTRATIVE COMPARISON : COOLING TOWER PERFORMANCECW FLOW (M 3 / Hr)S. Item Reference Design UnitNo. Value Data A. By process parameters 28203 24535 B. By CW pump motor 27500 24082 loading C. By LMTD calculation 28728 24000
    • SAMPLE SCAN OF CW PUMPS – ENERGY AUDIT OBSERVATIONS Eqpt. kW Drawn Flow Pressure (kg/cm2) Pumps (mmWc) for Fans Liquid kW Combined S.C.E Unit Ref. of Air kW Efficiency (%) (kWh/Ton) Motor Kw TPH Suction* Discharge Differential Loadin Gen. Freq. g% (MW) (Hz) Design Actual Design Actual Desi Actu Design Actual Desi Actual Design Actual Design Actual Design Actual gn al gnCWP – 1377 1021 15000 13295 0 0 2.5 1.90 2.5 1.90 1021 688.3 74.18 67.43 0.092 0.0768 74.24 189.6 47.911CWP – 1377 1014 15000 13274 0 0 2.5 1.90 2.5 1.90 1021 687.2 74.18 67.76 0.092 0.0764 73.78 186.2 47.852CWP – 1377 1018 15000 13422 0 0 2.5 1.90 2.5 1.90 1021 694.9 74.18 68.23 0.092 0.0759 74.07 191.6 48.363CWP – 1377 1078 15000 13310 0 0 2.5 1.75 2.5 1.75 1021 634.7 74.18 58.89 0.092 0.0810 78.39 193.9 48.204CWP – 1377 983 15000 13159 0 0 2.5 1.85 2.5 1.85 1021 663.4 74.18 67.50 0.092 0.0747 71.47 194.5 47.815CWP – 1377 1104 15000 13197 0 0 2.5 1.80 2.5 1.80 1021 647.3 74.18 68.64 0.092 0.0838 80.28 194.1 47.906CWP – 1377 1143 15000 13183 0 0 2.5 1.95 2.5 1.95 1021 700.5 74.18 61.31 0.092 0.0867 83.09 194.7 47.847
    • CONCLUSIONSThe audit conclusions are site specific and situationspecific. The menu of recommendations substantiatedadequately are most likely to include ; Timely descaling of condensers Ensuring adequacy of CW flow through condensers Improving operational energy efficiency of CW pumps by maintenance or retrofit or replacement options Tuning of CT operations for achieving best CT range, L/G ratio, approach for given loading, ambient conditions. Water quality improvements and design COC improvements. Debottlenecking of any O & M constraints Fill replacement/replenishment in cooling towers Improvements in instrumentation and MIS for enabling continuous efforts by O & M and O & E teams.