A GeoPortal for Canadian Groundwater Data - Boyan Brodaric, Natural Resources Canada

2,340 views

Published on

Boyan Brodaric, Research Scientist with Geological Survey of Canada, Natural Resources Canada, presented these slides as part of the Cybera Summit 2010 session, Environmental Infrastructure: The Tools and Technologies Behind Water and Resource Management.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,340
On SlideShare
0
From Embeds
0
Number of Embeds
145
Actions
Shares
0
Downloads
24
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

A GeoPortal for Canadian Groundwater Data - Boyan Brodaric, Natural Resources Canada

  1. 1. GIN: A Cyberinfrastructure and GeoPortal for Canadian Groundwater Data Boyan Brodaric Geological Survey of Canada Natural Resources Canada B. Brodaric—GIN Cyberra Summit 2010 1 Banff, 22 Sept. 2010
  2. 2. Themes   Data Cyberinfrastructure (CI) web-based resources for data interoperability   Spatial Data (cyber)Infrastructure (SDI) open standards for geographically located features and observations   Groundwater Information Network (GIN) Canadian network for groundwater data B. Brodaric—GIN Cyberra Summit 2010 2 Banff, 22 Sept. 2010
  3. 3. GW data in Canada   Distributed, Uncoordinated data Feds (< 10), provs & terrs (<50), municipalities (100s?), watershed authorities (100s?)   Heterogeneous data Data use, content, structure, systems (dbs, sensors) Use   Variable Volume Budgets Use (e.g. extraction, vulnerability): ? Budgets (e.g. regional recharge): 10s? Reservoirs Reservoirs (e.g. aquifers): 100s Observations (e.g. wells, monitoring): 1Ms-10Ms Observations   Variable Quality Completeness, consistency, location B. Brodaric—GIN Cyberra Summit 2010 3 Banff, 22 Sept. 2010
  4. 4. GW data in Canada   Ontario & Quebec schematic and semantic heterogeneity in water-well data Quebec rock type Ontario rock type B. Brodaric—GIN Cyberra Summit 2010 4 Banff, 22 Sept. 2010
  5. 5. Recent calls for action GW Data Access   More online access   Consolidate access   Better data quality   More data (use, monitoring) GW Data Management B. Brodaric—GIN Cyberra Summit 2010 5 Banff, 22 Sept. 2010
  6. 6. Approach   Groundwater Information Network (GIN) NRCan, 9 prov/terr (YK, BC, AB, SK, MB, ON, QC, NS, NL), USGS Seamless access to GW information Start with water well databases then sensors GeoConnections seed funding Jan2008-Mar2009   Principles Distributed: data stays with owners Seamless: acts as one virtual database Multi-access: multiple portals, tools Standards-based: nat’l CGDI & int’l OGC/ISO standards e.g. Groundwater ML (GWML) WaterML GeoSciML B. Brodaric—GIN Cyberra Summit 2010 6 Banff, 22 Sept. 2010
  7. 7. Results B. Brodaric—GIN Cyberra Summit 2010 7 Banff, 22 Sept. 2010
  8. 8. Approach: data interoperability   Overcome levels of data heterogeneity pragmatic GW Practices (data usage) semantic GW Ontology (data content) schema GWML, WaterML (data structure) Groundwater OGC syntax GML (data language) system WFS, WMS,… (data systems) B. Brodaric—GIN Cyberra Summit 2010 8 Banff, 22 Sept. 2010
  9. 9. Approach: interop architectures   Catalog   Warehouse   Network central registry central database central mediator, registry unconsolidated access consolidated access consolidated access common standards common standards common standards fragmented data duplicate, delayed data virtual, real-time data e.g. US-CUAHSI e.g. AU-AWRIS, EU-WISE e.g. GIN OGC OGC OGC OGC registry mediator registry ON registry QC OGC OGC OGC OGC ON QC ON QC B. Brodaric—GIN Cyberra Summit 2010 9 Banff, 22 Sept. 2010
  10. 10. Approach: design   Groundwater Information Network GIN Advanced: 3D, analysis GML GWML WaterML WMS, WFS, SOS GWML GML-BC GML-AB GML-SK GML-ON GWML GML GML WMS, WFS, SOS B. Brodaric—GIN Cyberra Summit 2010 10 Banff, 22 Sept. 2010
  11. 11. Typical mediator architecture Ontology! reasoner" matcher" Client! Wrapper ! “find all water wells with global " ON unconsolidated materials” ! sand clay Mediator! local " soil <RockMaterial> <geneticCategory> <CGI_TermValue> global" Wrapper ! <value…>Sedimentary</value> QC </CGI_TermValue> </geneticCategory> global " SABL <lithology> … ARGL <name…>Sand</name> TERR </lithology> Registry! metadata" local "   send query   distribute query   translate query (globallocal)   receive results   integrate results   translate results (localglobal)   distribute results B. Brodaric—GIN Cyberra Summit 2010 11 Banff, 22 Sept. 2010
  12. 12. GIN Mediator architecture   receive & translate query   distribute query   receive results   translate & integrate results   send query   distribute results   receive results Ontology! W*S! Client! SOS! “find all water wells with unconsolidated material” ! ON W*S, SOS! sand WaterML Mediator! local " clay soil GWML global" GML GeoSciML O&M <RockMaterial> <geneticCategory> <CGI_TermValue> W*S! <value…>Sedimentary</value> local" SOS! </CGI_TermValue> QC </geneticCategory> <lithology> SABL … ARGL <name…>Sand</name> TERR </lithology> CSW! local " B. Brodaric—GIN Cyberra Summit 2010 12 Banff, 22 Sept. 2010
  13. 13. GIN translation of results Lithology GWML syntactic <lithology> ON Sand … <name…>Sand</name> QC Sand </lithoogy> schematic semantic GIN simple lithology ontology B. Brodaric—GIN Cyberra Summit 2010 13 Banff, 22 Sept. 2010
  14. 14. GIN Main Site: www.gw-info.net B. Brodaric—GIN Cyberra Summit 2010 14 Banff, 22 Sept. 2010
  15. 15. GIN Basic Portal <gsml:lithology> <gsml:ControlledConcept gml:id="gin.cc.2d-2"> GWML <gsml:identifier codeSpace="urn:ietf:rfc:2141">urn:x- ngwd:vocabulary:gin:2d-2"</gsml:identifier> <gsml:name codeSpace="urn:x-ngwd:classifierScheme:GIN:Lithology: 2008" xml:lang="fr">Argile</gsml:name> <gsml:name codeSpace="urn:x-ngwd:classifierScheme:GIN:Lithology: 2008" xml:lang="eng">Clay</gsml:name> <gml:description>A naturally occurring material composed primarily of fine-grained minerals. It is generally plastic at appropriate water contents and will harden when dried of fired (Neuendorf et al. 2005)</ gml:description> </gsml:lithology> <gsml:material> <gsml:UnconsolidatedMaterial> <gsml:consolidationDegree> <gsml:CGI_TermValue> <gsml:value codeSpace="urn:cgi:classifierScheme:BGS:consolidationTerms">UNCONSOLI DATED</gsml:value> </gsml:CGI_TermValue> </gsml:consolidationDegree> <gsml:physicalProperty> <gwml:HydrogeologicDescription> <gwml:hydraulicConductivity> <gsml:CGI_NumericValue> <gsml:qualifier>approximate</gsml:qualifier> <gsml:principalValue uom="y_K_md-1">0.001</ gsml:principalValue> </gsml:CGI_NumericValue> </gwml:hydraulicConductivity> </gwml:HydrogeologicDescription> </gsml:physicalProperty> </gsml:UnconsolidatedMaterial> Google Earth </gsml:material> Excel B. Brodaric—GIN Cyberra Summit 2010 15 ESRI Shape, GeoDb XML Banff, 22 Sept. 2010
  16. 16. GIN Advanced portal B. Brodaric—GIN Cyberra Summit 2010 16 Banff, 22 Sept. 2010
  17. 17. GIN Example   Performance (2 provs) 50 wells = 2.17 secs, 1.08 Mb 500 wells = 15.01 secs, 7.74 Mb 2500 wells = 69.97 secs, 40.80 Mb 5000 wells = 142.27 secs, 80.41 Mb B. Brodaric—GIN Cyberra Summit 2010 17 Banff, 22 Sept. 2010
  18. 18. Conclusions   Groundwater data interoperability achieved for water well information and preliminarily sensors   Dynamic mediation effective and efficient modest data volumes are realistic within wait-times   Open geospatial standards for schemas and systems are essential B. Brodaric—GIN Cyberra Summit 2010 18 Banff, 22 Sept. 2010
  19. 19. URLs   Groundwater Information Network (GIN) www.gw-info.net   Groundwater Markup Language (GWML) http://ngwd-bdnes.cits.rncan.gc.ca/gwml   GeoSciML www.geosciml.org   WaterML http://external.opengis.org/twiki_public/bin/view/HydrologyDWG   GIN Mediator http://ngwd-bdnes.cits.rncan.gc.ca/service/api_ngwds/en/mediator.html Thank you! B. Brodaric—GIN Cyberra Summit 2010 19 Banff, 22 Sept. 2010
  20. 20. B. Brodaric—GIN Cyberra Summit 2010 20 Banff, 22 Sept. 2010
  21. 21. Semantics: types of ontologies Global Ontology! general concepts Upper-Level ontology ! (DOLCE ʻamount-of-matterʼ)" Domain ontology ! public schema public vocabulary (GeoSciML ʻlithologyʼ, " GeoSciML ʻsandʼ)" local schema local vocabulary Application Application ontology ! ontology ! (ON ʻmaterial1ʼ, (QC ʻmatprimʼ, ON ʻsandʼ)" QC ʻSABLʼ)" sand SABL clay ARGL soil TERR B. Brodaric—GIN Cyberra Summit 2010 21 Banff, 22 Sept. 2010
  22. 22. Schematics: GWML example standard structure <gsml:lithology> standard <gsml:ControlledConcept gml:id="gin.cc.2d-2"> content <gsml:identifier codeSpace="urn:ietf:rfc:2141">urn:x-ngwd:vocabulary:gin:2d-2"</gsml:identifier> <gsml:name codeSpace="urn:x-ngwd:classifierScheme:GIN:Lithology:2008" xml:lang="fr">Argile</gsml:name> <gsml:name codeSpace="urn:x-ngwd:classifierScheme:GIN:Lithology:2008" xml:lang="eng">Clay</gsml:name> <gml:description>A naturally occurring material composed primarily of fine-grained minerals. It is generally plastic at appropriate water contents and will harden when dried of fired (Neuendorf et al. 2005)</gml:description> </gsml:lithology> <gsml:material> <gsml:UnconsolidatedMaterial> <gsml:consolidationDegree> <gsml:CGI_TermValue> <gsml:value codeSpace="urn:cgi:classifierScheme:BGS:consolidationTerms">UNCONSOLIDATED</gsml:value> </gsml:CGI_TermValue> </gsml:consolidationDegree> <gsml:physicalProperty> <gwml:HydrogeologicDescription> <gwml:hydraulicConductivity> <gsml:CGI_NumericValue> <gsml:qualifier>approximate</gsml:qualifier> <gsml:principalValue uom="y_K_md-1">0.001</gsml:principalValue> </gsml:CGI_NumericValue> </gwml:hydraulicConductivity> </gwml:HydrogeologicDescription> </gsml:physicalProperty> </gsml:UnconsolidatedMaterial> </gsml:material> B. Brodaric—GIN Cyberra Summit 2010 22 Banff, 22 Sept. 2010
  23. 23. Approach: users 1. Portal users: end-users (water managers, scientists, consultants, public) GIN Advanced OGSR Library GIN Basic Atlantic ENV Troo Corp OGSR Trust 2. Pipeline users: data processors (portal and tool developers) B. Brodaric—GIN Cyberra Summit 2010 23 Banff, 22 Sept. 2010
  24. 24. Mediator implementation   Open source Cocoon, Java, SAX, XML, XSLT   Re-usable Customizable: plug and play data sources and mappings   Efficient Multi-threaded, parallel, cached data stream   Tested GIN, GeoSciML Testbed, OneGeology   Freely available http://ngwd-bdnes.cits.rncan.gc.ca/service/api_ngwds/en/mediator.html B. Brodaric—GIN Cyberra Summit 2010 24 Banff, 22 Sept. 2010
  25. 25. Semantics   GIN lithology ontology (subset of GeoSciML)   language-neutral concepts (URN), multi-lingual terms, defs - concept = urn:x-ngwd:vocabulary:gin:2c - terms = “sand” (English), “sable” (French) - definition =   enables: multi-lingual query and data download   need to represent definitions in an ontology B. Brodaric—GIN Cyberra Summit 2010 25 Banff, 22 Sept. 2010
  26. 26. Semantic mapping   Semantic mapping LAV: local terms mapped to global concepts mapping specification: XML file (moving to OWL)   e.g. ON ‘sand’ mapping <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="sadn" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="sad" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Fine Sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="medium fine sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Medium Sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Coarse Sand" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Sandy" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Ssandy" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="sand silt" /> <map:rule global="urn:x-ngwd:vocabulary:gin:2c" local="Quicksand" /> B. Brodaric—GIN Cyberra Summit 2010 26 Banff, 22 Sept. 2010
  27. 27. Schema mapping   Schema mapping LAV: local schema mapped to global schema mapping specification: modified GWML data file <gsml:lithology> <gsml:ControlledConcept> <gsml:identifier>ont:geostratumlog/ont:GeologyStratum/ ont:material_1</gsml:identifier> <gsml:identifier>ont:geostratumlog/ont:GeologyStratum/ ont:material_2</gsml:identifier> <gsml:identifier>ont:geostratumlog/ont:GeologyStratum/ ont:material_3</gsml:identifier> </gsml:ControlledConcept> </gsml:lithology> B. Brodaric—GIN Cyberra Summit 2010 27 Banff, 22 Sept. 2010
  28. 28. GWML scope water water properties water budget ,aquifers wells observations reservoirs B. Brodaric—GIN Cyberra Summit 2010 28 Banff, 22 Sept. 2010
  29. 29. GWML lineage   parts of GWML extend GeoSciML, O&M GeologicUnit EarthMaterial PhysicalDescription Observation B. Brodaric—GIN Cyberra Summit 2010 29 Banff, 22 Sept. 2010
  30. 30. GWML/GeoSciML design   ConceptualLogicalPhysical GML schema design <LithodemicUnit gml:id="GSV53"> <gml:description>Granite, syenite, volcanogenic sandstone, conglomerate, minor trachyte lava</gml:description> <gml:name>Mount Leinster Igneous Complex</gml:name> <purpose>typicalNorm</purpose> <age> <GeologicAge> <value> <CGI_TermRange> <lower> <CGI_TermValue> <value codeSpace="http://www.iugs- cgi.org/geologicAgeVocabulary">Triassic</value> </CGI_TermValue> </lower> <owl:Class rdf:about="#GeologicUnit"> <upper> concept to GML <rdfs:subClassOf> GML-UML to XML <CGI_TermValue> <owl:Restriction> <value codeSpace="http://www.iugs- <owl:onProperty rdf:resource="http://www.loa-cnr.it/ cgi.org/geologicAgeVocabulary">Triassic</value> ontologies/ExtendedDnS.owl#plays"/> </CGI_TermValue> <owl:allValuesFrom </upper> rdf:resource="#GeologicUnitPart"/> </CGI_TermRange> </owl:Restriction> </value> </rdfs:subClassOf> <event> <CGI_TermValue> <value codeSpace="http://www.iugs- conceptual model: cgi.org/geologicAgeEventVocabulary">intrusion</value> </CGI_TermValue> OWL/UML, no GML </event> </GeologicAge> logical model: GML-UML </age> physical model: GML-XML <age> B. Brodaric—GIN Cyberra Summit 2010 30 Banff, 22 Sept. 2010
  31. 31. Next Steps   More geographic coverage other Canadian partners   Higher quality data time-indexed data: water levels, flow rates, quality… SOS   More types of data aquifers, geology, 3D,… WCS   More tools 3D Modeling,…   More infrastructure CWS, OWL Reasoner/Service! B. Brodaric—GIN Cyberra Summit 2010 31 Banff, 22 Sept. 2010
  32. 32. GIN demo demo B. Brodaric—GIN Cyberra Summit 2010 32 Banff, 22 Sept. 2010
  33. 33. Outline   Interoperability requirements Groundwater data in Canada   Approach: Groundwater Info Network (GIN) CGDI-based architecture Semantic Interoperability Schematic Interoperability   Example Implementation Portals B. Brodaric—GIN Cyberra Summit 2010 33 Banff, 22 Sept. 2010

×