Model-Based Virtual In-the-Loop-Test of Autonomous Systems: The FALTER Case

  • 463 views
Uploaded on

Presentation at the 2nd International Workshop on Model-driven Approaches for Simulation Engineering …

Presentation at the 2nd International Workshop on Model-driven Approaches for Simulation Engineering

(held within the SCS/IEEE Symposium on Theory of Modeling and Simulation part of SpringSim 2012)

Please see: http://www.sel.uniroma2.it/mod4sim12/ for further details

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
463
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
5
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Model-­‐Based  So,ware  In-­‐the-­‐Loop-­‐Test  of   Autonomous  Systems The  FALTER  CaseAndreas  Bayha,  Franziska  Grüneis,  Bernhard  Schätzfor9ss  gGmbHMod4Sim@TMS/DEVS,  Orlando,  27.03.2012
  • 2. FALTER  Project FALTER Mission Management Mission Data Execute Mission Result Information FALTER:  Flugeinheit  zur  Autonomen  Lage-­‐  und  Terrain-­‐Erkundung  Mission:  Autonomous  flight  for  in-­‐situ  indoor  analysis  (no  GPS  signal)  PlaBorm:  Quadrocopter  with  IF/US/IMU  Autonomy:  Online-­‐replanning  for  collision  avoidance2
  • 3. FALTER:  HW-­‐PlaHorm Bluetooth Ultra Sonic WLAN I!C RC RoBoard I!C Compass Reciever USB PWM PWM Camera Safety switch RS232 PWM Gyros Battery FlightCrtl Accels Motors HW-­‐ConstrucJon:  Modular  PlaKorm  Sensors:  Incl.  gyroscope,  ultrasonic,  Pme-­‐of-­‐flight  camera,  alPmeter  Actuators:  Motors,  camera  CommunicaPon:  Mission  data/goal  informaPon,  emergency-­‐off  Flight  control:  COTS-­‐control  unit  for  quadrocopter    Mission  control:  Embedded-­‐qualified  GP  control  unit3
  • 4. FALTER:  So,ware  VerificaJon Application Layer So,ware  Architecture Planing  HW-­‐abstracPon  layer Environment Data  ApplicaPon  layer:  Mission  funcPons Execution  Control:  Measuring  and  Control FALTER Data  ExecuPon:  Handling  of  flight  leg Control Command Sense  Planning:  (Re-­‐)Planning  of  mission  path   FA LT E R - H A L RoBoard-HAL FlighCtrl-HAL VerificaJon  Goals RoBoard FlightCrtl  Reliability:  Faults  of  plaBorms  Robustness:  SituaPons  in  environment Hardware & Abstraction Layer4
  • 5. FALTER  Project:  IntegraJon  Test FALTER:  Complicated  and  risky  integraJon  test  Complex  state  space  (incl.  internal  model  of  environment)  Complex  environment  (incl.  plaBorm  faults,  unexpected  obstacles)  Safety  criPcal  funcPonality  (incl.  man  and  material)5
  • 6. Virtual  IntegraJon:  Simulated  PlaKorm  and  Environment Virtual FALTER FALTER Planning Environment Model Execute FALTER Environment Environment Model Model Control Command & Sense Platform Model Platform Virtual  Commissioning:  Models  for  VerificaJon/ValidaJon  Pla$orm  model:  HAL,  hardware,  electronics&mechanics  of  system  FALTER:  Model  of  local  parameters  (e.g.,  posiCon,  speed)  Environment  model:  Physical  environment  of  system  FALTER:  Model  of  global  parameters  (e.g.,  walls,  obstacles)  Virtual  Commissioning:  ExecuCon  of  applicaCon  on  simulated  plaKorm  in   simulated  environment  6
  • 7. UAV  SimulaJon:  State  of  the  Art  -­‐-­‐Tools UAV  SimulaJon:  Tools  for  Model  ConstrucJon 1. RC  Simulators:  SimulaCon  of  UAVs  for  RC  training  (e.g.,  FMS)  SiL-­‐Usage:  6-­‐DoF-­‐Models,  no  environment  and  sensor  models 2. Physics  simulators:  SimulaCon  mech./elec.  processes  (e.g.  SimScape)  SiL-­‐Usage:  Solids/fluids  models,  no  dyn.  environment  and  sensor  models7
  • 8. SimulaJon:  Structure Structure: Modular Components Control   • Environment model: Walls, obstacles So]ware • Sensor model: Ultrasonic, time-of- flight, gyroscopes, accelerators PlaBorm • Actuator model: Flight mechanics, Model power electronics • Platform model: Preprocessing, flight Sensor Actuator control, API Model Model • Control software: Unmodified software Environment Model8
  • 9. SimulaJon:  Actuator  model [] [] Walls Walls V e (m/s) V e (m/s) X e (m) Walls LED X (m) GAS e Position F (N) Body F (N) Body Gier xyz xyz DCM Euler Angles (rad) FC ACCEuler Angles Nick (rad) FC GYRO Roll DCMbe DCMbe Roboard V (m/s) V (m/s) b b Fixed (rad/s) Fixed (rad/s) Mass Mass M xyz (N m) M xyz (N m) d /dt d /dt A (m/s2 ) A (m/s2 ) b b 6DoF (Euler Angles) 6DoF (Euler Angles) GAS F YAW NICK ROLL M rad/s Flight Dynamics F Actuator  model:  Handling  of  flight  mechanics  Physics:  6DoF-­‐MoPon  model  Actuators:  TranslaPon  control  commands  via  power  electronics9
  • 10. SimulaJon:  Environment  and  Sensor  Model z e1 e2 v yEnvironment  Model:  Walls,   Sensor  Modell:  Distance/PosiJon  Obstacles Measurement Surfaces:  One-­‐Vertex-­‐Dual-­‐Edges-­‐  Distance  Measurement:  PosiCon-­‐ Encoding  of  rectangles dependent  distance  list Walls,  Obstacles:  CombinaCon  of    PosiCon  detecCon:  Provision  of   surfaces 6DoF-­‐values    10
  • 11. SimulaJon:  ImplementaJon Implementation: Matlab/Simulink • Simulation: Simulink Aerospace Toolbox, simulation components • Visualization: Simulink 3D Simulation (aka VR Toolbox) • Software inclusion: S-function via API of Platform Model11
  • 12. SimulaJon:  Fault  Model EffecPve  Signal Signal+Dri] Signal+Dri]+Noise Fault Model: Support for generic classes of faults • Systemic faults, e.g., noise, drift • Sporadic faults, e.g., bit-flip, stuck-at • Parametrized faults, e.g., fail time, noise strength12
  • 13. SimulaJon:  ApplicaJon Intended  Z-­‐Speed/ AlPtude EffecPve  Z-­‐Speed/ AlPtude Assumed  Speed/ AlPtude Application: In-the-Loop Test incl. Debugging by Simulation • Execution of software, simulation of platform and environment13
  • 14. Test  Management  Test  Management  System:  Scenarios  Easily  reproducable  setups  for  in-­‐the-­‐loop  tests  Independent  combinaPon  of  noise,  dri],  blackout,  obstacles  ApplicaPon:  Reliability  (faults),  robustness  (obstacles)14
  • 15. SimulaJon:  ApplicaJon15
  • 16. Virtual  SiL  TestSimulaJon  Framework  for  UAVs Standard  architecture  (Environment,  sensors,  pla$orm,  actuators) Modular  components  (incl.  ultrasonic,  Cme-­‐of-­‐flight) Robustness/reliability  test  (incl.  obstacles,  sensor  defects,  Cming  faults) Debugging  support  (incl.  internal  environment  model)➡ Efficient  support  of  early  and  low-­‐risk  validaCon/verificaCon➡ LimitaCon  due  to  degree  of  details  (e.g.,  energy  effects,  surface  properCes) More  InformaJon: at our site at www.fortiss.org16