EHESS
Indigenous Transformation of Amazonian Forests: An Example from Maranhão, Brazil
Author(s): William Balée
Source: L'...
Histoire,histoires
William Balée
IndigenousTransformation
of AmazonianForests
An ExamplefromMaranhão,Brazil
WilliamBalée, ...
232 WILLIAM BALÉE
trees,weredomesticatedinAmazoniaalone(Smithetal. 1991:8; also Clement
1989). Managementofdomesticatedpla...
Transformationof AmazonianForests 233
howeverempiricaltheirpredictions,relyultimatelyona metaphysicalproposition,
i.e.,inr...
234 WILLIAM BALÉE
understood,in context,to be pristine. Accordingto one source,thehigh
forestliesbetweenlatitudes3°18' S a...
Transformationof AmazonianForests 235
below); 3) all plots are narrowlyrectangularin dimension,being either
10mx 1,000mor2...
236 WILLIAM BALÉE
Hectare2. Location:nearP.L Guaja,regionoccupiedby36Guaja Indians,
rightbankofupperRio Turiaçu,withinRese...
Transformationof AmazonianForests 237
Hectare6. Location:nearvillageofGurupiuna,regionoccupiedbyabout
120Ka'apor Indians,d...
238 WILLIAM BALÉE
perhectare(Table1). Itmaybeconcludedthatalthoughpre-Amazonianforests
arelessspeciesrichthanupperAmazonia...
TransformationofAmazonianForests 239
whena biologicalnomadbecomesan indicatorof humanactivity- i.e., how
diverse,frequent,...
240 WILLIAM BALÉE
Fig. 1. Species/AreaCurvesforfallowandhighforest*.
fromthefallowplotoftheP.I. Awá,throughtheTuriaçufallo...
TransformationofAmazonianForests 241
Ha Location Type Individuals Families Species Basal Area
(m2)
1 P.I. Fallow 506 38 15...
242 WILLIAM BALÉE
High ForestPairs Species in Common Total Species Coefficientof Similarity
3.6 49 219 22.4%
3,4 53 218 24...
TransformationofAmazonianForests 243
High ForestSpecies I.V.* Fallow Species I.V.*
Eschweileracoriacea 37.83 Jacaratiaspin...
244 WILLIAM BALÉE
arguethat,on theotherhand,an indigenousagroforestrycomplex,suchas
thatdisplayedby the Ka'apor, Tembé,and...
TransformationofAmazonianForests 245
deservesmention. Fallowsareindigenousorchards(e.g.,Denevanetal 1984),
whetherconsciou...
246 WILLIAM BALÉE
principlesin theirhabitat,avoid consumingsome fruitsthatare otherwise
edible,and believethatstoneaxehead...
Transformationof AmazonianForests 247
underrelativelyconstanthumansupervisionandinterference.Yeteventhemost
significanttra...
248 WILLIAM BALÉE
processes,involvingseveralhumangenerations.Althoughonecanliveto see
that,as theelders(tamüi)say,redbrock...
TransformationofAmazonianForests 249
questionedbyParker(1992). In fact,manyofthespeciesplantedon "forest
islands"bytheKaya...
250 WILLIAM BALÉE
i.e., non-treevegetation. At the same time,theyrepresenta measurable
indigenouscontributionto regionalbi...
TransformationofAmazonianForests 251
1992b "IndigenousHistoryand Amazonian Biodiversity",in H. K. Steen & R. P. Tucker, ed...
252 WILLIAM BALÉE
Grenand,P.
1980 Introductionà l'étude de l'universWayapl. Paris, SELAF.
Jennings,D. L.
1976 "Cassava", i...
Transformationof AmazonianForests 253
Posey, D. A. et al.
1984 "Ethnoecologyas AppliedAnthropologyinAmazonianDevelopment",...
254 WILLIAM BALÉE
RÉSUMÉ
WilliamBalée, Transformationsindigènesde la forêtamazonienne.Un exempledu
Maranhão,Brésil.- Cetar...
Upcoming SlideShare
Loading in...5
×

Indigenous transformation of amazonian forests an example from maranhão, brazil

109

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
109
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Indigenous transformation of amazonian forests an example from maranhão, brazil

  1. 1. EHESS Indigenous Transformation of Amazonian Forests: An Example from Maranhão, Brazil Author(s): William Balée Source: L'Homme, 33e Année, No. 126/128, La remontée de l'Amazone (AVRIL-DÉCEMBRE 1993), pp. 231-254 Published by: EHESS Stable URL: http://www.jstor.org/stable/40589895 . Accessed: 25/04/2011 23:03 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=ehess. . Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. EHESS is collaborating with JSTOR to digitize, preserve and extend access to L'Homme. http://www.jstor.org
  2. 2. Histoire,histoires William Balée IndigenousTransformation of AmazonianForests An ExamplefromMaranhão,Brazil WilliamBalée, IndigenousTransformationofAmazonianForests:An Examplefrom Maranhão,Brazil- This articleseeksto clarifypast relationshipsbetweencertain indigenoussocietiesand regionalbiodiversityinAmazonia. It presentsnewevidence thatindigenouspeoplespossessingan agroforestrycomplexmayhaveenhancedrather thandiminishedregionalbiodiversity,at leastinthedomainofplants. The analysis restsona comparisonofthesimilaritiesanddifferencesbetweenanthropogenicforests andundisturbedforestsinthephytogeographicregionknownas *Tre-Amazonia". The authordiscussesthepossibleextenttowhichindigenousplanningandecologicalknow- ledgewasinvolvedintheformationofsuchforestsandintheincreasedplantdiversity in theregion. Introduction schemethatpigeonholesAmazonianforestsas beingsomehowpristine - the*'wilderness"oras selvas- hasdominatedtheWesternscientific as wellas popularimaginationsinceat leastthe19thcentury. Most theoriesinculturalecologytendtoevadewhetherindigenoussocietiesandtech- nologies,infact,mighthavetransformedtheAmazonianwildernesspermanent- ly. Thisevasionmaybe comprehendeduponconsideringthatdemonstration of suchtransformationwouldunderminea keyprincipleof culturalecology, namely,environmentaldeterminism(ofteneuphemisticallycalledenvironmental ' 'conditioning","possibilism",and "limitingfactors")withrespectto state- lesssocieties(cf.Moran1990a:9-10).J Rather,thesesamestatelesssocieties, withregardtoAmazonia,appeartohavetransformeda "richrealmofnature" (apologiestoDavidSweet)intoanevenmoreanalyticallyandempiricallycomplex bioculturaldomainthanhadeverbeenconceivedinthe19thcenturynaturalistic mentalitythat,to a certainextent,stillprevailsin ecology. At least12% of theterrafirmeforestsofBrazilianAmazoniaappearstobe anthropogenic(Balée 1989a)- i.e., ofa bioculturaloriginthatwouldnothaveexistedwithoutpast humaninterference.In addition,at least24 perennialcropplants,including L'Homme126-128,aw.-dec.1993,XXXIII (2-4),pp. 231-254.
  3. 3. 232 WILLIAM BALÉE trees,weredomesticatedinAmazoniaalone(Smithetal. 1991:8; also Clement 1989). Managementofdomesticatedplantsisprobablymorethanfivethousand yearsoldinAmazonia(e.g.Bushetal. 1989;Plucknett1976). Theseandrelated findings(variousarticlesin Denevan& Padoch 1988;Posey& Balée 1989), howeverrecent,havealreadyledtospeculationconcerningpossibleeffectssuch pastinterventionbyindigenouspeoplesmayhavehadon regionalbiodiversity {qua existingnumbersof plantand animalspecies). BiologistKentRedford(1991),forexample,has arguedthatevidencefor environmentalinterventionby pastAmazoniansocietiessuggestsdeleterious effectson "virgin"forestsandplantandanimalspeciestherein:'These people behavedas humansdo now:theydidwhatevertheyhadto to feedthemselves andtheirfamilies"(p. 46); as formodernindigenouspeoples,hewrote,"They havethesamecapacities,desires,and,perhaps,needstooverexploittheirenviron- mentas didourEuropeanancestors"(p. 47) [seeinsightfulcritiquebySponsel 1992]. Thisspeculationharborsan implicittheoryofhumannature(onenot confinedto Redford- see, for example,Johnson1989 and Rambo 1985), specifically,thatit has been encodedto reducebiologicaland ecological diversity.It is ultimatelybased, howeverimplicitly,on thedoctrineof the psychicunityof humankind. In principle,human beings,regardlessof displayinga diversityofsociopoliticaltypes(suchas foragingbands,horticultural villages,agriculturalchiefdoms,and highcivilizationsdependenton intensive and/ormechanizedagriculture),as is transparentin theethnographicknow- ledgeof theworld,are seenas a speciesto be responsiblefortheextinction spasmof our times(e.g., Myers1988,NSB 1989; see discussionin Balee 1992b). Suchpessimism,wereone to adopta sociobiologicalpointofview, isperhapsjustifiedfromtheabysmalenvironmentalrecordofbiologicallymo- dern,upperPleistocenehunters(e.g.,Martin1984). Inotherwords,ifhuman- ityin a stateofnature(i.e., notenvironedbydomesticates)was anathemato nature'seconomy,subsequentgenerationsthatenjoyedthefruitsof various Neolithicrevolutionscould nothave beenanymoreconservationist. Even if one grudginglyadmits,as did Redford(1991: 47), thatsome indigenousAmazoniansocietiesofthepastmayhavemanagedtheirheritage ofnaturalresources,theirmoderndescendants,inthisview,areinevitablyto be drawnintothevortexofexpandingWesternsociety,andtoa certaindegree voluntarily(also seeRibeiro1970). Thisbespeaksa notso hiddenmetaphysic in an emergingdialoguebetweenanthropologistsand biologists. In fact,it representsa late20thcenturyversionof unilinearprogress,perhapstheonly significantdifferencebetweenL. H. Morgan'sand thelatter-dayaccultura- tionists'schemesbeingthemechanismsofsuchprogress. ForMorgan,these weretools;forthelatter-dayacculturationists,itis thesupposedlyundeniable and self-evidentallureofthematerialabundanceto be appropriatedinWest- ernsocietyitself(theseeminglynaturalexpansionof Westernsocietyonto indigenouslandsis thusexplainednot as Conquest,but as seduction,with organizedcrimeconvenientlyputona backburner). In anycase,boththeses,
  4. 4. Transformationof AmazonianForests 233 howeverempiricaltheirpredictions,relyultimatelyona metaphysicalproposition, i.e.,inrelationtothediversityoftheirnatural,infrahumanenvironments,people mustbeeverywherethesame. Theissuetobeevaluatediswhethera compara- tiveviewofhumanhistory,withspecialregardtoAmazonia,genuinelysupports sucha conclusion. Avoidingpredictions,thisarticleseekstoclarifypastrelationshipsbetween certainindigenoussocietiesand regionalbiodiversityin Amazonia. On the one hand,the findingspresentedheredo not conflateindigenousresource management(whichneednot be consciousand deliberate,and whichmost certainlyhas existedin Amazoniaeversincetheappearanceof domesticated plants)withdefilementof thenaturalenvironment;sucha conflationwould be a mistakethat,I believe,could have furtherdisastrousimplicationsfor remainingindigenoussocietiesinAmazonia. Ontheotherhand,thesefindings shouldbe relevantto anthropologistsandbiologistsnowundertakingresearch inthegrowingandextremelyimportantfieldofrestorationecologyinAmazonia. Inparticular,I suggestthatindigenouspeoplesdisplayinganagroforestrycomplex mayhaveenhanced,ratherthandiminishedregionalbiodiversity,at leastcon- cerningthedomainof plants. My specificaimsare fourfold:1) to demonstratetheexistenceof anthro- pogenicforestsinthephytogeographicregionknownas pre-Amazonia;2) to comparethesimilaritiesanddifferencesbetweentheseforestsandundisturbed forestsofthesameregion;3) toproposethattheseanthropogenicforests,pro- ducedbyindigenousagroforestrypracticesofthepast,representnetincreases inplantbiodiversity;and4) to discussthepossibleextentto whichindigenous deliberationandecologicalknowledgewereinvolvedintheformationofsuch forestsand possiblyincreasedplantdiversityin theregion. Forests of pre-Amazonia The regionin Maranhãostate,Brazil,thatis inhabitedby theKa'apor, Guaja,Tembé,andGuajajaraIndians,allofwhompertaintotheTupi-Guarani languagefamily,has been calledthepre-Amazonianforest(SUDAM 1976, Daly & Prance1989:421) or AmazonianMaranhão(Fróis 1953). Its limits are roughlyunderstoodto be the Rio Gurupion thewest,AtlanticOcean to thenorth,uppercoursesof theRios Grajaú, Pindaréand Gurupion the south,and the leftbank of the Rio Mearimon the east (Fróis 1953: 99, map). Theregionappearstorepresentan easterlyextensionoforpenetration by thehighforestsdrainedby theAmazon Riverto thewest(Fróis 1953; Ducke & Black 1953). Dependingon thesource,pre-Amazoniais furtherdividedintoareas of savanna,palm groves(especiallynearlypure standsof the babaçu palm- OrbignyaphalerataMart.),and "highforest"(calledhiléiaorflorestadensa) [Ducke& Blake1953;ProjetoRADAM 1973:iv/7;Fróis1953;Rizzini1963],
  5. 5. 234 WILLIAM BALÉE understood,in context,to be pristine. Accordingto one source,thehigh forestliesbetweenlatitudes3°18' S and 6°21' S and longitudes44°35/E and 48°20/W (SUDAM 1976),itssouthernand eastermostlimitsbeingtheupper Rio Gurupiand theleftbankof theRio Mearim. Ducke and Black (1953: 6-7) weremoreconservative,indicatingthatthetruehighforest(hiléia)of MaranhãoliesbetweentheRio Gurupiand theRio Turiaçuand upperRio Pindaré. Accordingto Rizzini,whowasinagreementwithDuckeand Black (1953),thisregionis partof thephytogeographicprovincecalled ''Amazon forest". It lieswithinthesoutheasternsectorofthesub-province'Tertiary Plain", whichrunseastfromthefootoftheAndes. Thissoutheasternsector includesthe basinsof the lowerTocantins,the area aroundBelém,lower Xingu,Gurupi,andupperPindaréandTuriaçuRivers(Rizzini1963:51,map p. 45). The partofthissectorlyingin Maranhãocorrespondswellwiththe presenthabitatoftheKa'apor,Guajá, andTembé,andis essentiallydefinitive of the phytogeographiclimitsof the regionunderstudy. At leasttwo kindsof terrafirmeforestoccurin theregion:old fallow (orsimplyfallow)andhighforest. Fallowrefersto sitesthatwereusedlong ago foragriculturebutwhichare now forested. The age of disturbanceis between40 andmorethan100years. Highforestis notnecessarily * 'higher" (in termsof heightof thecanopy)thanfallow;it is, rather,a forestof the terrafirmewhichdisplaysa primarycharacter. It seemsnotto have been disturbedfor agriculture(and by implication,fairlylarge scale firesas distinguishedfromincidentallightningstrikes)withinthelast200or300years, ifever. Regardlessofthedistinctionsbetweentheseforesttypes,interpretations of radarand satelliteimageryto date,as reflectedin mapping,portrayboth as beinghighforest(florestadensa) [e.g., ProjetoRadam 1973]. In part, thismayreflecta problemin termsof scale (see Moran 1990b),butit also pointsto serious,perhapsepistemological,problemsin theinterpretationof whatispristineandwhatisnot. Evenifscaleweretobe considerablyreduced fromtheusual 1:250,000(Moran 1990b),forexample,theaerialsignatures of thedifferentforesttypesremainto be clarified. The groundtruth,as presentedhere,suppliesthebasis fora muchmorerefinedinterpretationof the forestsof pre-AmazonianMaranhão,whichmay somedaybe readable fromand falsifiableby remote-sensing(if the forestsdo not disappear first). Thisinterpretationadmitsofsubstantialheterogeneitybetweenstands of remainingforest,dependingon whetherthesewereoncetheobjectof an indigenousagroforestrycomplexor not. Between1985and 1990,I carriedoutinventoriesofeightseparatehectares of forestin thehabitatsof the Ka'apor, Guajá and Tembé Indians. The methodsusedarecomparableforeachoftheeighthectares:1) alltreesgreater thanor equal to 10cm in diameterat breastheight(dbh) [usinga standard of 1.7m] on each plot weremeasured,tagged,collected(exceptin a few isolatedinstances),andidentified;2) all plotsweresub-dividedinto40 sampling units(or subplots)of 10mx25 m, in orderto samplerelativediversity(see
  6. 6. Transformationof AmazonianForests 235 below); 3) all plots are narrowlyrectangularin dimension,being either 10mx 1,000mor20 mx 500m;4) allplotsaresituatednearindigenousvillages, butnoneweretheobjects,atthetimeofstudy,ofagriculturalactivity. These inventorymethodsareidenticaltothoseofmanyotherrecentphytosociological studiesinAmazonia(e.g., Campbelletal. 1986;Boom 1986;Salomão 1988; Gentry1988)sotheresultsofthisstudyarecomparablewiththoseotherstudies. The eighthectaresspan a lineardistanceof about 150km,fromtheleft bankoftheRio Pindaréto theleftbank(and Pará side)oftheRio Gurupi, whichisoftenconsideredtobepartofthepre-Amazonianforest(e.g.,Projeto Gurupi 1975). Analysisof thesehectarespermitsone to calculateseveral importantaspectsofthepre-Amazonianforest,suchas floristiccomposition, speciesrichness,andphysiognomy.Foralleighthectares,andanycombinations thereof,onecancalculatetotalbasalarea(thatis,thenumberofsquaremeters atbreastheight[1.7m]occupiedbyindividualsgreaterthanorequalto 10cm dbh),basal area ofindividualspecies,relativefrequency(thenumberofindi- vidualsof a species/allindividualsof theplot x 100),relativediversity(the numberofsamplingunitsinwhicha speciesoccurs/alloccurrencesofallspecies x 100),and relativedominance(thebasal area of a species/totalbasal area of theplot). In addition,on thebasis of thesemeasures,one can calculate theecologicalimportancevalueforeach species. The ecologicalimportance valueofa speciesisa derivedmeasureinvolvingthesumofrelativefrequency, relativedensity,andrelativedominance(seeGreig-Smith1983:151;Campbell et al. 1986;Salomão 1988). Theseinventorieswerecarriedoutexclusivelyinindigenousareas,nearcurrent occupationsitesofa traditionalforagingpeopleoftheregion(theGuajá), and threesocietiesthathavealwaysdisplayedan agroforestrycomplex(theKa'apor, Tembé,andGuajajara). A synopticdescriptionofeachoftheeighthectares follows(also seeTable 1; relateddata appearin Balée 1992b;morecomplete phytosociologicaldata on all siteswillappearin Balée, in press). Hectare1. Location:nearP.I. (PostoIndígena)Awá,occupiedby52Guajá Indians,withinReservaIndígenaCam, leftbankofRio Pindaréapp. 46°2/W, 3°48/S. Forest type: Fallow. The dimensions of this site were 500mx20 m. The sitehad 506individuals,157speciesin 38 families,and a totalbasal area of 22.1 m2. The ecologicallymostimportantspecieswas thebabaçupalm(Orbignyaphalerata). The Guajá ofthesitedescribeditas ka'a-ate(highforest),butitis clearthatthesiteis a fallow,basedon species distributions,muchsurfacepottery,and charcoal. This fallowwouldhave resultedfromagriculturalactivitiesofGuajajara Indians,probablymorethan 100yearsago. These activitiesalteredwhatwas highforeston thesite;a preliminaryarchaeologicalsurvey(theshoveltest)of theplotyieldeda large charcoalsample(in additionto manypotsherds)fromthewood of Dinizia excelsa,an enormousmimosaceoustreetypicallyassociatedwithhighforest (Kipnis1990).
  7. 7. 236 WILLIAM BALÉE Hectare2. Location:nearP.L Guaja,regionoccupiedby36Guaja Indians, rightbankofupperRio Turiaçu,withinReservaIndígenaAltoTuriaçu,app. 45°58/W, 3°6' S. ForestType:Fallow. Thissitewas500mx20 m. Ithad 563individuals,125species in 41 families,and a total basal area of 21.1m2. Theecologicallymostimportantspecieswasalsobabaçupalm. This sitehadbeena Ka'apor villageinthe1940s,accordingto oraltestimonyfrom theKa'apor Indiansof thevillageof Urutawi(whichis 19kmto theeast) as wellas froma non-Indianvisitor,Major, a long timeemployeeof the SPI and laterFUNAI. Potsherdsand remainsof Ka'apor ceramicmanioc griddlesare foundhere. Thiswas nearthesitewheretheGuajá werefirst peacably (and officially)contactedby the federal governmentduring 1973-1975. Guaja informantsdescribethisforestas wa'i-'i-tu(babaçugrove); nearbyKa'apor informantscall it eitheryetahu-'4-t4(babaçu grove)or taper (fallow). Hectare3. Location:about1.5kmsoutheastofHectare 2. ForestType: HighForest. Thissitemeasured10mx 1,000m. Thesitehad521individuals, 145speciesin45 families,anda basal areaof27.2 m2. Theecologicallymost importantspecieswasmatamata(Eschweileracoriacea). Therewasno evidence fordisturbanceon thissiteand it was classifiedas highforest(ka'a-te) by Ka'apor informantsas well as by Guaja informants. Hectare4. Location:NearvillageofUrutawi,regioninhabitedbyabout 80 Ka'apor Indians,withinReservaIndígenaAltoTuriaçu,on minortributary of rightbank of Rio Turiaçu,19kmdue east of P.I. Guaja. Foresttype: High forest. This site measured500mx 20 m. It had 519individuals, 126speciesin41 families,anda basal areaof25.3 m2. Theecologicallymost importantspecieswasmatamata(E. coriacea). Thesitewasclassifiedas ka'a-te (highforest)byKa'aporinformantsandtherewasno evidencefordisturbance. Hectare5. Location:about2 kmeastof Hectare4, regioninhabitedby Ka'aporIndians. ForestType:Fallow. Thissitemeasured500mx20 m. It had 451individuals,95 speciesin 36 families,and a total basal area of 30.3 m2. Theecologicallymostimportantspecieswaswildpapaya(Jacaratia spinosa). This sitewas a Ka'apor swiddenin thelate 1940sto early1950s, accordingto oral testimony.Of thefourfallows,it is themostrecent. It is classified,nevertheless,as taper(fallow),nottaperer(old swiddenoryoung secondaryforest)by theKa'apor. The basal area of 30.3 m2is artificially highbecauseofa largenumberofcaespitoseindividuals,especiallythearmed palmtucumã(Astrocaryumvulgäre),whichalone occupieda basal area of 5.9 m2,orabout20% ofthetotalbasal area. As thisfallowages,itis likely thatcaespitosepalmsandmulti-stemmedyoungtrees(suchas Gustaviaaugusta) willbecomelessdominantand thebasal area willactuallydiminish. Of all eighthectares,at 95 speciesthiswas leastdiverse- itsspecies/areacurve(not shown),unlikethoseof all others,is alreadybecomingasymptoticaftersub- plot(samplingunit)20. Thisconfirmsthewidelyheldassumptionthatthe youngera fallow(or secondaryforest),the lowerits diversity.
  8. 8. Transformationof AmazonianForests 237 Hectare6. Location:nearvillageofGurupiuna,regionoccupiedbyabout 120Ka'apor Indians,drainedby tributaryof theIgarapéGurupiunawhich emptiesintorightbankof Rio Gurupi,app. 46°20/W, 2°40' S. It is about 60 kmnorthofP.I. Guajá andexactly280kmsouth-southwestofBelém(based on measuredair distance). ForestType: highforest. This sitemeasured 10mx 1,000m. Ithad467individuals,123speciesin43 families,anda basal area of 30.3 m2. The ecologicallymostimportantspecieswas breumanga (Tetragastrisaltissima). The sitewasclassifiedas ka'a-te(highforest)bythe Ka'aporofGurupiunaandnoevidenceforhumandisturbancewasencountered. Hectare7. Location:about 2.5 kmWNW of Hectare6. ForestType: Fallow. Thesitemeasures10mx 1,000m. Ithad497individuals,141species in43 families,and a basal areaof23.3 m2. The ecologicallymostimportant specieswas bacuri(Platoniainsignis). The sitewas classifiedalternatelyas taper(basedon age ofdisturbance)and pakuri-t-i(bacurigrove)[basedon the relativeabundanceofthebacuritree]. The sitewas disturbedmostlikelyin the1870s,whichwaswhentheancestralKa'aporexpelledAfro-Brazilianrefugee slavesfromhere(Balée 1988a). Considerablequantitiesof potsherdsand charcoalarefoundonthissite. TheoldestKa'aporofthevillageofGurupiuna rememberthesitefromtheirchildhood(ca. 1920s)as havingbeena bacuri grove. Inotherwords,thisfallowhasnotbeensignificantlydisturbed(certainly notbyfire)probablysincetheKa'apor arrivedintheregioninthe1870s. The importanceofthesiteto theKa'apor todayliesinitssourceofhighlyprized bacurifruits. Hectare8. Location:about5 kmW ofP.I. Canindé,regioninhabitedby about150TembéIndians,leftbankofRioGurupi(stateofPará),26 kmWNW of hectare7,254kmESE of Belém(based on measuredair distance). The dimensionsofthissitewere10mx 1,000m. Foresttype:highforest. Thesite had 475individuals,144speciesin 41 families,and a basal area of 34.5 m2. The ecologicallymostimportantspecieswas matamata(E. coriacea). The Tembéclassifiedthesiteas ka'a-ete(highforest)as did Ka'apor informants who accompaniedme to the site(ka'a-te). No evidenceforpriorhuman disturbancewas encountered. Thehighforesthectaresamples(3,4, 6, and8) comparefavorablyinspecies diversityto othereasternAmazonianprimaryforests. It is clear,moreover, thatanyonehectareisinsufficientforsamplingdiversityofterrafirmeforests, sincethespecies-areacurvesforallhectaresexceptone(5) arestillsteeplyrising afteronehectare(notshown). Fortenterrafirmeforestonehectaresamples, usingidenticalmethodstothoseusedhere,fromBreves(MarajóIsland),Belém, middleXingubasin,and Serrados Karajás, theaveragenumberof species perhectareis 126 (Campbellet al. 1986; Salomão et al. 1988). The three hectaresofhighforestI sampledinMaranhão(3, 4 and 6- excluding8) have an averageof 131speciesperhectare. Addinghectare8, fromtheleftbank of the Rio Gurupiin Pará state,this averageclimbsto 135speciesper hectare. Thetotalaverageforalleighthectares,includingfallow,is 132species
  9. 9. 238 WILLIAM BALÉE perhectare(Table1). Itmaybeconcludedthatalthoughpre-Amazonianforests arelessspeciesrichthanupperAmazonianhighforestsingeneral(seeGentry 1988), theseforestsare among the richestin speciesdiversityof eastern Amazonia. Fallow vs. highforest Althoughcurrentinterpretationsof radarand satelliteimagery(because ofscaleand/orsignatureproblems)do notyetdistinguishbetweenfallowand highforestinpre-Amazonia,certaingroundtruthcriteriaexistformaintaining a distinctionbetweenthetwo. On thesurface,thesegroundtruthcriteria includebasal area, floristiccomposition,and speciesrichness. Animportantphysiognomicdifferenceconcernsbasalarea. Thedatafrom thefallowforests,whichtheexceptionofhectare5 (whichis abnormallyhigh inbasal areabecauseofveryhighfrequencyandabundanceoflargebutnon- woodycaespitosespecies- see above), showa consistentlylowerbasal area thanthe highforests. The fallows,includinghectare5, average24.2 m2; excludinghectare5,thisaverageis22.1m2. Thehighforestplots,incontrast, average29.3m2. (Thesedifferencesarenotsignificantstatistically,buta larger samplesizemightshowsignificance.)Itseemsthatfallowsaretypicallywithin a rangeof about 18-24m2,whereashighforestsrangefrom25-40m2(Pires & Prance1985;Balée& Campbell1990;Boom 1986;Saldarriaga& West1986: 364). Thesedifferencesinbasal areabetweenhighforestsand fallowappear to be at leastpartlydiagnostic. In identifyinga plotofforestas fallow,froma strictlybotanicalpointof view,a greatdealalsotypicallyhingesonthepresenceof"disturbanceindicator" species. Itwouldbeinaccuratetoconsiderdisturbanceindicatorsas synonym- ouswith"pioneer"species(c/.Brown& Lugo1990),sincemanypioneerspecies areshort-lived.Disturbanceindicators,incontrast,mayalsobelong-lived,as withthebabaçupalmandBrazilnuttree(seeBalée1989a). Manyfallowspecies arelightdemanding,yetincomparisonto somepioneerspecies(e.g., Trema), theyarerelativelyshadetolerant(i.e., prosperinsmalllightgaps)[seeDenslow 1987:441-442]. As forthehectaresinthissample,and forreasonspossibly relatedtohumandisturbance,typicallightgapgeneraofthehighforest,while alsopresentinfallow,tendtobe representedbydifferentspeciesinthefallow. Forexample,onlyone(Cecropiasciadophylla)offivespeciesofCecropiacollected infallowhectareinventoriesisalsorepresentedamongthefourspeciesofCecropia collectedinhighforesthectares;infact,ofa totalof54individualCecropiatrees occurringon all eighthectares,merelythreepertainto thecommonspecies Cecropiasciadophylla. For Van Steenis(1958),disturbanceindicatorswere biologicalnomads. Theyoccurredas isolatedor evenrareindividualsin a primaryforestuntila disturbance,suchas fireintheserviceofagriculture,opened spaceforthem. Van Steenisproposedno quantitativemeasureto determine
  10. 10. TransformationofAmazonianForests 239 whena biologicalnomadbecomesan indicatorof humanactivity- i.e., how diverse,frequent,abundantand/orecologicallyimportantmusta nomadplant speciesbecometoqualifyas anindicatorofagriculturalperturbationona given plotofforest? In fact,to date,no solidmeasuresfordisturbanceindicators havebeenproposed(see Brown& Lugo 1990). Therearegoodphytosociologicalreasonsfortheseparationofhighforest hectaresfromthefallowhectaresand forconsideringtheseto representtwo differentcompositeforesttypesinpre-Amazonia.Theeighthectaresoffallow and highforestin thissampleyield28 pairsof hectares(see Table 1). The similarityof thesepairscan be systematicallycomparedusingthe Jaccard coefficient,whichis simplythenumberof species/totalnumberof speciesin thesample(i.e, thesumof thetotalnumberof speciesof each plotminus thesharedspecies)expressedas a percentage(Greig-Smith1983: 151). On average,thecoefficientofsimilarityforpairsofhectaresofhighforest/fallow is only10.9%. In contrast,theaveragecoefficientof similarityforpairsof hectaresof high forest/highforestis 22.8%, whichis verysignificantly higher. Also, theaveragecoefficientof similarityforpairsof hectaresof fallow/fallowis 17.2%whichisalsoverysignificantlyhigherthanthefallow/high forestaveragebutnotsignificantlylowerthanthehighforest/highforestaverage. In addition,no tendencyexistsfornearbyplotsof highforestand fallow to be moresimilarthanmoredistantlyseparatedhectaresof thesametype (i.e., fallow/fallow,highforest/highforest). For example,ifone compares the highforesthectarenear Gurupiuna(6) to the fallowhectare(7) near Gurupiuna(thetwoareseparatedbyabout2.5 km),thecoefficientofsimilarity isonly10.5%. Likewise,comparingthehighforesthectare(3) withthefallow hectare(2) nearP.I. Guajá intheTuriaçubasin(thetwoareseparatedbyonly about 1.5 km),thecoefficientof similarityis only11.6%. The Gurupiuna siteson one handand theP.I. Guajá siteson theotherare separatedbyan aerialdistanceof about 60 km. It is interesting,therefore,thatthefallow hectaresoftheP.I. Guajá andGurupiuna(2 and7,respectively)havea similarity coefficientof 19.3%,whichisverysignificantlyhigherthanthoseoftwopairs ofnearbyhectares. ThehighforesthectareofGurupiunaandtheP.I. Guajá (6 and 3, respectively),witha similaritycoefficientof 25.1%, are also much moresimilartoeachotherthaneitheristoitsnearbyfallowforest. As would be expected,thepairingsGurupiunahighforest/P.I. Guajá fallow(6 and 2) and P.I. Guajá highforest/Gurupiunafallow(3 and 7) have low similarity coefficients,respectively,of 11.2% and8.7%. In otherwords,itis clearthat theoverridingfactorthataccountsfordivergencein floristiccompositionbe- tweenforeststandsinthiseighthectaresampleofpre-Amazoniaisnotdistance betweenstands,butratherpast perturbationby an agroforestrycomplex. Whenplottedon a species-areacurve(best-fitcurve),as separateforest parcels,thefallowforestand thehighforestaccumulatediversityat similar rates(Fig. 1). Theseplotsareorganizedalonga continuum;thefallowcurve representsincreasingdiversityfromhectares1, 2, 5, and 7 inthatorder(i.e.,
  11. 11. 240 WILLIAM BALÉE Fig. 1. Species/AreaCurvesforfallowandhighforest*. fromthefallowplotoftheP.I. Awá,throughtheTuriaçufallows,tothebasin of theGurupi). The forty10mx 25 m samplingunitsof each hectareare, morever,seenas a continuumfrom0 to 159,as withthehighforestplots. The highforestplotsare representedin thisorder:hectares4, 3, 6, 8 (i.e., from theTuriaçuto theGurupi). Incidentally,in mysurveyof theforestsofthe Pindaré,noevidencesuggeststhatanyplotofterrafirmewashighforest. This is not altogethersurprising,consideringa probablymuchhigherdensityof GuajajarasettlementsinthePindaréthanthereeverwasforKa'aporsettlements in theTuriaçu- thisdoes notimplynecessarilya regionalextinctionof high forestspecies,sincethesestilloccurto north,despitedisturbances. Thesecurves(fig.1)andfloristiccompositiondatasupportthefamiliarnotion thatforsecondaryforests,"withina spanof80yrorless,thenumberofspecies approachesthatofmatureforests"(Brown& Lugo 1990:6). The datafrom the pre-Amazonianforests,however,also show thatnot onlydoes fallow "approach"highforestinspeciesdiversity,theplantdiversitybetweenthetwo foresttypesis statisticallyinsignificant.Thisis conceptuallyverysignificant proofthatthesefallowforestsrepresenta kindofindigenousreforestation,insofar as speciesrichnessof highforestsis beingreplacedby an equivalentlyrich secondaryforestthroughculturalmediation,althoughthemostimportantspecies, indeed,aredifferentbetweenthetwoforesttypes(seebelow). Whilenoevidence hasbeenyetpresentedforHolocene(i.e.,duringandaftertheriseofindigenous agroforestrycomplexes)extinctionsof faunaand florainAmazonia,one can
  12. 12. TransformationofAmazonianForests 241 Ha Location Type Individuals Families Species Basal Area (m2) 1 P.I. Fallow 506 38 157 22.1 Awá/R. Pindaré 2 P.I. Fallow 563 41 125 21.1 Guajá/R. Turiaçu 3 « High Forest 521 45 145 27.2 4 Urutawi/R. High Forest 519 41 126 25.3 Turiaçu 5 « Fallow 451 36 95 30.3 6 Gurupiuna High Forest 467 43 123 30.3 (Gurupi basin) 7 « Fallow 497 43 141 23.3 8 P.I. High Forest 475 41 144 34.5 Canindé/R. Gurupi Averages 496 43 135 29.3 forHigh Forest Averages 504 40 130 24.2 forFallow Averages 500 41 132 26.8 forall Plots Table 1. Summaryof Eight Hectaresof TerraFirmeForestin pre-Amazonia.
  13. 13. 242 WILLIAM BALÉE High ForestPairs Species in Common Total Species Coefficientof Similarity 3.6 49 219 22.4% 3,4 53 218 24.3 3,8 48 241 19.9 6.4 50 199 25.1 6,8 50 217 23,0 4,8 49 221 22,2 Fallow Pairs 1.2 44 238 18.5 1.5 35 217 16.1 1.7 40 258 15.5 2.5 37 183 20.2 2,7 43 223 19.3 5.7 28 208 13.5 Fallow/HighForestPairs 1.3 30 272 11.0 1.6 25 255 9.8 1.4 27 256 10.5 1.8 24 277 8.7 2.3 28 242 11.6 2,6 25 223 11.2 2.4 28 223 12.6 2,8 29 240 12.1 5.3 29 211 13.7 5,6 25 193 13 5.4 21 200 10.5 5,8 23 216 10.6 7.3 23 263 8.7 7,6 25 239 10.5 7.4 28 239 11.7 7,8 23 262 8.8 Table. 2. JaccardCoefficientsof Similarityforall 28 Pairs of Hectares.
  14. 14. TransformationofAmazonianForests 243 High ForestSpecies I.V.* Fallow Species I.V.* Eschweileracoriacea 37.83 Jacaratiaspinosa 11.4 Lecythisidatimon 14.53 Gustaviaaugusta 10.41 Sagotia racemosa 12.67 Orbignyaphalerata 9.37 Tetragastrisaltissima 11.6 Astrocaryumvulgäre 7.76 Protiumtrifoliolatum 7.76 Spondias mombin 6.53 Protiumdecandrum 7.07 Neea sp. 1 6.26 Protiumpallidum 6.78 Pisonia sp. 2 6.25 Carapa guianensis 5.69 Pouteria macrophylla 5.71 Couepia guianensis 5.07 Maximilianamaripa 5.40 Pourouma minor 4.54 Platypodiumelegans 5.02 Taralea oppositifolia 4.51 Platonia insignis 4.32 Mabea caudata 4.06 Simaba cedrón 4.26 Pourouma guianensis 3.28 Hymenaeaparvi/olia 4.17 Dodecastigmaintegrifolium 3.10 Trichiliaquadrijuga 4.06 Couratariguianensis 2.77 Lecythispisonis 3.56 Oenocarpusdistichus 2.72 Dialium guianense 3.32 Sterculiapruriens 2.65 Astrocaryummunbaca 3.31 Bagassa guianensis 2.65 Eschweileracoriacea 3.19 Cecropia obtusa 2.60 Theobromaspeciosum 3.11 Newtoniapsilostachya 2.47 Lindackerialatifolia 3.05 Chimarrhisturbinata 2.40 Tabebuia impetiginosa 2.85 Simarubaamara 2.39 Myrciariaobscura 2.75 Euterpeolerácea 2.37 Neea sp. 2 2.64 Lecythischartacea 2.25 Hymenaea courbaril 2.61 Parkia péndula 2.23 Protiumheptaphyllum 2.59 Protiumpolybotryum 2.22 Tetragastrispanamensis 2.56 Apeiba echinata 2.19 Apuleia leiocarpa 2.53 Fusaea longifolia 2.18 Mouririguianensis 2.49 Protiumgiganteum 2.12 Cupania scrobiculata 2.40 Tachigalimyrmecophila 2.11 Pouteria bilocularis 2.34 Total I.V. Values: 166.81 136.22 *I.V. = RelativeImportanceValue (sumofrelativedensity,relativefrequency,andrelative dominance). Table 3. Comparisonof the ThirtyEcologicallyMost ImportantSpecies fromHigh Forest(4 ha) and Fallow (4 ha).
  15. 15. 244 WILLIAM BALÉE arguethat,on theotherhand,an indigenousagroforestrycomplex,suchas thatdisplayedby the Ka'apor, Tembé,and Guajajara, may have actually increasedtheabundanceof certaindesirableplantspecies. Themostastoundingdifference,intermsof species,concernsecologically importantspecies. In comparingthe30 ecologicallymostimportantspecies betweenthefourfallowson one handand thoseofthefourhighforestplots ontheother,thetwoforesttypessharebuta singlespecies,Eschweileracoriacea [matamata](seeTable 3). Thisyieldsa coefficientofsimilarityofonly1.7% forthe30 mostimportantspecies(numberofsharedspecies[l]/totalnumber ofspecieson thetwoplots[(30+ 30)- 1]x 100). Thisdifferenceis extremely significant.The averagecoefficientof similarityforthe30 mostimportant speciesof pairsof highforestis 16.4%; theaverageindexof similarityfor the30 mostimportantspeciesofpairsoffallowis 11%; theaverageindexof similarityforthe30 mostimportantspeciesofpairsofhighforest/fallow,how- ever,is consistentlyless than2%. This permitsone to concludethatthe importantspeciesbetweenfallowand highforestare verysignificantlyand consistentlydifferent.Inthisquantitativesense,the30 mostimportantspecies offallow(minusE. coriacea)maybeconsideredtobeindicatorsofdisturbance; similarly,the30 mostimportantspeciesofhighforest(minusE. coriacea)may be consideredtobeindicatorsofnon-disturbance.Althoughfromthisvantage point,E. coriaceaisa facultativespecies,inthreeofthefourhighforesthectares (3,4, and8) itistheecologicallymostimportantspecies,whereasinanyfallow foresthectareit does not attaina rankhigherthan 14thecologicallymost importantspecies. In fallowforeststhebabaçu palm (Orbignyaphalerata) istheecologicallymostimportantspeciesontwohectares(1 and2), yetitdoes notapproachtheextremelyhighvaluethatE. coriaceadoesonhighforestplots. For reasonsthatremainunclear,and whichdo notaccordwithreceived wisdom,thefallowforestare actuallyless dominatedby a fewspeciesthan arethehigh,presumablyprimaryforests. For example,theaveragetotalof thetwoecologicallymostimportantspecies(witha totalpossiblevalueof300) of thefourfallowsis only40.3, whereasthecomparablefigureforthefour highforesthectaresis 60.3, whichis significantlyhigher. The data here presentedofferbutpartialsupporttothestatement"A largenumberofspecies inmatureforestsisduetothepresenceofrarespecies. Incontrast,secondary forestsareusuallycomposedofcommonspecies"(Brown& Lugo1990:7). For analyticalpurposes,one mayconsidera speciesto be rareif it occursonly once,regardlessof whetheron fallowor highforest. Bythiscriterion,the highforesthas 199species(or 59% of thetotal)thatare rare;fallowforest has 139species(or39% ofthetotal)thatarerare. Bothforesttypes,inother words,harborsignificantquantitiesof rarespecies. Asidefromdifferencesinage,basalarea,overallfloristiccomposition,and ecologicallyimportantspeciesbetweenfallowandhighforest,anotherdifference to which I have alluded, being strictlyrelatedto utilitarianconcerns,
  16. 16. TransformationofAmazonianForests 245 deservesmention. Fallowsareindigenousorchards(e.g.,Denevanetal 1984), whetherconsciouslyplantedor not. Of the30 ecologicallymostimportant speciesof fallow,14 are significantfood species,eitherforone or moreof theindigenouspeoplesof theregion,whereasforthe 30 ecologicallymost importantspeciesofhighforest,thereareonly6 importantfoodspecies. Some significantfoodspeciesofthefallowincludebabaçupalm(Orbignyaphalerata), hogplum(Spondiasmombin),tucumãpalm(Astrocaryumvulgäre),inajápalm (Maximilianamaripa),bacuri(Platoniainsignis),andcopaltrees{Hymenaeasp.). Theseorchardsexistbecauseofthepastpresenceofan indigenousagroforestry complex,yettheextentto whichtheyare cognizedresultsof thiscomplexis doubtful. What do theyknow and when did theyknow it? ThemodernKa'apor are,minushistoricalborrowingsfromothersocieties, heirstotheagroforestrycomplexoftheirproto-Tupi-Guaranispeakingforebears who,if onlyon thebasis of linguisticevidence,livedin societiesthatwere certainlyassociatedwithdomesticatedplants(Balée & Moore 1991; Lemle 1971). Yet the extentto whichthisancient,sociallytransmittedexpertise is cognizedby Ka'apor adultstodayremainsquestionable(e.g., see Parker 1992 withrespectto the Kayapó). Rindos (1984: 99) pointedout that early agriculturalhuman beings may have been aware, in a retrospectivesense,thattheirdependenceon plantmanagementrepresenteda differentlifestylefromother,stillforaging societies. This is certainlyapplicableto themodernKa'apor, who readily distinguishtheneighboring,foragingGuaja Indiansas a peoplewho do not "swidden"(kupisarnoii'4 m). Ka'apor informantsindicatethattheGuaja are purara ("poor") because they depend mainlyon babaçu nuts and othernon-domesticates,insteadof on the domesticatedtubers,rhizomes, corms,and fruitsfound,forexample,in Ka'apor swiddens(see Balée 1988b, 1991afordiscussionof Guajá ethnobotany).The Guaja themselvesreadily admit"we do notplant" (na turnawa). To paraphraseRindos(1984: 99), theKa'apor and theGuaja knowwho theyare, as distinguishedfromeach other,at leaston thebasis of theirradicallydifferentmeansof associating withplants. It seemsunlikely,however,thattheyknowexactlywhotheywere. Guaja informants,forexample,showno historicalmemoryof everhavingplanted swiddenfields,yetlinguisticand otherevidencesuggestthattheirancestors lostcontrolofan agroforestrycomplexduringa processofregressioninduced bydisease,depopulation,and colonial/indigenouswarfare(Balee 1992a). In thesamewaythatKa'aporinformantscannotoften"remember"'grandparents' names(as withmanyotherAmazoniansocieties- see Murphy1979),do not conceptuallydistinguishmorethana fewof themanyinternallypoisonous
  17. 17. 246 WILLIAM BALÉE principlesin theirhabitat,avoid consumingsome fruitsthatare otherwise edible,and believethatstoneaxeheadsin theirforestsare *'thunder-seeds" (tupa-ra'i)thatwereneverused forfellingtrees(Balee 1988a),it cannotbe said thattheyintendtheeffectsof theirenvironmentalinterventionsto be somehowbeneficialto more distant,ensuinggenerationsof theirown kind. Theydo not themselves,moreover,make such claims. AlthoughKa'apor informantscalledall fallowforestsinthissampletaper and all highforestska'a-te,theydo notencodea successionbetweenfallow and highforest(Balée & Gély1989). The Arawetéand Asurini,moreover, calledold fallowforestsof theirregion,respectively,bythetermska'a-hete andka'a-te,whichmeanhighforest(Balée& Campbell1990). AndtheGuaja oftheP.I. Awá on theRio Pindarédescribedthefallowhectare(1) thatwas inventoriedas ka'a-ate(highforest). The implicationis thatifa siteis left fallowlong enough,manypeoples will considerit to be highforest,not recognizingthatitwasonceoccupiedbypeoplebearingan agroforestrycomplex (insteadof, forexample,by divinities). In otherwords,the successional processesresponsiblefortheformationoffallowsdo notappeartobe cognized in manyindigenouscultures. In contrast,a veryinfluentialcase has been made for incorporating indigenousknowledgeintorationaldevelopmentschemesforAmazonia(Posey 1983,1984;Poseyet al 1984). Thisis partlybased on thetransparentfact thatAmazonianIndians,unlikemanystatesocieties,havenot,byand large, convertedtheirforests,pollutedtheirstreams,and otherwisedefilednatural ecosystems{cf.Redford1991),yettheystillexploitedthe floraand fauna and survivedintheseforthousandsofyears. It is also basedon thenotion thatthiscustodialcareof natureis deliberate,conscious,and easilyelicited inspeech. Specifically,inthecaseoftheKayapó,AndersonandPosey(1985) andPosey(1983,1984)havearguedthatthe"forest'islands"(apêtê)offruit treesandotherutilitarian,non-domesticatedplantswereactuallyplantedpartly with the intentionof benefitingfutureKayapó generations(c/.Parker 1992). Yet the principallong-termbeneficiariesof forestmanagementby theKa'apor Indians,on theotherhand,havebeentheirtraditionalenemies, the foragingGuaja, who relyheavilyon the palms and otherdisturbance indicatorplantsfoundin Ka'apor (and Guajajara/Tembé)fallows,not the Ka'apor of today(Balee 1988b, 1992a). In spiteof a universaland immediatesensethattheypossessan agro- forestrycomplex,whichaffectsthedistributionsofseveralhundredplantspecies, includingbothdomesticatesand semi-domesticates,the Ka'apor exhibitno rationalisticknowledgeconcerningtheremoteacquisitionand/ordomestication ofNeotropicalcropsfoundintheirswiddenstoday. IftheancestralKa'apor (and earlierTupi-Guaraniforebears)had transmittedan entirelyrationalistic knowledgeof Amazonianplantsto theirdescendants,one wouldexpectthis to be reflectedinmodernKa'apor speechandbehavior,especiallyconcerning theoriginsofplantsthatto continuesurvivingand reproducingmustremain
  18. 18. Transformationof AmazonianForests 247 underrelativelyconstanthumansupervisionandinterference.Yeteventhemost significanttraditionaldomesticatesarenotperceivedas havingbeenderivedfrom anyrelatedplant,eventhoughcloselyrelatedundomesticatedcongenericsof thesedomesticatesaretobefoundthroughouttheKa'aporhabitatandoneneed notemploya microscopeto notesalient,overallresemblancesbetweenthem (seeGrenand1980:43forsimilardatawithregardtotheTupi-Guaranispeaking Wayapi). Forexample,althoughatleasttwospeciesofthegenusAnacardium[cashew] {A. giganteumand A. parvifolium)occurin matureforestsof theKa'apor habitat,bothofwhicharecloselyrelatedtotheirdomesticatedcongener,cashew (Anacardiumoccidentale)[seeMitchell& Mori1987],Ka'apor informantssay domesticatedcashewtreescameintobeingwhentheculturehero,Ma'ir,planted branchesofyasi-amir(Lecythisidatimon),a profoundlyunrelatedtreeinthe Brazilnutfamilyand denizenof thehighforest. Sweetpotatoes(Ipomoea batatas)aresaidto havefirstsproutedand bloomedwhenMa'ir plantediw4- pu'a ("roundsoil",a clayeyloam),yetatleastfourspeciesofnon-domesticated morningglories(Ipomoea),closelyrelatedto sweetpotatoes,areto be found in theKa'apor habitat,usuallyon theedgesof swiddens. Finally,itis said thatmanioc(Manihotesculenta)originatedwhenMa'irplantedthe(unspecified) branchesofhighforesttrees,yetthreecloselyrelatednon-domesticatedspecies ofManihotarecommoninKa'aporswiddens(seebelow). Infact,thesespecies, as withallotherknownwildmaniocspecies,canbeintercrossedwithM. esculenta (Jennings1976:81, Rogers& Appan 1973). Theseexplanationsfortheoriginsoftraditionaldomesticatesareprobably associatedwithan unconsciouslexical and cognitivedichotomybetween traditionaldomesticatesand non-domesticatesinKa'apor ethnobotany(Balée 1989b). Inanycase,theyevincea lackoflexicallyencodedknowledgeregarding hybridizationinplants. Theyalsoindicatelackofanexplicitconceptof"semi- domestication",whichis also notencodedlinguisticallyinKa'apor, yetmany non-domesticatedspeciesofKa'apor swiddensandfallowsoccurnowhereelse andareperhapsbestunderstoodas beingsemi-domesticated;namesforsemi- domesticates,moreover,appearto be retainedat a verysignificantlyhigher ratethannamesforplantsofthehighforest(Balee& Moore 1991). In other words,althoughoverthecenturiestheKa'apor havebeencertainlybreeders of plants(testimonyto thisis to be seenin numerouslandracesof certain domesticatesand semi-domesticatesinKa'apor swiddensand fallowsthatare notto be foundelsewhere),thiswas notby consciousdesign. MostKa'apor adults,to be sure,exhibita sophisticatedknowledgeofthe bodyparts,lifeprocesses,andtechniquesformanipulatingandharvestingmany individualplants;theplantlexicon,moreover,containsmorethanfourhundred genericnamesforlocal plants(Balee 1989b). Yet manyofthesedisplaylife spansforshorterthanthatofan averagehumanbeing. A knowledgeofthese plants,theirhabits,and requirementsdoes notperforceimplya rationalistic (i.e.,empiricallyfalsifiable)knowledgeoflongtermecologicalandsuccessional
  19. 19. 248 WILLIAM BALÉE processes,involvingseveralhumangenerations.Althoughonecanliveto see that,as theelders(tamüi)say,redbrocketdeereat wildmaniocleaves,no one liveslongenoughto observea youngswiddengrowintoan old fallow, i.e., upwardsof 100yearssinceinitialclearingand burning. Likewise,else- wherein Amazonia,no one liveslong enoughto see yellowclay become transformedintotypicallydeep(greaterthan70 cm)horizonsofanthropogenic blackearth,which,if Smith(1980) is correct,accumulatesat a rateof only 1 cmpertenyears. To expectsuchknowledgewouldbetantamounttoignoring significantlimitationson theoral transmissionof informationaboutevents, people,andplaces(Goody1977). ThisdoesnotdenytotheKa'apor,however, a materialrolein themanagementof theirhabitatformorethan100years (the firstKa'apor to occupythe habitatarrivedin the mid-1870s- Balée 1988a). Rather,the Ka'apor agroforestrycomplex,as well as thatof the Guajajara and Tembé,appearsto be incidentalto developmentalprocesses associatedwithsemi-sedentary,egalitarianAmazoniansocieties- itis,simply, nota productof longtermdesign,indigenousor otherwise. AlthoughsomeKa'apor do plantconsciouslyonoccasionnon-domesticated treespecies,suchas ingá,wildcacao, jutaipororoca(Dialiumguianense),and wildsoursop{Annonasp.) [Balée& Gély1989]intheirdooryardgardens,most oftheecologicallyimportanttreespeciesofthefallowarenotpresentbecause theywereplanted. Whenqueriedaboutfallowformation,informantsstrongly tendto agreethatmanyofthesespecieswereintroducedand/ordispersedby gameanimalsattractedto humansettlements.Forexample,agoutisdisperse babaçupalm,inajá palm,andcopaltrees;deerdispersebacuriand hogplum; and Cebusmonkeysdispersewildcacao and ingá,accordingto informants- suchknowledgeisreadilyconfirmed,moreover,inthebiologicalliterature.With a fewindividualsofcertainspecies,somehumanplantingwas involved(wild cacao, ingá,hogplum). Informantsclaim,nevertheless,thatgrovesofthese specieswerenotentirelyplanted,butratherdispersedfromanoriginallyplanted tree. Manypalms,suchas bacaba (Oenocarpusdistichus)andinajá,aresaid to be presentbecausehumansfirstscattered(omor)theseeds(whilethrowing themaway on the edge of the dooryardgardenor village),but animals subsequentlydispersedthem. As forbabaçu,oneofthemostimportantfallow species,I havefoundno evidencefordeliberatehumaninterventioninitslife processesand distribution- theKa'apor eat thisonlyas snackfood,do not returnto thevillagewithit,and do notplantit. Rather,itspresencenear longabandonedhumansettlementsisprobablyduetospreadbyagoutisoriginally attractedto thesettlementsbecauseof certainplantspeciescommonto old and newswiddens(a similarargumenthas beenproposedfortheassociation of Brazilnutgrovesand prehistoricsitesin lowerAmazonia- Balée 1989). In otherwords,humaninvolvementinfallowsdominatedbybabaçupalms most likelytook place indirectly.This kind of fallow managementis fundamentallyunlikethatdescribedfortheGorotireKayapóbyPosey(1983, 1984)and Andersonand Posey (1985, 1989),whichhas beenmostrecently
  20. 20. TransformationofAmazonianForests 249 questionedbyParker(1992). In fact,manyofthespeciesplantedon "forest islands"bytheKayapóandwhicharealsopresentinKa'apor fallowsarenever planted(althoughsome maybe protected)by the Ka'apor. These include Tapiriraguianensis,Himatanthussucuuba,Schefflera,Tabebuiaserratifolia, Tetragastrisaltissima,Maytenus,Casearia,Sacoglottis,Mascagnia,Cecropia palmata,Neea spp.,Coccolobapaniculata,Simarubaamara,and Vitexflavens (cf.Anderson& Posey 1989: 162-168,Table 1). The Kayapó forestisland (apêtê)doesmanifestspeciesthatintheKa'apor habitatwouldindicatefallow (taper);itexhibits75% "plantable" speciesaccordingto Kayapóinformants interviewedby Andersonand Posey (1989: 169; cf Anderson& Posey 1985). Yet in Ka'apor fallows,the percentageof tree and vine species occasionallyplantedbytheKa'apor is onlyabout 1% (or 4 dividedby 360 [thetotalnumberoftreeandvinesspeciescollectedinfallowinventories]times 100- the fourspeciesare Dialium guianense,Rollinia exsucca,hog plum [Spondiasmombinj,and wildcacao [Theobromaspeciosum]. Whereasthe Kayapó maybe consciouslyplantingand propagatingnon-domesticatedtree species,a pointquestionedby Parker(1992),Ka'apor fallowsrepresentone oftheunintended(yetexpected)resultsof human/animalinteractions(Balée & Gély1989). Manyoftheplantspeciesthereinarepresent,inotherwords, becauseofanimalsattractedtothedeliberatelyandintensivelymanageddomain ofdooryardgardensandproducingswiddens,notbecauseofhavingbeenplanted byhumanbeings. Oneneednotplantwhatwillbepredictably"planted"and insufficientquantitybyinfra-humananimalsorwhichwillgerminateandgrow uponsacrificationbyswiddenburning(as maybe thecase withcopal trees- Balee& Gély1989). ThevastmajorityofthetimetheKa'aporspendgardening is not directedto plantingnon-domesticatedtrees,moreover,but to the manipulationofdomesticatedstarchytuberplantsandotherdomesticatedherbs, vines,and shrubs,themanagementof whichis partlydeterminedbynormal social life. Conclusion Despite the relativenon-deliberationinvolvedin managementof non- domesticatedtreespecies,itis stilllogicaltoconcludethatfallowsarehuman, specificallystatelesshuman,creations. Regardlessofa relativelackofhuman attemptsto transformactivelythecompositionof old swiddensand thereby directlycontributeto thedevelopmentof forestfallow,thesefallowswould notbepresentwereitnotfortheKa'apormanagementofotherplants(especially domesticates)and concomitantriseof diverseanthropogeniczones,including old and newvillagesas wellas old and newswiddensand dooryardgardens, whichbythemselvesattractmanyoftheprincipaldispersalagentsofimportant fallowtreespecies. Fallowsareindigenousorchards,buttoa largeextentthey representunintendedartifactsofthemanipulationofherbaceousdomesticates,
  21. 21. 250 WILLIAM BALÉE i.e., non-treevegetation. At the same time,theyrepresenta measurable indigenouscontributionto regionalbiodiversity.As such,past and present indigenousagroforestrycomplexesof pre-Amazonia,and probablymanyof thoseelsewhereinAmazonia,do nota priorimeritthechargeofbeingdegrading, butrathershouldbeperceivedintermsoftheirenhancingeffectsontheenviron- ment,regardlessoftheactors'relativelackofdeliberationand foreknowledge of such. Tulane University,New Orleans,Louisiana, USA Acknowledgements The researchon whichthispaperis basedwas generouslysupportedover the yearsby the Edward JohnNoble Foundation,the JessieSmithNoyes Foundation,theFordFoundation,andtheCNPq (BrazilianCouncilofScientific and TechnologicalDevelopment). Specialthanksare due to EugeneParker forlettingme see a preprintof his articleon Kayapó forestislands. I am gratefultoTheodoreGragsonand LeslieSponselforveryinsightful,detailed, and helpfulcommentson an earlierversion. I am aloneresponsibleforany remainingerrors. NOTE 1. Perhapsthe seminalstatementforthispointof view in anthropologyis "Ecology involvesone unalterablefactor,the naturalenvironment"(Steward 1938: 261). BIBLIOGRAPHY Anderson, A. B. & D. A. Posey 1985 ' 'Manejo de cerradopelosIndiosKayapó",Boletimdo MuseuParaenseEmílioGoeldi,Botanica 2: 77-98. 1989 "Managementof a TropicalScrubSavanna bytheGorotireKayapó of Brazil", in D. Posey & W. Balée, eds., 1989: 159-173. Balée, W. 1988a "The Ka'apor Indian Wars of Lower Amazonia, ca. 1825-1928", in R. R. Randolph, D. M. Schneider & M. N. Diaz, eds, Dialecticsand Gender:AnthropologicalApproaches. Boulder,CO. WestviewPress: 155-169. 1988b "Indigenous Adaptationto Amazonian Palm Forests", Principes32 (2): 47-54. 1989a "The Cultureof Amazonian Forests", in D. Posey & W. Balee, eds., 1989: 1-21. 1989b "NomenclaturalPatternsin Ka'apor Ethnobotany",Journalof Ethnobiology9 (1): 1-24. 1992a "People of theFallow: An HistoricalEcology of Foragingin Lowland SouthAmerica", in K. H. Redford & C. Padoch, eds., Conservationof Neotropical Forests: Building on TraditionalResource Use. New York, Columbia UniversityPress: 35-37.
  22. 22. TransformationofAmazonianForests 251 1992b "IndigenousHistoryand Amazonian Biodiversity",in H. K. Steen & R. P. Tucker, eds., ChangingTropicalForests. Durham, NorthCarolina, ForestHistorySociety: 185-197. [inpress]Footprintsof theForest:Ka'apor Ethnobotany. New York, Columbia UniversityPress. Balée, W. & D. G. Campbell 1990 "EvidencefortheSuccessionalStatusofLiana Forest(XinguRiverbasin,AmazonianBrazil)", Biotropica22 (1): 36-47. Balée, W. & A. Gely 1989 "Managed ForestSuccessionin Amazonia: The Ka'apor Case", in D. Posey & W. Balée, eds., 1989: 129-158. Balée, W. & D. Moore 1991 Similarityand VariationinPlantNames inFive Tupi-GuaraniLanguages(EasternAmazonia), Bulletinof theFlorida Museum of Natural History(Biological Sciences) 35 (4): 209-262. Boom, B. M. 1986 "A ForestInventoryin Amazonian Bolivia", Biotropica 18 (4): 287-294. Brown, S. & A. E. Lugo 1990 "Tropical SecondaryForests", Journalof TropicalEcology 6: 1-32. Bush, M. B., R. P. Dolores & P. A. Colinvaux 1989 "A 6,000Year Historyof Amazonian Maize Cultivation",Nature 340: 303-305. Campbell, D. G. et al 1986 "QuantitativeEcological Inventoryof Terra Firmeand Várzea Tropical Foreston the Rio Xingu, BrazilianAmazon", Brittonia38 (4): 369-393. Clement, C. R. 1989 "A Centerof Crop GeneticDiversityin WesternAmazonia", Bioscience39 (2): 624-631. Daly, D. C. & G. T. Prance 1989 "Brazilian Amazon", in D. G. Campbell & H. D. Hammond,eds, FloristicInventoryof Tropical Countries: The Status of Plant Systematics,Collections, and Vegetationplus Recommendationsfor theFuture. Bronx,NY, New York Botanical Garden: 401-425. Denevan, W. M. & C. Padoch, eds. 1988 Swidden-FallowAgroforestryinthePeruvianAmazon,Bronx,NY, NewYork,BotanicalGarden ("Advances in Economic Botany" 5). Denevan, W. M., J. M. Treacy, J. B. Alcorn et al. 1984 "Indigenous Agroforestryin the PeruvianAmazon: Bora Indian Managementof Swidden Fallows", Interciencia9 (6): 346-357. Denslow, J. S. 1987 "Tropical RainforestGaps and Tree Species Diversity",Annual Review of Ecology and Systematics18: 431-451. Ducke, A. & G. A. Black 1953 "PhytogeographicalNoteson theBrazilianAmazon", Anaisda AcademiaBrasileirade Ciencias 25 (1): 1-46. Froís, R. L. 1953 "Estudosobrea Amazoniamaranhensee seuslimitesflorísticos",RevistaBrasileirade Geografìa 15 (1): 96-100. Gentry, A. H. 1988 ''Tree SpeciesRichnessofUpperAmazonianForests'' , Proceedingsof theNationalAcademy of Sciences(Ecology) 85: 156-159. UOODY, J. 1977 The Domesticationof theSavage Mind. New York, CambridgeUniversityPress. Greig-Smith,P. 1983 QuantitativePlant Ecology. Berkeley& Los Angeles,Universityof CaliforniaPress.
  23. 23. 252 WILLIAM BALÉE Grenand,P. 1980 Introductionà l'étude de l'universWayapl. Paris, SELAF. Jennings,D. L. 1976 "Cassava", in N. W. Simmonds,ed., Evolutionof CropPlants. London, Longman:81-84. Johnson,A. 1989 "How theMachiguenguaManage Resources:Conservationor Exploitationof Nature?", in D. Posey & W. Balée, eds., 1989: 213-222. Kipnis, R. 1990 ComparativeEthnoecologyinEasternAmazonia. UnpublishedSupplementaryReportto the JessieSmithNoyesFoundation,W. Balée P.I. On file,Comparativeethnoecologyproject, Museu Goeldi, Belém. Lemle, M. 1971 "Internalclassificationof the Tupi-Guaranilinguisticfamily",in D. BendorSamuel, ed., Tupi Studies I. Norman, Oklahoma ("Summer Instituteof LinguisticsPublications in Linguisticsand Related Fields" 29): 197-229. Martin, P. S. 1984 "PrehistoricOverkill:The Global Model", in P. S. Martin & R. G. Klein, eds., Quaternary Extinctions:A PrehistoricRevolution. Tucson, Universityof Arizona Press: 354-403. Mitchell, J. D. & S. A. Mori 1987 The Cashew and itsRelatives(Anacardium:Anacardiaceae). Bronx,NY ("Memoirs of the New York Botanical Garden"). Moran, E. F. 1990a "EcosystemEcologyin Biologyand Anthropology:A CriticalAssessment",in E. F. Moran, ed., The EcosystemApproachinAnthropology:FromConceptto Practice. AnnArbor,MI, The Universityof MichiganPress: 3-40. 1990b "Levels of Analysisand AnalyticalLevel Shifting:Examples fromAmazonian Ecosystem Research",in E. F. Moran, ed., The EcosystemApproachin Anthropology:FromConcept to Practice. Ann Arbor,MI, The Universityof MichiganPress: 279-308. Murphy, R. 1979 "Lineage and Linealityin Lowland South America", in M. Margolis & W. Carter, eds., Brazil: AnthropologicalPerspectives. Essays in Honor of Charles Wagley. New York, Columbia UniversityPress: 217-224. Myers, N. 1988 "ThreatenedBiotas: 'Hot Spots' in TropicalForests", TheEnvironmentalist8 (3): 187-208. NSB (National Science Board) 1989 Loss ofBiologicalDiversity:A Global CrisisRequiringInternationalSolutions. Washington, DC, National Science Foundation. Parker, E. 1992 "ForestIslandsandKayapó ResourceManagementinAmazonia:A ReappraisaloftheApêtê", AmericanAnthropologist94 (2): 406-428. Pires, J. N. & G. T. Prance 1985 "The VegetationTypesof theBrazilianAmazon", in G. T. Prance & T. Lovejoy, eds., Key Environments:Amazonia. Elmsford,NY, PergamonPress. FLUCKNETT, V. L. 1976 "Edible Aroids", in N. W. Simmonds,ed., Evolutionof Crop Plants. London, Longman: 10-12. 1983 "Indigenous Ecological Knowledgeand Developmentof the Amazon", in E. Moran, ed., The Dilemma of Amazonian Development. Boulder,WestviewPress: 135-144. 1984 "Keepers of the campo", Garden 8 (6): 8-12, 32.
  24. 24. Transformationof AmazonianForests 253 Posey, D. A. et al. 1984 "Ethnoecologyas AppliedAnthropologyinAmazonianDevelopment",Human Organization 43 (2): 95-105. Posey, D. A. & W. Balée, eds. 1989 ResourceManagementinAmazonia: IndigenousandFolk Strategies. Bronx,NY, NewYork Botanical Garden C'Advances in Economic Botanv" 7). Projeto RADAM 1973 Levantamentode recursosnaturais,3. Rio de Janeiro,Ministériodas Minas e Energia DepartamentoNacional de Produção Mineral. Projeto GuRUPi 1975 Relatório Final de Etapa, 1. Belém, Companhia de Pesquisa de Recursos Minerais, SuperintendênciaRegionalde Belém. Rambo, A. T. 1985 PrimitivePolluters:SemangImpacton theMalaysian TropicalRain ForestEcosystem. Ann Arbor,Universityof Michigan(Museumof Anthropology. "AnthropologicalPapers" 76). Redford, K. H. 1991 "The EcologicallyNoble Savage", CulturalSurvivalQuarterly15 (1): 46-48. KIBEIRO, U. 1970 Os índios e a civilização. Rio de Janeiro,Editora Civilização Brasileira. RlNDOS, D. 1984 The Originsof Agriculture:An EvolutionaryPerspective. New York, Academic Press. Rizzini, C. T. 1963 "Nota prévia sobre a divisão fitogeográficado Brasil", Revista Brasileira de Geografia 25 (1): 3-64. Rogers, D. J. & S. G. Appan 1993 Manihot, Manihotoides (Euphorbiaceae). New York, Hafner Press ("Flora Neotropica Monograph" 13). Saldarriaga, J. G. & D. C. West 1986 "Holocene Fires in the NorthernAmazon Basin", QuaternaryResearch26: 358-366. Salomão, R. P., M. F. F. Silva & N. A. Rosa 1988 "Inventárioecológicoemflorestapluvialtropicalde terrafirme,SerraNorte,Carajás, Pará", Boletimdo Museu Paraense EmttioGoeldi, ser. Bot., 4 (1): 1-46. Smith,N. J. H. 1980 "Anthrosolsand Human CarryingCapacity in Amazonia", Annals of theAssociation of AmericanGeographers70 (4): 553-566. Smith,N. J. H., J. T. William & D. L. Plucknett 1991 "Conservingthe Tropical Cornucopia", Environment33 (6): 7-9, 30-32. 5PONSEL, L. tL. 1992 "The EnvironmentalHistoryofAmazonia:NaturalandHumanDisturbances,andtheEcological Transition",inH. K. Steen & R. P. Tucker, eds., ChangingTropicalForests.Durham,North Carolina, ForestHistorySociety:233-251. Steward, J. H. 1938 Basin-PlateauAboriginalSociopoliticalGroups. Washington,D.C. Smithsonian Institution ("Bureau of AmericanEthnology",Bulletin120). SUDAM(Superintendênciado Desenvolvimentoda Amazonia) 1976 Polamazônia(Programade Pólos Agropecuariose Agromineraisda Amazonia): Pré-Amazonia Maranhense. Belém, sudam. Van Steenis, C. G. G. J. 1958 "Rejuvenationas a FactorforJudgingtheStatusofVegetationTypes:The BiologicalNomad Theory",in Proceedingsof a Symposiumon Humid TropicsVegetation. Paris, UNESCO: 212-215.
  25. 25. 254 WILLIAM BALÉE RÉSUMÉ WilliamBalée, Transformationsindigènesde la forêtamazonienne.Un exempledu Maranhão,Brésil.- Cetarticlea pourobjetde clarifierla naturedesrapportsentrecer- tainessociétésindigènesdupasséetlabiodiversitérégionaleenAmazonie.Desdonnéesrécentes montrenteneffetquelecomplexeagroforestierdecertainesculturesa contribuéà renforcer cettediversité,au moinsdansledomainevégétal.La démonstrationreposesurunecompa- raisonentredesforêts« anthropogéniques» etdesforêts« primaires» dela régionphyto- géographiquedite« pré-Amazonie». Ellesoulèvedeuxproblèmescruciaux: celuidelanature etde l'extensiondu savoirécologiqueliéauxpratiquesagroforestièresindigènes,etcelui du degréde volontéconscienteimpliquéedansYaccroissementde la diversitévégétaleet la formationde ces forêtsculturellementfaçonnées. RESUMEN WilliamBalée, Transformacionesindígenasde la selva amazónica.Un ejemplodel Marañon,Brasil.- Esteartículotienecomoobjetivoclarificarlanaturalezadelasrelaciones entreciertassociedadesindígenasdelpasadoyla biodiversidadregionalenla Amazonia. Datosrecientesmuestrancomoelcomplejoagroforestaldealgunasculturashacontribuido efectivamentea reforzarestadiversidad,al menosenel dominiovegetal.La demostración estabasadaen unacomparaciónentrebosques« antropogénicos» y « primarios» de la regiónfitogeográficallamadapre-Amazonia.Ella planteados problemascruciales: el de lanaturalezaydela extensióndelsaberecológicorelacionadoconlasprácticasagroforestales indígenas,yel delgradodevoluntadconscienteimplicadaenel aumentode la diversidad vegetaly la formaciónde estosbosquestalladosculturalmente.
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×