Download
Upcoming SlideShare
Loading in...5
×
 

Download

on

  • 887 views

 

Statistics

Views

Total Views
887
Views on SlideShare
887
Embed Views
0

Actions

Likes
0
Downloads
3,727
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Download Download Document Transcript

  • A P I MPMS*L4-3-4 92 W 0732290 0506280 O31 W Manual of Petroleum Measurement Standards Chapter 14-Natural Gas Fluids Measurement Section 3-Concent ric, Square-Edged Orifice Meters Part 4-Background, Development, Implementation Procedures and Subroutine Documentation THIRD EDITION, NOVEMBER, 1992 AGCI American Gas Association Report No. 3, Part 4 Gas Processors Association GPA 8185-92, Pari 4 American Petroleum Institute 1220 L Street, Northwest Washington, D.C. 20005COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * L 4 - 3 = 4 92 9 0732290 0506283 T78 Manual of Petroleum Measurement Standards Chapter 14-Natural Gas Fluids Measurement Section 3-Concentric, Square-Edged Orifice Meters Part 4-BackgroundY Development, Implementation Procedures and Subroutine Documentation THIRD EDITION, NOVEMBER, 1992 American Petroleum InstituteCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • --- - - API MPMS*L4.3*V 7 2 0732270 050b282 904 SPECIAL NOTES 1. API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE, AND FEDERAL LAWS AND REGULATIONS SHOULD BE REVIEWED. 2. API IS NOT UNDERTAKING TO MEET THE DUTIES OF EMPLOYERS, MAN- UFACTURERS, OR SUPPLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EXPOSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS,NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS. 3. INFORMATION CONCERNING SAFETY AND HEALTH RISKS AND PROPER PRECAUTIONS WITH RESPECT TO PARTICULAR MATERIALS AND CONDI- TIONS SHOULD BE OBTAINED FROM THE EMPLOYER, THE MANUFACTURER OR SUPPLIER OF THAT MATERIAL, OR THE MATERIAL SAFETY DATA SHEET. 4. NOTHING CONTAINED IN ANY API PUBLICATION IS TO BE CONSTRUEDAS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MAN- UFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANYTHING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENTOF LEITERS PATENT. 5. GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAF- FIRMED, OR WITHDRAWN AT LEAST EVERY FIVE YEARS. SOMETIMES A ONE- TIME EXTENSION OF UP TO TWO YEARS WILL BE ADDED TO THIS REVIEW CYCLE. THIS PUBLICATION WILL NO LONGER BE IN EFFECT FIVE YEARS AFTER ITS PUBLICATIONDATE AS AN OPERATIVEAPI STANDARD OR, WHERE AN EXTENSION HAS BEEN GRANTED, UPON REPUBLICATION.STATUS OF THE PUBLICATION CAN BE ASCERTAINED FROM THE API AUTHORING DEPART- MENT [TELEPHONE (202) 682-8000]. A CATALOG OF API PUBLICATIONS AND MATERIALS IS PUBLISHED ANNUALLY AND UPDATED QUARTERLY BY API, 1220 L STREET, N.W., WASHINGTON, D.C. 20005. Copyright O 1992 American Petroleum InstituteCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4e3.4 92 0732290 0506283 840 FOREWORD This foreword is for information and is not part of this standard. Chapter 14, Section 3, Part 4 of the Manual of Petroleum Measurement Standards describes the background and development of the equation for the coefficient of discharge of flange-tapped square-edged concentric orifice meters and recommends a flow rate calcu- lation procedure. The recommended procedures provide consistent computational results for the quantificationof fluid flow under defined conditions, regardless of the point of origin or destination, or the units of measure required by governmental customs or statute. The procedures allow different users with different computer languages on different computing hardware to arrive at almost identical results using the same standardized input data. This standard has been developed through the cooperative efforts of many individuals under the sponsorship of the American Petroleum Institute, API, and the American Gas Association, A.G.A., with contributions from the Gas Processors Association, GPA, and others. API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; how- ever, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict. Suggested revisions are invited and should be submitted to the director of the Meas- urement Coordination Department, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. iiiCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • __ -~~ -- - __ I I A P I MPMS*L4-3.4 7 2 W 0732290 O506284 787 W ACKNOWLEDGMENTS From the initial data-collection phase through the final publication of this revision of Chapter 14, Section 3, of the Manual of Petroleum Measurement Standards, many individ- uals have devoted time and technical expertise. However, a small group of individuals has been very active for much of the project life. This group includes the following people: H. Bean, El Paso Natural Gas Company (Retired) R. Beaty, Amoco Production Company, Committee Chairman D. Bell, NOVA corporation T. Coker, Phillips Petroleum Company W. Fling, OXY USA, Inc. (Retired), Project Manager J. Gallagher, Shell Pipe Line Corporation L. Hillburn, Phillips Petroleum Company (Retired) P. Hoglund, Washington Natural Gas Company (Retired) P. LaNasa G. Less, Natural Gas Pipeline Company of America (Retired) J. Messmer, Chevron U.S.A. Inc. (Retired) R. Teyssandier, Texaco Inc. E. UPP K. West, Mobil Research and Development Corporation During much of the corresponding time period, a similar effort occurred in Europe. The following individuals provided valuable liaison between the two efforts: D. Gould, Commission of the European Communities F. Kinghorn, National Engineering Laboratory M. Reader-Harris, National Engineering Laboratory J. Sattary, National Engineering Laboratory E. Spencer, Consultant J. Stolz, Consultant P. van der Kam, Gasunie The American Petroleum Institute provided most of the funding for the research project. Additional support was provided by the Gas Processors Association and the American Gas Association. Special thanks is given to the Gas Research Institute and K. Kothari for providing funding and manpower for the natural gas calculations used in this project and to the National Institute of Standards and Technology in Boulder, Colorado, for additional flow work. J. Whetstone and J. Brennan were responsible for the collection of water data at the National Institute of Standards and Technology in Gaithersburg, Maryland. C. Britton, S . Caldwell, and W. Seid1 of the Colorado Engineering Experiment Station Inc. were re- sponsible for the oil data. G. Less, J. Brennan, J. Ely, C. Sindt, K. Starling, and R. Ellington were responsible for the Natural Gas Pipeline Company of America test data on natural gas. Over the years many individuals have been a part of the Chapter 14.3 Working Group and its many task forces. The list below is the roster of the working group and its task forces at the time of publication but is by no means a complete list of the individuals who partic- ipated in the development of this document. R. Adamski, Exxon Chemical Americas-BOP R. Bass M. Bayliss, Occidental Petroleum (Caldonia) Ltd. R. Beaty, Amoco Production Company D. Bell, NOVA Corporation B. Berry ivCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3.4 92 0732290 050b285 6 1 3 J. Bosio, Statoil J. Brennan, National Institute of Standards and Technology E. Buxton S. Caidweli R. Chittum, American Petroleum Institute T. Coker, Phillips Petroleum Company H. Colvard, Exxon Company, U.S.A. L. Datta-Bania, United Gas Pipeline Company D. Embry, Phillips Petroleum Company W. Fling J. Gallagher, Shell Pipe Line Corporation V. Gebben, Kerr-McGee Corporation B. George, Amoco Production Company G. Givens, CNG Transmission Corporation T. Glazebrook, Tenneco Gas Transportation Company D. Goedde, Texas Gas Transmission Corporation D. Gould, Commission of the European Communities K.Gray, Phillips Petroleum Company R. Hankinson, Phillips 66 Natural Gas Company R. Haworth E. Hickl, Union Carbide Corporation L. Hillburn P. Hoglund, Washington Natural Gas Company J. Hord, National Institute of Standards and Technology E. Jones, Jr., Chevron Oil Field Research Company M. Keady K. Kothari, Gas Research Institute P. LaNasa G. Less G. Lynn, Oklahoma Natural Gas Company R. Maddox G. Mattingly, National Institute of Standards and Technugy E, McConaghy, NOVA Corporation C. Mentz L. Norris, Exxon Production Research Company K.Olson, Chemical Manufacturers Association A. Raether, Gas Company of New Mexico E. Raper, OXY USA, Inc. W. Ryan, El Paso Natural Gas Company R. Segers J. Sheffield S. Stark, Williams Natural Gas Company K. Starling J. Stolz J. Stuart, Pacific Gas and Electric Company W. Studzinski, NOVA/Husky Research Company M. Sutton, Gas Processors Association R. Teyssandier, Texaco Inc. V. Ting, Chevron Oil Field Research Company L. Traweek, American Gas Association E. VPP E Van Orsdol, Chevron U.S.A. Inc. N. Watanabe, National Research Laboratory of Metrology, Japan VCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - _-___ A P I flPflS*l14.3.4 7 2 H 0732290 0506286 55T K. West, Mobil Research and Development Corporation P. Wilcox, Total of France J. Williams, Oryx Energy Company M. Williams, Amoco Production Company E. Woomer, United Gas Pipeline Company C. Worrell, OXY USA, Inc.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • CONTENTS Page CHAPTER 14--NATW GAS FLUIDS MEASUREMENT SECTION 3.CONCENTRIC. SQUARE-EDGED ORIFICE METERS 4.1 Introduction and Nomenclature 4.1.1 Introduction ................................................................................................ 1 4.1.2 Nomenclature ............................................................................................. 1 4.2 History and Development 4.2.1 Background ................................................................................................. 3 4.2.2 Historical Data Base................................................................................... 5 4.2.3 Recent Data Collection Efforts .................................................................. 6 4.2.4 Basis for Equation ...................................................................................... 10 4.2.5 Reader-Harris/Gallagher Equation............................................................. 13 4.3 Implementation Procedures 4.3.1 Introduction ................................................................................................. 20 4.3.2 Solution for Mass or Volume Flow Rafe .................................................... 20 4.3.3 Special Procedures and Example Calculations for Natural Gas Applications ............................................................................................... 31 4.3.4 Example Calculations................................................................................. 48 APPENDIX 4-A-DEVELOPMENT OF FLOW EQUATION SOLUTIONALGOEUTHM ....................................................... 63 APPENDIX 4-B-RECOMMENDED ROUNDING PROCEDURES.................... 71 APPENDIX 4-C-ROUND ROBIN TESTING ....................................................... 75 Figures 4-1-Flange Tap Data Comparison-Mean Deviation (%) versus Nominal Beta Ratio ...................................................................................... 16 4-2-Flange Tap Data Comparison-Mean Deviation (%) versus Nominal Pipe Diameter ................................................................................ 16 4-3-Flange Tap Data Comparison-Mean Deviation (%) versus Reynolds Number Ranges ............................................................................ 16 4-4-Corner Tap Data Comparison-Mean Deviation (%) versus Nominal Beta Ratio ...................................................................................... 17 4-5-Corner Tap Data Comparison-Mean Deviation (%) versus Reynolds Number Ranges ............................................................................ 17 4-6-0-D/2 (Radius) Tap Data Comparison-Mean Deviation (%) versus Nominal Beta Ratios ......................................................................... 18 4-7-0-0/2 (Radius) Tap Data Comparison-Mean Deviation (%) versus Reynolds Number Ranges ................................................................. 18 4-8Ccatter Diagram Based on BuckinghamEquation ....................................... 19 4-9Ccatter Diagram Based on Reader-HarridGallagherEquation .................... 19 4-A-1-Number of Iterations Required to Solve for Orifice Plate Coefficient of Discharge-Direct Substitution Method ............................. 68 4-A-2-Number of Iterations Required to Solve for Orifice Plate Coefficient of Discharge-Newton-Raphson Method ............................... 70 Tables 4- 1-Regression Database Point Distribution for flange Taps ............................. 9 4-2-Regression Database Point Distribution for Corner Taps ............................. 10 4-3-Regression Database Point Distribution for D-D/2 (Radius) Taps............... 11 viiCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • ._-. . . - . ___ A P I MPMS*L4.3-4 7 2 0732270 O506288 322 4-4-Typical Values of Linear Coefficients of Thermal Expansion ...................... 22 4.5-Units. Conversion Constants. and Universal Constants ............................... 23 Page Tables (continued) 4-&Input Parameters for Six Example Test Cases (US. I .Metric. P and SI Units) ................................................................................................. 49 4-7-Intermediate Output for Example Test Case Number 1................................ 51 4-8-Intermediate Output for Example Test Case Number 2 ................................ 53 4-9-Intermediate Output for Example Test Case Number 3................................ 55 4-10-Intermediate Output for Example Test Case Number 4 .............................. 57 4-11-Intermediate Output for Example Test Case Number 5 .............................. 59 4-12-Intermediate Output for Example Test Case Number 6 .............................. 61 4-B- 1-Recommended Rounding Tolerances ....................................................... 74 4-C-1-Round Robin Test Parameters (US Units) ................................................ 76 4-C-2-Round Robin Test Parameters (IP Units) .................................................. 77 4-C-3-Round Robin Test Parameters (Metric Units)........................................... 78 4-C-”Round Robin Test Parameters (SI Units) .................................................. 79 4-C-5-Selected Round Robin Test Results Matrix (US Units)............................ 81 4 - C d S e l e c t e d Round Robin Test Results Matrix (SI Units) ............................. 111 .COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*L4-3-4 92 0732290 0506289 269 Chapter 14-Natural Gas Fluids Measurement SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS PART 4-BACKGROUND, DEVELOPMENT, IMPLEMENTATION PROCEDURES AND SUBROUTINE DOCUMENTATION 4.1 Introduction and Nomenclature 4.1.1 INTRODUCTION This part of the standard for Concentric Square-Edged Orifice Meters provides the background and history of the development of the standard and recommends a method to solve the flow equations for mass and volumetric flow. 4.1.2 NOMENCLATURE The symbols used have, in some cases, been given a more general definition than that used in other parts of API 2530. Some symbols have a different meaning than that defined elsewhere in the standard. Care should therefore be given to the meaning of variables used in this document. Represented Quantity Line& coefficient of thermal expansion of the orifice plate material. Linear coefficient of thermal expansion of the meter tube material. Ratio of orifice plate bore diameter to meter tube internal diameter ( & )I calculated at flowing temperature, $. Ratio of orifice plate bore diameter to meter tube internal diameter (dD) calculated at measured temperature, T,t. Ratio of orifice plate bore diameter to meter tube internal diameter (d/D) calculated at reference temperature, T,. Orifice plate coefficient of discharge. Coefficient of discharge at a specified pipe Reynolds number for flange-tapped orifice meter. First flange-tapped orifice plate coefficient of discharge constant within iteration scheme. Second flange-tapped orifice plate coefficient of discharge constant within iteration scheme. Third flange-tappedorifice plate coefficient of discharge constant within iteration scheme. Fourth flange-tapped orifice plate coefficient of discharge constant within itera- tion scheme. Fifth flange-tapped orifice plate coefficient of discharge constant within iteration scheme. Orifice plate coefficient of discharge bounds flag within iteration scheme. Orifice plate bore diameter calculated at flowing temperature $. Meter tube internal diameter calculated at flowing temperature $. Orifice plate bore diameter calculated at reference temperature T,. Meter tube internal diameter calculated at reference temperature T,. Orifice plate bore diameter calculated at measured temperature Tm. Meter tube internal diameter calculated at measured temperature T,,. Orifice plate coefficient of discharge convergence function derivative. 1COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * 1 4 - 3 * 4 92 0732290 050b290 T B O 2 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Orifice differential pressure. Napierian constant, 2.71828. Velocity of approach factor. Orifice plate coefficient of discharge convergence function. Iteration flow factor. Iteration flow factor pressure-independent factor. Iteration flow factor pressure-dependent factor. Mass flow factor. Ideal gas relative density (specific gravity). Real gas relative density (specific gravity). Real relative density (specific gravity), % carbon dioxide, and % nitrogen. Isentropic exponent. Mass. Absolute viscosity of flowing fluid. Molar mass (molecular weight) of dry air. Dimensionless downstream dam height. Number of moles. Unit conversion factor (orifice flow). Unit conversion factor (Reynolds number). Unit conversion factor (expansion factor). Unit conversion factor (discharge coefficient). Unit conversion factor (absolute temperature). Base pressure. Static pressure of fluid at the pressure tap. Absolute static pressure at the orifice upstream differential pressure tap. Absolute static pressure at the orifice downstream differential pressure tap. Measured air pressure. Measured gas pressure. Pi, 3.14159... . Mass flow rate. Volume flow rate per hour at base conditions. Volume flow rate flowing (actual) conditions. Universal gas constant. Pipe Reynolds number. Density of the fluid at base conditions, (6,G). Air density at base conditions, (8,G). Gas density at base conditions, (4,Tb). Density at standard conditions, (P, ,TJ. Density at flowing conditions, (9, Tf). Base temperature. Measured orifice plate bore diameter temperature. Measured meter tube internal diameter temperature. Measured temperature of air. Measured temperature of gas. Rowing temperature. Reference temperature of the orifice plate bore diameter and/or meter tube internal diameter. Downstream tap correction factor. Small meter tube correction factor.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API f l P f l S * 1 4 . 3 . 4 92 m 0732290 0506291 917 m SECTION &CONCENTRIC. SQU RE-EDGED ORIFICE METERS. PART 4-43 CKGROUND 3 I;, Upstream tap correction factor. X Reduced reciprocal Reynolds number (4,000/ReD). X Value of X where change in orifice plate coefficient of discharge correlation , occurs. Y Expansion factor. Yp Expansion factor pressure constant. Zb Compressibility (base conditions). 2, Compressibility at flowing conditions (9, Tf>. Z"leir Air compressibility at air measurement conditions. ZnlgOs Gas compressibility at gas measurement conditions. 4.2 History and Development 4.2.1 BACKGROUND In May 1924, the Board of Directors of the Natural Gas Association (this later became the Natural Gas Departmentof the American Gas Association) directed its Main Technical and Research Committee to establish a new subcommitteeto be known as the Gas Meas- urement Committee. The duties of this new committee were outlined by the directors as: Determinethe correct methods of installing orifice meters for measuring natural gas. Determine the necessary corrective factors and operative requirementsin the use of orifice meters, using natural gas in all experimentalwork. Secure the cooperation and assistance of the National Bureau of Standards2and the United States Bureau of Mines3, and secure, if possible, the assignmentof members of their staffs to the Gas MeasurementCommittee to assist in this work. The Gas Measurement Committee held ifs first meefing in November 1924 and discussed various features of the work assignedto it. Beginning in the summer of 1925, and extending over a period of six years, this committee conducted several research projects on orifice meters. The Gas Measurement Committee published a preliminary report in 1927, which was revised in 1929, and Report No. 1 was issued in 1930. In the introduction to Report No. 1, the following statement was made: This is not a final report, but it is made with the understandingthat the committee will con- tinue its analytical studies of the data already developed, The committee also fully expects that it will be necessaryfor it to conduct further work of its own. This will make necessary one or more supplemental reports, in which the data will be summarized and the mathemat- ical principles announced, which are thebasis for the present report, and such modifications and extensions will be made as additional data and further study may require." rn September 1931, this committeejoined with the Special Research Committee of Fluid Meters of the American Society of MechanicalEngineers4 in the formation of a Joint Com- mittee on Orifice Meters so that future publications on orifice meters by these two parent committees might be in harmony. This joint committeefound that a few additional research projects on orifice meters, especially for the determination of the absolute values of orifice coefficients, were needed. Thereafter, the committee formally requested representatives of the National Bureau of Standardsto review the data obtainedin these later research projects and report their findings to the committee. Gas Measurement Committee Report No. 2 was published on May 6, 1935 and was intended to supplement Report No. 1. Within certain limits explained in that report, any orifice meter installed in accordance with the recommendations in Report No. 1 would American Gas Association, 1515Wilson Boulevard, Arlington, Virginia 22209. National Bureau of Standards (is now the National institute of Standards and Technology). NiST publications are available from the US. Government Printing Office, Washington, D.C. 20402. 3United States Bureau of Mines. Bureau of Mines publications are available from the U.S. Government Printing Office, Washington, D.C. 20402. 4American Society of Mechanical Engineers,345 East 47th Street, New York, New York 10017.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 4 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT fulfill all the requirements stated in Report No. 2. The use of factors given in Report No. 2 made possible the use of orifice meters over a much wider range of conditions than had been possible before. The material in Report No. 2 was based on a special engineering report made by the Joint American Gas AssociatiodAmerican Society of Mechanical Engineers Committee on Orifice Coefficients to the Gas Measurement Committee in October 1934 and was present- ed to and accepted by the Main Technical and Research Committee in January 1935. The analysis of the data presented in the report of that joint committee was made by Dr. Edgar Buckingham and Mr. Howard S. Bean of the National Bureau of Standards and checked by Professor Samuel R. Beitler for the committee. The report of the joint committee in its original form passed through the editorial committee of the bureau and was approved for publication by the director of the bureau. Since publication of Report No. 2, new types of equipment have been made available for use in the constructionof orifice meter stations, Further, the need developed for larger meter tube diameters and heavier wall pipe to measure the larger volumes of gas at higher meter- ing pressures. It was recognized by the industry that Report No. 2 should be brought up to date. Thus, early in 1953, the PAR Plan’s Pipeline Research Committee appointed the Supervising Committee for PAR Project NX-7, for the purpose of developing Gas Meas- urement Committee Report No. 3. To maintain cooperation between the American Society of Mechanical Engineers and the American Gas Association in the development of publi- cations on orifice meters, the members of the supervising committee had dual membership on the American Society of Mechanical Engineers Research Committee on Fluid Meters, Subcommittee No. 15, as well as the NX-7 Committee. Report No. 3 supplemented Report No. 2. Generally, all of the data in this report were the same as included in Report No. 2, except that it was expanded to cover a wider range of conditions. In many instances, slight changes were made and statements added to clarify some of the conditions brought about from practical application of Reports No. 1 and 2. In Report No. 3, a pressure base of 14.73 pounds per square inch absolute was adopted to replace the former pressure base of 14.4 pounds per square inch absolute. The results are consistent with those obtained from Report No. 2. Since the publication of Report No. 3 in 1955, there have been refinements and new developments in the measurement of natural gas. The 1969 revision updated the report and provided additional information which had been developed since the original publication. The basic concepts in Report No. 3 were not changed. The use of large pipe diameters and new manufacturing techniques as well as the use of computers, required additional material to make the report more useful. Fundamentally, however, these revisions did not make any appreciable changes. The compressibility material presented was abstracted from the Manual for Determining SupercompressibilityFactors for Natural Gas. During 1975, the American Petroleum Institute’s Committee on Petroleum Measurement adopted Report No. 3 and approved it as API Standard 2530, and for publication as Chapter 14.3 of the American Petroleum Institute’s Manual of Petroleum Measurement Standards. Subsequently, Report No, 3 was submitted by the American Petroleum Institute to the American National Standards Institute’ for endorsement as an American National Stan- dard. The American National Standards Institute approved Report No. 3 as an American National Standard on June 28, 1977, identified as ANSUAPI 2530. During 1982-1983, API’s Committee on Petroleum Measurement worked in cooperation with the American Gas Association and the Gas Processors Association‘ to revise the standard. API adopted the revised standard by ballot of its Committee on Petroleum Meas- urement on November 23, 1983. The 1983 revision updated the standard and altered the format to improve its clarity and ease of application. Several forms of the flow equations 5American National Standards Institute, 1430 Broadway, New York, New York 10018. 6Gas Processors Association, 6526 East 60th Street, Tulsa, Oklahoma 74145.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4*3*4 92 0732290 0506293 7 9 T M SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 5 were provided. The calculated flow rate results were equivalent for any of the forms presented and were also equivalent to those obtained with the first edition. The empirical equation of state for natural gas, or compressibility factors was also updated in the 1983 revision. Gas compressibility work was completed on an expanded list of gas compositions and for pressures up to 20,000 pounds per square inch. These experi- ments were supported with facilities, technology, expertise, and funds supplied by the National Bureau of Standards, the University of Oklahoma, Texas A & M University, the Compressed Gas Association7,the Gas Research Institute*, the American Gas Association, and others. The resultant empirical equation of state for natural gas was adopted as A.G.A. Transmission Measurement Report No. 8. No other substantive technical revisions to the standard were undertaken at that time. The American National Standards Institute approved the 1983 revision as an American National Standard on May 16, 1985. The empirical coefficient of discharge equation for flange-tappedorifice meters has been updated in the present revision. Extensive test work on orifice meters using oil, water, air, and natural gas as test fíuids was conducted by an international set of laboratories. Two sets of meter tubes in nominal 2 , 3 , 4 , 6 , and 10 inch sizes with two sets of eight orifice plates in nominal beta (ß) ratios from 0.05 to 0.75 were tested. The U.S. experiments were sup- ported with facilities, technology, expertise, and funds supplied by the National Bureau of Standards, the American Petroleum Institute, the Gas Processors Association, the Gas Research Institute, the American Gas Association, and others. The new coefficient of discharge equation is based on the most extensive, high quality data ever collected. The approach length, piping configuration, and flow conditioning recommendations are unchanged from the 1983 revision. A restatement of uncertainty will result from the current installation research and will offer a basis for future changes in this standard. 4.2.2 HISTORICAL DATA BASE 4.2.2.1 OSU Data Base The largest single collection of industry-sponsored experiments to determine orifice discharge coefficients was conducted from 1932 to 1933 under the direction of Professor S.R. Beider at Ohio State University (OSU). These experiments used water in seven pipe diameters ranging from 25 to 350 millimeters (1 to 14 inch). The test results are commonly referred to as the OSU data base. Orifice plates with a wide range of diameters were studied in each of the pipe sizes. While little is known of the detail of the pipework condition or of the plates themselves, the tests were undertaken with considerable care. All flange-tapped orifice metering standards published prior to 1990 (A.G.A. Report No. 3, ANSI/API 2530, and IS09 5167) were based on this sixty year old OSU data base. The results from these experiments were used by Dr. Edgar Buckingham and Mr, Howard Bean of NBS to develop a mathematical equation to calculate the flow coeffi- cient for orifice meters. They derived the equation by cross-plotting the data on large sheets of graph paper to obtain the best curve fit. The quality of the work done by Beitler, Buck- ingham, and Bean is obvious from the fact that their results were used for almost 60 years. 4.2.2.2 Data Reevaluation In the late 1960s and early 1970s, attempts were made to mathematically rationalize the variety of discharge coefficient data then available. Equations using a power series form evolved. These provided excellent fits to specific data bases, but could not be used for 7Compressed Gas Association, 1725 Jefferson Davis Highway, Arlington, Virginia 22202. *Gas Research Institute, 8600 West Bryn Mawr Avenue, Chicago, Illinois 60631. International Organization for Standardization.IS0 publications are available from ANSI.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4.3-4 % 2 m 0732270 0506274 626 m 6 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT extrapolations.These attempts did not replace the Buckingham equation for flange-tapped orifice meters. In the early 1970s, a joint committee of the American Gas Association, the American Petroleum Institute, and the International Organization for Standardization (ISO) was formed to address perceived problems associated with the OSU data base. Wayne Fling of the USA and Jean Stolz of France were selected to evaluate the OSU data base. In their evaluation, Stolz and Fling discovered a number of physical reasons to question some of the data points of the OSU Data Set. Several installations and plates were found that did not meet the requirements of ANSUAPI 2530 and I S 0 5 167. The F%ng/Stolz anal- ysis identified 303 technically defensible data points from the OSU experiments. Unfortunately, it is not known which points were selected by Buckingham/Beanto generate the discharge coefficient equation. The 303 defensible data points were from 4 meter tubes covering a p ratio range of 0.2 to 0.75 and a pipe Reynolds number range of 16,000 to 1,600,000.This data was developed using water. 4.2.3 RECENT DATA COLLECTION EFFORTS In the late 1970s, recognizing from the Fling/Stolz analysis the availability of only a small amount of definitive data, API and GPA initiated a multimillion dollar project to develop a new archival discharge coefficient data base for concentric, square-edged, flange- tapped, orifice meters. At about the same time, a similar experimentalprogram was initiated by the Commission of European Communities (CEC). The goal of both research efforts was to develop a high quality archival data base of orifice meter discharge coefficients covering the broadest possible range of pipe Reynolds numbers. The data base was gener- ated over a ten year period at eleven laboratories using oil, water, air, and natural gases as test fluids. The experiments were randomized to eliminate experimental bias within a laboratory. Randomization assured valid estimates of the experimental error and allowed the applica- tion of statistical tests of significance, confidence levels, and time-dependent analyses. Replication of independent bivariate data points (Cd,ReD) conducted to measure preci- was sion and to assess uncontrolled variables which could affect the find results. By using different laboratories, the possibility of systematic bias originating from any one laboratory could be identified, investigated, and corrected. The experimental pattern was designed to vary in a controlled fashion the correlating parameters of p, pipe size, and Reynolds number for a given tapping system. All orifice plates were quantified with respect to concentricity, flatness, bore diameter, surface rough- ness, edge sharpness, and other characteristics. The edge sharpness was quantified by lead foil, casting, beam of light, and fingernail methods. The meter tubes were quantified with respect to circularity, diameter, stepdgaps, pipe wall roughness, and so forth. The wall roughness was quantified by the profilometer and the artifact methods. The experimental design recognized the importance of the data taken on each of the four basis fluids. The water data were viewed as the most important of the research effort. The water experiments occupied the intermediate Reynolds number range. It was decided not to test all tube/plate combinations in all four fluids. The API/GPA experiments were restricted to flange-tapped orifice meters, using oil, water, and natural gas as the test fluids, The CEC experiments covered orifice meters equipped with corner, radius (D-D/2), and flange tappings. Test fluids included water, dry air, and natural gas. The combined data base which resulted is based on a combination of 12 meter tubes covering five nominal pipe diameters. It contains data from 106 orifice plates covering eight p ratios for both liquids and gases. The data base was collected from eleven different laboratories over a pipe Reynolds number range of 100 to 35,000,000. "Commission of European Communities, rue de la Loi, B-1049, Brussels, Belgium.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART 4-BACKGROUND 7 Full descriptions of the research projects may be found in the documents referenced in the appendix to Pari 1. 4.2.3.1 APVGPA Discharge Coefficient Research The API/GPA discharge coeffficient research was restricted to flange-tapped orifice meters. Only those experiments conducted using oil and water were used in the final regres- sion data base. For several technical reasons, the originators of the high Reynolds number experiments at Joliet considered the natural gas experiments to be comparison quality, rather than regression quality. Since theresults of the project were to be applied in commerce, the experimental pattern included two sets of five nominal pipe diameters (2,3,4,6, and 10 inches). A three-section meter tube design was selected to facilitate inspection of internal surface conditions and for future experiments on installation conditions. Tube roughness values were representative of commercial installations. Two sets of orifice plates having nominal p ratios (0.050, 0.100, 0.200, 0.375, 0.500, 0.575, 0.660, 0.750) were selected to produce a statistically consistent data base which could be used to develop an equation for the discharge coefficient. Plates were replaced when they were damaged or when the edge sharpness had deteriorated beyond acceptable levels. The nominal pratios and nominal tube diameters for the experimental patterns were: 0.050 x x o.100 x x x x x 0.200 x x x x x 0.375 x x x x x 0.500 x x x x x 0.575 x x x x x 0.660 x x x x x 0.750 x x x x x To ensure uniformity of the velocity profile at each laboratory, Sprenkle flow condition- ers were constructed by the NBS mechanical shop in accordance with the original specifi- cations of the Bailey Meter Company. These Sprenkle flow conditioners assured isolation from laboratory induced piping configurations. Additionally, velocity profile tests were performed to confirm the presence of uniform, fully-developed, swirl-free flow profiles. Flow rates were selected for each pipe size and plate combination to produce Reynolds numbers spread equally over the relevant range of the laboratories capabilities. The result- ing test matrix sought to correct any possible bias in the existing OSU data base and minimize or eliminate aíl sources of bias in the new experimental data. 4.2.3.1.1 Low Reynolds Number Experiments The low Reynolds number experiments were conducted at the Colorado Engineering Experimental Station Incorporated (CEESI) Flow Laboratory located in Nunn, Colorado. The viscous fluid selected was a white mineral oil with a nominal viscosity of 8 centipoise. The mass flow rate for the oil experiments was calculated using a traditional liquid turbine meter, small volume prover, and empirical density arrangement. The density and viscosity of the white mineral oil was characterized to empirically predict flowing density and viscosity.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 8 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 4.2.3.1 -2 Intermediate Reynolds Number Experiments The intermediateReynolds number experiments were conducted at the National Institute of Science and Technology (NIST) Flow Laboratory located in Gaithersburg, Maryland. The test fluid was potable water with a nominal viscosity of 1 centipoise. The mass flow rate was calculated using the traditional weigh tank and empirical density method. Water density as a function of temperature was predicted using George S. Kell’s water density equation, combined with a zero offset attributable to dissolved minerals in the sump water. 4.2.3.1.3 High Reynolds Number Verification Experiments The high Reynolds number experiments were conducted at Natural Gas Pipeline of America’s (NGPLA) Natural Gas Facility located at Joliet, Illinois. f i o natural gases were utilized, Gulf Coast and Amarillo, both having a nominal viscosity of 0.01 centipoise. The mass flow rate was determined using sonic flow nozzles and an empirical PVT arrangement.The density and viscosities of the natural gases were continuously character- ized by an on-line gas chromatograph which reported the composition in mole percent. 4.2.3.2 CEC Discharge Coefficient Research The CEC Discharge Coefficient Research experiments used two tube sizes (100 milli- meters and 250 millimeters) over a prange of 0.2 to 0.75 at eight laboratories. To ensure a uniform velocity profile at each laboratory, long upstream lengths of straight pipe (greater than SOD) and flow conditioners were used to assure isolation from laboratory induced piping configurations. Again, velocity profile tests were performed to confirm the presence of uniform, fully-developed, swirl-free flow profiles. Flow rates were selected for each pipe size and plate combination to produce Reynolds numbers spread equally over the relevant range of the laboratories’ capabilities. As in the APUGPA experiments, the resulting test matrix was designed to correct any possible bias in the existing OSU data base and to minimize or eliminate all sources of bias in the new experimental data. The combined data base includes data from eleven different laboratories, for four basic fluid types with different sources, on twelve different meter tubes of differing origins, and over one-hundred orifice plates of differing origins. 4.2.3.3 Laboratory Bias Before proceeding with equation regression, the researchers analyzed laboratory bias within the individual data bases as weil as the combined API/GPA and CEC data bases. Laboratory bias would be evident if the discharge coefficient curve for a given p ratio exhibited offsets between fluid data or between laboratories. The traceability chain and method of determining mass flow, instrumentationcalibration, and operating procedures were unique for each laboratory. Pipe sizes and p ratios common to both the APUGPA and CEC data bases were used to test the assumption that laboratory bias within the regression data set has been randomized. Analysis of the APUGPA data base exhibited no laboratoq bias between the low and intermediate Reynolds number laboratories.A statistical analysis by the AEWGPA technical experts confirmed the lack of bias. Graphical analysis of the CEC data base indicated that the laboratory biases were randomized. Comparison of the APUGPA and CEC data graphically confirmed the assumption of randomized laboratory bias between data bases. Additionally, a statistical comparison using any of the candidate equations confirmed the extremely compatible level between data bases.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION %-CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 9 4.2.3.4 Regression Data Set A meeting of interested international orifice metering experts in November, 1988, mutually agreed that the Regression Data Set be defined as follows: T h e Regression Data Set shall consist of those data points contained in the APWGPA and CEC discharge coefficient experiments which were performed on orifice plates whose diameter was greater than 11.4 millimeters (0.45 inches) and if the pipe Reynolds number was equal to or greater than 4,000 (furbulent flow regime).” Tests which contained uncontrolled independent variables and operator errors were excluded from the data base. Points were discarded only if a physical cause could be iden- tified and both the laboratory and APUGPA or CEC experts concurred on the evidence. Questionable points which were considered to be statistical outliers were not discarded from the data base. This does not mean that other data were of inferior qualify. Insufficient information existed for other data sets to determine if the independent variables were controlled and quantified. Examples of comparison quality data include the OSU 303 points, the 1983 NBS Boulder Experiments, the AFWGPA Joliet Data, and the Japanese Water data base. The Regression Data Set defined above consists of data generated on orifice meters equipped with flange and D-D/2 (radius) tappings. The number of regression data points are summarized as follows: Tapping Number of points flange 5,734 comer 2,298 D-D/2 2,160 Total Poinfs 10,192 Tables 4-1 through 4-3 show the range of data used to generate the RG correlation. Table 4-I-Regression Database Point Distribution for Flange Taps Tube Size 2 3 4 6 10 summary Beta inches inches inches inches inches bvBeta o. 100 O O O 29 79 108 0.200 60 57 27 1 83 257 728 0.375 104 106 287 122 202 821 0.500 113 69 164 109 164 619 0.575 90 72 435 136 390 1123 0.660 196 64 289 92 303 944 .0.750 212 101 458 130 490 1391 Summary by Tube 775 469 1904 701 1885 5734 Reg 4000 io4 io5 lo6 io7 to to to to to summary Pipe loo00 lo5 lo6 io7 io8 by Pipe 2.000 112 414 249 O O 775 3.000 22 209 238 O O 469 4.000 95 622 1004 183 O 1904 6.000 68 275 328 30 O 701 10.000 41 300 927 467 150 1885 summary byReD 338 1820 2746 680 150 5734COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I N P N S * L 4 - 3 = 4 92 0732290 0506298 2 7 1 10 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 4.2.3.5 Interpretation of Research Data For high values of p, the data follows a pattern similar to the Moody Friction Factor Diagram. This similarity is greatest at a p of 0.750 and continuously diminishes and becomes imperceptible at a p ratio of 0.500. For low p ratios, the data is erratic. Closer examination indicated that the ability to reproduce an orifice plate with a sharp edge decreases with decreasing plate bore diameter. Based upon lead foil and video imaging analyses, a reasonable low limit for commercial plates was thought to be 11.4 millimeters (0.45 inches). Data associated with the 50 millimeter and 75 millimeter (2 inch and 3 inch) tubes exhibit an anomaly. Further analysis indicated that this anomaly may be caused by the dimensionless tap hole size and dimensional location for flange taps. The experiments confirmed the uncertainty guidelines used by the petroleum, chemical, and natural gas industries, Improvement in accuracy below this level under normal oper- ating conditions is unrealistic without in situ calibration of the device and secondary instrumentation. 4.2.4 BASIS FOR EQUATION The underlying principle for present day theoretical and experimental fluid mechanics is dynamic similarity. This principle states that two geometrically similar meters, with identical dimensionless flow parameters will display geometrically similar streamlines regardless of differences in density, viscosity, flow rate, and so forth, between the two fluids. Dynamic similarity implies a correspondence of fluid forces between the two metering systems. Within the application limitations of this standard, the inertial and viscous forces are those considered to be significant for the orifice meter. As a result, the Reynolds num- ber, which measures the ratio of the inertial to viscous forces, is the term which correlates dynamic similarity in all empirical coefficient of discharge and flow coefficient equations. Table 4-2-Regression Database Point Distribution for Corner Taps Tube Size 2 3 4 6 10 Summary Beta inches inches inches inches inches by Beta o. 100 0.200 O O 192 O 182 374 0.375 O O 78 O 96 174 0.500 O O 73 O 89 162 0.575 O o 300 O 275 575 0.660 O O 183 O 199 382 0.750 O O 270 O 361 63 1 Summary byTube O O 1096 o 1202 2298 Reg 4000 io4 lo5 io6 io7 to to to to to Summary Pipe 10000 lo5 lo6 lo7 10 byPipe 2.000 3.000 4.000 27 278 629 162 O 1096 6.000 1o.Ooo 12 166 519 371 134 1202 Summary by Reg 39 444 1148 533 134 2298COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * L 4 - 3 e 4 92 0732290 0506299 L O B SECTION &CONCENTRIC. ~ ~ SQUARE-EDGED ORIFICE METERS. PART &BACKGROUND 11 Table 4-3-Regression Database Point Distribution for 0-012 (Radius) Taps Tube Size 2 3 4 6 10 summary Beta inches inches inches inches inches by Beta o. 100 0.200 O O 169 O 186 355 0.375 O O 50 O 97 147 0.500 O O 48 O 90 138 0.575 O O 276 O 274 550 0.660 O O 158 O 198 356 0.750 O O 243 O 37 1 614 Summary byTube O o 944 O 1216 2160 Ren 4000 io4 io5 lo6 io7 to to to to summary Pipe loo00 :i5 lo6 lo7 lo8 bypipe 2.000 3.000 4.000 24 229 529 162 O 944 6.000 10.000 12 167 534 367 i36 1216 Summary byReg 36 396 1063 529 136 2160 Provided the physics of the fluid does not change, the Reynolds number correlation provides a rational basis for extrapolation of the empirical equation. The originators of the APVGPA and CEC experiments considered fully developed veloc- ity profiles as the foundation for the experiments. This decision was discussed extensively, as were the definition and determination of fully developed flow. Fully developed flow conditions were assured by the use of straight lengths of meter tube both upstream and downstream from the orifice and by the use of flow sfraighteners. The theoretical definition of fully developed velocity profiles is based largely on the accumulated results of experimental observations of time-averaged velocity profile and, parficularly, of the pressure gradient (or friction factor). It is well established that both the velocity profile and the pressure gradient are sensitive to the condition of the pipe wall, whether smooth, partially rough, or fully rough, and the nature of the roughness. 4.2.4.1 Form of Equation Previous discharge coefficient equation forms (Buckingham, Murdock, Dowdell, and others) were empirically derived expressions with minimal mathematical correlation to fluid dynamic phenomena. In 1978, Jean Stolz derived an empirical orifice equation based on the physics of an orifice meter. Stolz postulated that discharge coefficients obtained with different sets of near field pressure tappings must be related to one another based on the physics. The expression has been termed the Stolz linkage form. The coefficient of discharge (C,) equation for the concentric, square-edged orifice plafe developed by M. J. Reader-Harris and J. E. Gallagher, the RG equation, evolved from the work of Stolz. The RG equation contains a coefficient of discharge at Reynolds number for corner taps, C;,(CT),a slope term consisting of a throat Reynolds Number term and velocity profile term, the near field tap t e m , and a “tap” size term for meter tubes less than 2.8 inches. A brief description of the physical understanding for the equation is presented in 4.2.4.2 and 4.2.4.3.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 12 CHAPTER 14-NATURAL GAS FLUIDS b%EASUREMENT 4.2.4.2 Tap Terms The near field tap terms were derived first since it was necessary to determine them before regression of the slope and q(CT) terms. The best-fit terms were derived statistical- ly using the Regression data base and the Gasunie 600 millimeter flange tapping term data. The total tapping term data set consisted of 11,346 points, nominal diameter ratios ( ) jfrom 0.10 to 0.75, nominal pipe diameters from 50 to 600 millimeters, and pipe Reynolds numbers which ranged from approximately 200 to 50,000,000. Stolzs postulate states that the near field tapping terms are equal to the difference between the discharge coefficient for the corner taps and the flange (or radius taps). The values of the terms were determined from the CEC data which included all three sets of tappings. However, the form of the tapping terms was based on data collected by several researchers. Because the data aplied to only one pair of tappings (flange), the value of the tapping terms in the APUGPA data could only be calculated for comparison. The upstream term has a form which is essentially identical to that of IS0 5167. The downstream form is based on a suggestion by R. G. Teyssandier and Z. D. Husain. Also, it was agreed that the upstream and downstream tap terms should have a continuous first derivative. No effect of Reynolds number on the tap terms is evident from analysis of the CEC data. However, data in the low Reynolds number range in the API/GPA experiments show the effect of Reynolds number on the tap term. The effect of low Reynolds number on the upstream and downstream wail pressure gradient has been reported by Witte, Schroeder, and Johansen. Perfect low Reynolds number tapping terms cannot be produced due to lack of data. However, it is important to produce the best ones possible. 4.2.4.3 Ci(CT) Term The infinite discharge coefficient for corner taps, q(CT), increases with pratio to a max- imum near p of 0.55 and then decreases rapidly with increasing p. The form of the equation, without taking into account the tap hole diameter term, is: Ci (CT) = A,, + A l p 2 +A-# The constant exponents of 2 and 8 were chosen to enable a good fit to the data while keeping the exponents reasonable. The 50 millimeter flange tap data differed significantly from the radius tap terms by as much as 0.4 percent for small values of b. Gallagher and Teyssandier postulated that this difference was a result of dimensional tap effects, An additional term was added to account for the tap hole diameter effect for 50 millimeter tubes. It is debatable whether this term should be in the tap term or G(CT) term. A proposal by Reader-H&s to add a tap hole diameter term to the C,(CT) term was accepted and has been implemented. 4.2.4.4 Slope Term Intuitively, for small p ratios, the Cd should depend only on throat Reynolds Number (Re,). However, for large p ratios the velocity profile or friction factor is the correlating parameter. Several scientists have attempted to correlate C, as a function of friction factor. While theoretically correct, the practical application would be unpopular. Also, the ability to measure friction factor is impractical in the field and difficult in the laboratory. The slope term form should also provide a transition from laminar to turbulent flow because the velocity profile changes rapidly in the transitional flow regime. The data indi- cated that the slope for pipe Reynolds number (ReD)greater than 3,500 was very different from the slope for pipe Reynolds number (Re,) less than 3,500.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 13 The final slope term form is as follows: The %" term for Re, c 3,500 is different from Re, > 3,500 to correct for the velocity profile changes from laminar to turbulent flow regime. 4.2.5 READER-HARRIWGALLAGHER EQUATION The equation for the coefficient of discharge (C,) for concentric square-edged orifice plates developed by Reader-HarridGallagher (RG) is structured into distinct linkage terms and is considered to best represent the current regression data base. The RG equation, as ballotted within API in 1989, is valid for the three tappings represented by the regression database and is acceptable for low flow conditions if a higher uncertainty is acceptable. The bailoted equation is given below. c, = ci + SIX] + s,x, + Ci = Ci(CT) Tap Term C;:(CT) = 0.5961 + 0.0291ß2- 0.2290ß8+ 0.003 (1 - ß) Ml Tap T e m = Upstrm + Dnstrm Upstrm = [ 0.0433 + 0.0712e-85L- 0.1145e-60L1 (1 - 0.23A) B ] Dnstrm = -0.0116 S2X, = (0.0210 + 0.0049A)ß4C Also, 0.8 A = [ 19, Wß ReD ] For Re, greater than or equal to 3,500, c= [E] 0.35COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 14 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT For Re, less than 3,500, C = 30.0-6,500 Diameter ratio. d1D. Coefficient of discharge at a specified pipe Reynolds number. Coefficient of discharge at infinite pipe Reynolds number. Coefficient of discharge at infinite pipe Reynolds number for corner-tapped orifice meter. Orifice plate bore diameter calculated at Tf. Meter tube internal diameter calculated at Tf. Naperian constant, 2.71828. O for corner taps. N4/D for flange taps. 1 for 0-012 (radius) taps. O for corner taps. N4/Dfor flange taps. 0.47 for 0-012 (radius) taps. 1.0 when D is in inches; 25.4 when D is in millimeters, pipe Reynolds number. By restricting the RG equation to flange-tapped orifice meters with pipe Reynolds numbers greater than or equal to 4,000, the RG equation becomes: c d = c + SIXI + S2x2 j Ci = Ci(CT) + Tap Term C;(CT) = 0.5961 + 0.0291ß2- 0.2290ß8+ 0.003 (1 - ß) Ml Tap Term = Upstrm iDnstrm - Upstrm = [ 0.0433 + 0.07 12 - O. 1145e-6oL] ( 1 - 0.23A) B Dnstrm = -0.0116 M2 - 0.52M:.3 lßJ 1 -0.14A) S2X, = (0.0210 + 0.0049A)ß4C Also, D M1 = max (2.8--,O.O) N4COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API flPMS*14*3.4 9 2 W 0732290 0506303 469 W SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 15 0.8 A = [ 19, Oooß Re, ] Where: A = Small throat Reynolds number correlation function. B = Fluid momentum ratio. ß = Diameter ratio. - dlD. C = Generalized Reynolds number correlation function. c, = Coefficient of discharge at a specified pipe Reynolds number. c. = Coefficient of discharge at infinite pipe Reynolds number. G(CT) = Coefficient of discharge at infinite pipe Reynolds number for corner-tapped orifice meter. d = Orifice plate bore diameter calculated at ïj. D = Meter tube internal diameter calculated at Tf. e = Naperian constant, 2.71828. LI = N41D for flange taps. 4 ! = N,lD for flange taps. N4 = 1.0 when D is in inches; 25.4 when D is in millimeters. Re, = pipe Reynolds number. The downstream tap term, M,, is the distance between the downstream face of the plate and the downstream tap location. The tap hole term, M , , is significant only for nominal meter tubes less than 75 millimeter (3 inch) equipped with 9.525 millimeter (0.375 inch) flange taps holes. The equation is applicable to nominal pipe sizes of 2 inches (50 millimeters) and larger, diameter ratios (p)of 0.10 through 0.75 provided the orifice plate bore diameter,d,, is great- er than 0.45 inches (11.4 millimeters), and for pipe Reynolds numbers greater than or equal to 4,000. Those interested in applications with Re, less than 4000, d, less than 0.45 inches, or for corner or 0-012 (radius) taps, all of which are outside the range of this standard, are referred to Appendix 4-A. 4.2.5.1 Statistical Analysis Since the mid 1930s, the correlation published by Dr. E. Buckingham and Mr. Howard S. Bean has been used by A.G.A. Report No. 3 (ANSUAPI 2530). In 1980, IS0 replaced the Buckingham equation with the Stolz linkage equation in the international orifice stan- dard (IS0 5167). Statistical analysis of the Regression Data Set showed that in several regions, neither the Buckingham nor Stolz equations accurately represented the data for flange-tapped orifices (Figures 4-1 through 4-3). The figures indicate that the data does not substantiate the uncertainty statementpublished in both the IS0 and 1985ANSI standards. The figures show that the RG equation provides an excellent fit to the data for flange-tapped orifice meters. Figure 4-9 shows that the RG equation fits the data much better over the entire Reynolds number range than the previous equation (Figure 4-8). Figures 4-4,4-5,4-6, and 4-7 show the superior fit of the RG equation to the corner and 0-012 (radius) tap data. (text continued on page 20)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 16 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 0.8 0.6 0.4 op Y c 0.2 . c 9 m ‘5 o a” g -0.2 ’ a -0.4 (LI Buckingham -0.6 ~- I S 0 5167-Stolz -0.8 0.1 0.2 0.375 0.5 0.575 0.66 0.75 Beta ratio Figure 4-1-Flange Tap Data Comparison-Mean Deviation (“A)versus * Nominal Beta Ratio o’8 0.6 0.4 op Y 8 0.2 .- c m ‘5 o . a> U ’ I .‘ I RG Equation I I -0.4 Buckingham -0.6 -- ISO5167-Stolz -n R V.” I I -~~ I I 2 3 4 6 10 Pipe diameter (inches) Figure 4-2-Flange Tap Data Comparison-Mean Deviation (“h)versus Nominal Pipe Diameter 0.8 . 0.6 0.4 Oe v 8 .- 0.2 .- ;a g U o 5 -0.2 ’ a> -0.4 -0.6 I i 1 5167-Stolz IS0 I II I I I I 104 I 05 106 107 108 Reynolds number ranges Figure 4-3-Flange Tap Data Comparison-Mean Deviation (“YO) versus Reynolds Number RangesCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I NPMS*L4.3.4 92 0732290 0506305 231 m SECTION %-CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 17 V." 0.6 IS0 5167-StOlz 0.4 L 9 g 0.2 .- o I- m C. n 5 $j-0.2 -0.4 -0.6 "." 0.2 0.375 0.5 0.575 0.66 0.75 Beta ratio Figure 4-4-Corner Tap Data Comparison-Mean Deviation (%) versus Nominal Beta Ratio 0.8 0.6 I . 0.4 8 Y c 0.2 .- c O m 5 Q) o U 5 -0.2 0 -0.4 -0.6 -0.8 104 105 106 107 108 Reynolds number ranges Figure 4-5-Corner Tap Data Comparison-Mean Deviation ("70)versus Reynolds Number RangesCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 0.8 0.6 0.4 8 v 8 0.2 .-i E 5 o 8 1 5 -0.2 a> -0.4 -0.6 -0.8 0.2 0.375 0.5 0.575 0.66 0.75 Beta ratio Figure 4-6-D-D/2 (Radius) Tap Data Comparison-Mean Deviation (%) versus Nominal Beta Ratios 0.8 0.6 0.4 8 v 8 0.2 .- id 5 a> o U = -0.2 8 -0.4 -OB -0.8 3 i0 4 105 106 i07 108 Reynolds number ranges Figure 4-7-D-D/2 (Radius) Tap Data Comparison-Mean Deviation (%) versus Reynolds Number RangesCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION 3--CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 19 6 4 2 c O <- id e WE?-- y y B .e- - ---- o n -2 -4 o -6 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 Log,,, Reynolds number Figure 4-8-Scatter Diagram Based on Buckingham EquationO 6 4 2 c .- .- id O 5 EO c n ! o -2 -4 -6 3 3.5 4 4.5 5 5.5 6 6.5 . 7 7.5 8 Log,, Reynolds number Figure 4-9-Scatter Diagram Based on Reader-HarridGallagher EquationCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 20 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 4.3 Implementation Procedures 4.3.1 INTRODUCTION The implementationprocedures in this document provide consistent computed flow rates for orifice meter installations which comply with other parts of this standard. A particular implementation may deviate from the supplied procedures only to the extent that final calculated flow rate does not differ from that calculated using the presented implementation procedure using IEEE Standard 754" double precision arithmetic by more than 50 parts per million in any case covered by the standard. This discrepancy is allowed in recognition of the need for real-time flow measurement computers to perform the required computa- tions in a continuous manner with minimal computations. This implementation procedure is divided into three subsections: solution for mass or volumetric flow rate (Section 4.3.2), special procedures for natural gas applications (Sec- tion 4.3.3), and implementation example calculations (Section 4.3.4). Three different rounding procedures are provided for rounding of input and output variables. Recommend- ed rounding tolerances for each of the variables are given in Appendix B. Section 4.3.2 demonstrates the general method for solving the mass flow equation used in orifice meter- ing for either mass flow or standard volumetric flow. Since several additional standards are used when metering natural gas, the additional requirements and methods shown in Part 3 of this standard are presented in Section 4.3.3 of Part 4. Section 4.3.4 provides sample test cases that can be used to verify any computer logic developed to represent the imple- mentation procedures. 4.3.2 SOLUTION FOR MASS OR VOLUME FLOW RATE In Part 1, the equation for mass flow rate through an orifice meter was given as: qm = : N , C d E v Y d 2 d v (4-1) Where: Cd = orifice plate coefficient of discharge. d = orifice plate bore diameter calculated at flowing temperature, T f . A = orifice differential pressure. l E, = velocity of approach factor. N, = unit conversion constant. z = universal constant (3.14159...). qm = mass flow rate. pt,p = density of the fluid at flowing conditions (P,,T f ) . Y = expansion factor. The expansion factor, is a function of the fluid being measured. If the metered fluid is considered incompressible (for example, water), the factor has a constant value of one. Otherwise, Y is a function of the orifice meter geometry, the fluid properties, and the ratio of the differential pressure to the static pressure. For the purposes of this standard, natural gas is considered to be a compressible fluid. The volume flow rate at flowing (actual) conditions is related to the mass flow rate by: I IEEE Standard 754-1985, IEEEStandard for Binary Floating Point Arithmetic,Institute for Electrical and Elec- tronic Engineers, New York, New York. See IEEE Standard 854-1987, IEEE Standard for Radix Independent Floating Point Arithmetic for discussion of non-binq machines.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*14.3.4 92 0732290 0506309 987 SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS. PART 4-BACKGROUND 21 Where: qm = mass flowrate. qv = volumetric flow rate at flowing (actual) conditions. pt,p = densiiy of the fluid at flowing Conditions (qand Tf). The volume flow rate at standard conditions is related to the mass flow rate by: Qb = qm/Pb (4-3) Where: qm = mass flow rate. Qb = volume flow rate at base (standard) conditions. pb = density of the fluid at base conditions. In Part 1, the orifice plate coefficient of discharge, C,, is given as a function of the orifice geometry and the pipe Reynolds number, Re,. The pipe Reynolds number is defined as: ReD = - -4qm (4-4) nuD Where: p = absolute viscosity of the flowing fluid. D = meter tube internal diameter calculated at flowing temperature, Tf. In custody transfer applications, the mass flow rate is unknown and must therefore be calculated using an iterative procedure. This section indicates how to solve for the mass flow rate in a reliable manner that yields consistent results. It is assumed for the purposes of this section that the following orifice geometry data is available: dm = average orifice plate bore diameter measured in accordance with Part 2. Td, = measured orifice plate bore diameter temperature. a, = linear coefficient of thermal expansion of the orifice plate material. Dm = average meter tube internal diameter measured in accordance with Part 2 of this standard. TD, = measured meter tube internal diameter temperature. a = linear coefficient of thermal expansion of the meter tube material. , Or: d, = orifice plate bore diameter at reference temperature, Tf, determined according to Part 2. a, = linear coefficient of thermal expansion of the orifice plate material. D, = meter tube internal diameter at reference temperature, T,, determined according to Part 2. a! = linear coefficient of thermal expansion of the meter tube material. , T, = reference temperature of orifice plate bore diameter and/or meter tube internal diameter. According to Part 2, the reference temperature is 68°F (20°C). Unlike previous versions of ANSI 2530, both the onfice plate bore diameter and meter tube intemal diameter must be corrected for temperature. Table 4-4lists several typical values for the linear coefficient of thermal expansion that may be used in the application of this standard. Application of this part requires the following data to be measured in accordance with the methods outlined in Part 2: = flowing temperature measured in accordance with Part 2. A = orifice differential pressure. .?COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 22 CHAPTER 14-NATUFIAL GAS FLUIDS MEASUREMENT Table 4-4-Typical Values of Linear Coefficients of Thermal Expansion Linear Coefficient of Thermal Expansion(a) US Units Metric Units íin/in-"F) (mm/mm-C) Type 304 & 31 stainless steela 6 0.00000925 O.OOO0 I67 Monela O.OoooO795 O.oooO143 Carbon Steelb 0.00000620 o.ooo0112 aFor flowing conditions between -O 1OF and +300"F, refer to ASME PTC 19.5; 4-1959. bFor flowing Conditions between - 7 and +5, refer to Chapter 12, F 14F Section 2. Note: For flowing temperature conditions outside those stated above and for other materials, refer to the American Society for Metals Metals Handbook Desk Edition, 1985. And either: P, = flowing pressure (upstream tap). Pf2 = flowing pressure (downstream tap). The following fluid property data is required as a function of Tf and p f : pr,p = density of the fluid at flowing conditions ( T f , p f ) , p = absolute viscosity of the flowing fluid. k = isentropic exponent (required for compressible fluids only), This is a dimension- less quantity. Additional data andor parameters required to determine the above quantities must either be made available as measured data or be determined by some other appropriate technical method. Acceptable methods for natural gas applications are specified in Section 4.3.3. If volumetric flow at standard conditions is desired, then either the value of pb or the method of determining p must be determined either by direct measurements, appropriate b technical standards, or equations of state. Multiple parties involved in the measurement shall mutually agree upon the appropriate technical method to determine the base density of the fluid. Recommended methods for natural gas applications are specified in Part 3.. Four basic sets of units are provided for in this standard; U.S. practical engineering units, inch-pound (IP) units, practical metric (MT or metric) units, and System International units. Table 4-5 shows the expected units of each piece of data and the required unit conversion constants for each of these units sets. Other units sets may be used provided that the values for the units conversion constants are based on the SI units table and are converted using the full precision of the constants in ASTM-E380 or API Publication 2564 and then round- ing the final result to six significant figures. Basic input data used to determine the flow rate that is either input as text or transmitted as text may be rounded according to the specifications in Appendix 4-B. All other data should be retained to the full calculation precision being used. The solution procedure given is not the only solution procedure acceptable, but it is believed to be the most reliable and predictable. Other solution techniques such as direct substitution have been investigated, but were not adopted except for natural gas appli- cations for reasons given in Appendix 4-A. The outline of the solution procedure is given in 4.3.2.1.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14-3.4 92 m 0732290 0506333 535 m SECTION %CONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART 4-BACKGROUND 23 4.3.2.1 Outline of Solution Procedure for Flange-Tapped Orifice Meters The general outline of the solution procedures for flange-tapped orifice meters is as follows: a. At Tf, calculate terms that depend only upon orifice geometry: d, D,b, E, and orifice coefficient correlation terms. These steps are outlined in Procedures 4.3.2.1 through 4.3.2.5. b. Calculate flowing pressure, Pf,from either QI or from QI and AP. Use Procedure 4.3.2.6A if QI is known. Otherwise use Procedure 4.3.2.6B. c. Calculate required fluid properties at Tf, p f and other specified fluid conditions. For natural gas as defined in Part 3, these methods are specified in Section 4.3.3. d. Calculate the appropriate fluid expansion factor. If the fluid is compressible follow Procedure 4.3.2.7A, otherwise follow Procedure 4.3.2.7B. e. Calculate the iteration flow factor, FI, and its component parts, FIc and Flp, used in the Cd(FT) convergence scheme according to Procedure 4.3.2.8. f. Determine the converged value of Cd(FT)using Procedure 4.3.2.9. Ifthe value is outside the range of applicability given in Part 1, the value of Cd(FT)should be flagged as being outside the uncertainty statement given in Part 1. g. Calculate the final value of qni (Procedure 4.3.2.10), qv (Procedure 4.3.2.11), or Q b (Procedure 4.3.2.12) as required. Procedure 4.3.2.1 A Calculation of Orifice Plate Bore Diameter from Measured Diameter Input: al = linear coefficient of thermal expansion of the orifice plate material. dn1 = orifice plate bore diameter measured at Tn,. Td, = orifice plate bore diameter measurement temperature. Tf = flowing temperature. output: d = orifice plate bore diameter calculated at flowing temperature, Tf. Table 4-5-Units, Conversion Constants, and Universal Constants Variable(s) US. IP Metric S.I. ft mm m psia psia bar Pa in H20 at 60°F in H20 60°F at millibar Pa Ibm/ft3 Ibm/ft3 kgh3 kgh3 lbmh Ibmh kg/hr kgls ftlhr3 f t 3 h m3h m3/s OF OF OC K idin-"F ft/ft-"F mm/mm-"C m/m-K CP lbmlft-s CP Pa-s 10.7316 10.7316 0.083 145 1 83 14.5 1 psia-ft3Abmol-"F psia-ft3Abmol-"F bar-m3/kmol-"C Jlkmol-K 28.9625 28.9625 28.9625 28.9625 lbllbmol IbAbmol kgkmol kgikmol 323.279 46552.1 0.036oooO 1.o 6.23582 x lo4 0.0773327 0.100000 1.o 27.7070 27.7070 1000.00 1.0 1.o 0.08333333 25.4 0.0254 459.67 459.67 273.15 0.0 68°F 68°F 20°C 293.15 K 3.14159 3.14159 3.14159 3.14159COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 24 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Procedure: Step 1 . Calculate orifice plate bore diameter at Tf according to: (4-5) Procedure 4.3.2.1 B Calculation of Orifice Plate Bore Diameter from Reference Diameter Input: al = linear coefficient of thermal expansion of the orifice plate material. d, = orifice plate bore diameter calculated at reference temperature, T,. T, = reference temperature of orifice plate bore diameter and/or meter tube internal diameter-680F (20°C). Tf = flowing temperature. output: d = orifice plate bore diameter calculated at flowing temperature, Tf. Procedure: Step 1. Calculate orifice plate bore diameter at Tf according to: d = d, [ l+a,(Tf-T,.) 1 Procedure 4.3.2.2A Calculation of Meter Tube Internal Diameter from Measured Diameter Input: cx, = linear coefficient of thermal expansion of the meter tube material. Dm = meter tube internal diameter measured at T,. TO,, = meter tube intemal diameter measurement temperature. = flowing temperature. output: D = meter tube internal diameter calculated at flowing temperature, ïj. Procedure: Step 1. Calculate meter tube internal diameter at T f according to: D = .I I Ita,( Tf I - Dm [ )] Procedure 4.3.2.28 Calculation of Meter Tube Internal Diameter from Reference Diameter Input: q = linear coefficient of thermal expansion of the meter tube material. D, = meter tube internal diameter at reference temperature, T,. T, = reference temperature of orifice plate bore diameter andor meter tube internal diameter. Tf = flowing temperature. output: D = meter tube internal diameter calculated at flowing temperature, Tf. Procedure: Step I . Calculate meter tube internal diameter at according to: D = Dr[ l + a , ( ï j - T , ) L 1 J (4-8)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION &CONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART 4-BACKGROUND 25 Procedure 4.3.2.344 Calculation of Diameter Ratio ( ) ß Input: d = orifice plate bore diameter calculated at flowing temperature, Tf. D = meter tube internal diameter calculated at flowing temperature, q. output: ß = ratio of orifice plafe bore diameter to meter tube internal diameter calculated at flowing conditions. Procedure: Step 1.Calculate ß using the formula: ß= dlD (4-9) Procedure 4.3.2.3B Calculation of Flowing Diameter Ratio ( ) from ß Measured Meter Tube and Orifice Bore Diameters Input: a, = linear coefficient of thermal expansion of the orifice plate material. a, = linear coefficient of thermal expansion of the meter tube material. dm = orifice plate bore diameter at T., D,, = meter tube internal diameter at T,, Td,, = orifice plate bore diameter measurement temperature. TD,, = meter tube internal diameter measurement temperature. = flowing temperature. output: ßm = ratio of orifice plate bore diameter to meter tube internal diameter calculated at flowing temperature, T f . Procedure: Step 1. Calculate measured diameter ratio, ß according to the formula: ,, ßm = drnJDrn (4-10) Step 2. Calculate /3 at flowing conditions according to the formula: (4-11) Procedure 4.3.2.3C Calculation of Flowing Diameter Ratio, ß from , Reference Meter Tube and Orifice Bore Diameters Input: al = linear coefficient of thermal expansion of the orifice plate material. a = linear coefficient of thermal expansion of the meter tube material. , d, = orifice plate bore diameter at reference temperature, T,. D, = meter tube internal diameter at reference temperature, T,. = flowing temperature. T, = reference temperature of orifice plate bore diameter andor meter tube intemal diameter. output: ß = ratio of orifice plate bore diameter to meter tube internal diameter calculated at flowing conditions. Procedure: Step 1. Calculate reference diameter ratio, ßr, according to the formula:COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • . . _ I - __ ----- - - - __ ____. - A P I MPMS*L4-3-4 92 W 0732290 0506334 244 9 26 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT ßr =4fDr (4-12) Step 2. Calculate diameter ratio, ß, at flowing temperature according to the formula: (4- 13) Procedure 4.3.2.4 Calculation o Velocity of Approach Factor, E, f Input: B = ratio of orifice plate bore diameter to meter tube internal diameter calculated at flowing conditions. output: E, = velocity of approach factor. Procedure: Step I. Calculate velocity of approach factor, E,, by the following formula: (4-14) Procedure 4.3.2.5 Calculation of Flange-Tapped Orifice Plate Coefficient of Discharge Constants Input: D = meter tube internal diameter calculated at flowing temperature, Tf. p = ratio of orifice plate bore diameter to meter tube internal diameter calculated at flowing conditions. Parameter Values: Ao = 0.5961 S = 0.0049 i Al = 0.0291 S = 0.0433 2 A2 = -0.229 S = 0.0712 , A3 = 0.003 S = -0.1145 4 A4 = 2.8 S = -0.2300 , A5 = 0.000511 S = -0.0116 , A6 = 0.021 S = -0.5200 , s = -0.1400 8 Terms Ao through A6 and SIthrough & are numeric constants i the RG flange-tapped n orifice meter coefficient of discharge equation. For details see Appendix 4-A. output: c d = first orifice plate coefficient of discharge constant. O Cd, = second orifice plate coefficient of discharge constant. Cdz = third orifice plate coefficient of discharge constant. c d 3 = fourth orifice plate coefficient of discharge constant. Cd4 = fifth orifice plate coefficient of discharge constant. Constants: N4 = unit conversion factor (discharge coefficient). Procedure: Step I. Calculate the dimensionless upstream tap position, L I , and dimensionless downstream tap position, L2. For flange-tapped orifices: Li = N4fD (4- 15) L2 = N4ID (4- 16)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • . A P I M P M S * 3 4 * 3 - 4 92 = 0732290 0506335 LBO E SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART +BACKGROUND 27 For other orifice meter tap configurations, see Appendix 4-A. Step 2. Calculate the dimensionless downstream dam height, M2, according to the following formula: 2L2 M2 = - (4-17) 1-ß Step 3. Calculate upstream tap correction factor, Tu, according to the foilowing formula: TU = [ s2+s3e -8.5L, +~ ~ ë ~ . ~ ~ l (4- 18) Step 4. Calculate the downstream tap correction factor, T D , according to the following formula: (4-19) Step 5. Calculate small pipe correction factor, T,: IfD > (A4 N4) Then Ts .= 0.0 (4-20) Elseq =A3(l-ß)(A4-D/N4) (4-21) Step 6. Calculate the orifice plate coefficient of discharge constants at Reynolds number of 4,000 according to the following formulae: (4-22) (4-23) (4-24) (4-25) (4-26) Note: Library functions for calculating exponentials, powers, or square roots may be used if they are at least as accurate as the seven decimal versions presented in Sofhyare Manual for the Elementary Functions by William J. Cody and William Waite, Prentice- Hall, Englewood Cliffs, New Jersey (1980). The FORTRAN library routines supplied by International Business Machines, Control Data Corporation, Digital Equipment Corporation, and UNISYS meet these requirements. Procedure 4.3.2.6A Calculation of Upstream Flowing Fluid Pressure from Downstream Static Pressure Input: 4 = , flowing pressure (downstream tap). AP = orifice differential pressure. output: 4 = flowing pressure (upstream tap). , Constants: N = unit conversion factor (expansion factor). 3COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • . - __--- --- A P I MPMS*Lq.3.Y 9 2 W 0732290 05063Lb 017 W 28 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Procedure: Step I. Calculate 5,according to the following formula: AP Pi = -N3 P f + fi (4-27) Procedure 4.3.2.7A Calculation of Compressible Fluid Expansion Factor Input: ß = ratio of orifice plate bore diameter to meter tube internal diameter calculated at flowing conditions. AP = orifice differential pressure. f) = flowing pressure. k = isentropic exponent. output: Y = expansion factor. Constants: N3 = unit conversion factor (expansion factor). Procedure: Step I. Calculate the orifice differentialpressure to flowing pressure ratio, x, according to the formula: AP x=- (4-28) N3 5 Step 2. Calculate expansion factor pressure constant, 5, according to the formula: yp= 0.41 + 0.35p4 (4-29) k Step 3. Calculate the expansion factor according to the formula: Y=l-Y,x (4-30) Procedure 4.3.2.7B Calculation of Incompressible Fluid Expansion Factor Input: None output: Y = expansion factor. Procedure: Step I . Expansion factor for incompressible fluid is defined to be unity. Y = 1.0 (4-31) Procedure 4.3.2.8 Calculation of Iteration Flow Factor Input: d = orifice plate bore diameter calculated at flowing temperature, Tf. D = meter tube internal diameter calculated at flowing temperature, Tf. AP = orifice differential pressure. E, = velocity of approach factor. u = absolute viscosity of fluid flowing. , Tf. pt,p = density of the fluid at flowing conditions, Pf, Y = expansion factor. output: FI = iteration flow factor. Constants:COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*34*3.4 92 0732290 O506337 T53 SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS,PART &BACKGROUND 29 Nrc = unit conversion constant for iteration flow factor. Procedure: Step 1.Calculate iteration flow factor intermediate values according to the formulae: 4000NlcDp F = (4-32) 4 E, Yd2 5, = -A l (4-33) Step 2. Test for limiting value of iteration flow factor and limit accordingly: If FI, < 1000Frp Then 4 = FI,IFr, (4-34) Else FI = 1000 (4-35) Procedure 4.3.2.9 Calculation of Flange-Tapped Orifice Plate Coefficient of Discharge Input: Cd, = first orifice plate coefficient of discharge constant. Cd, = second orifice plate coefficient of discharge constant. cdz = third orifice plate coefficient of discharge constant. cd3 = fourth orifice plate coefficient of discharge constant. cd4 = fifth orifice plate coefficient of discharge constant. 4 = iteration flow factor. output: cd(fl) = orifice plate coefficient of discharge. cd-f = onfice plate coefficient of discharge bounds flag. Constants: X, = value of X where low Reynolds number switch occurs, 1.142 139 337 256 165 (Reynolds number of 3502.2) (4-36) A, B = correlation constants for low Reynolds number factor A = 4.343 524 261 523 267 (4-37) B = 3.764 387 693 320 165 (4-38) Procedure: Step 1. Initialize cd(F?î) to a value at infinite Reynolds number. c d ( m ) = cd, Step 2. Calculate X , the ratio of 4,000 to the assumed Reynolds number, according to the formula: x = FI/ c d ( m ) (4-39) Step 3. Calculate the correlation value of c d w ) , F, , at the assumed flow, X,and the derivative of the correlation with respect to the assumed value of C d m ) , O,, using the following formulae: If (X<X,) then,COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - -- -.--I__- II-~. A P I MPMS*34.3-4 92 m 0732290 O506338 99T 30 CHAPTER 14-NATUR GAS FLUIDS MEASUREMENT Else, (4-42) 0 = 0.7C,,X07+ , X o * 8 + 0 . 8 ~ 4 X o 8 (4-43) Step 4. Calculate the amount to change the guess for C(?) S , using the following ,Jï, C , formula: Scd = c d (ml -Fc 0, 1+- c, (Fu Update the guess for C ( T according to: ,F) cd(m) cd(m) SC, = - (4-44) Step 5. Repeat Steps 2,3,and 4 until the absolute value of õcd is less than 0.000005. Step 6. If the value of X is greater than 1.0, Then set C,-f Else clear Cd- f Procedure 4.3.2.10 Calculation of Mass Flow Rate Input: Cd(FT) = converged orifice plate coefficient of discharge. d = orifice plate bore diameter calculated at flowing temperature, Tf. A = orifice differential pressure. í E, = velocity of approach factor. P , , ~= density of the fluid at flowing conditions (Pf, ïj). Y = expansion factor. output: qm = mass flow rate. Constants: N, = unit conversion factor (orifice flow). Procedure: Step I. Calculate mass flow factor according to the formula: n F,,, = - N E d2 (4-45) 4 C " Step 2. Calculate mass flow rate according to the formula: ( 4 - 46a) Note: The term under the radical has been calculated in procedure 3.2.8 as Flp. Procedure 4.3.2.11 Calculation of Volume Flow Rate at Flowing (Actual) Conditions Input: Cd(Fï) = converged orifice plate coefficient of discharge. d = orifice plate bore diameter calculated at flowing temperature, 5. AZ = orifice differential pressure. E, = velocity of approach factor.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*34.3=4 92 W 0732290 0 5 0 6 3 3 9 8 2 6 W SECTION - INCENTRIC, WARE-ED ED RIFICE ZTERS, 4RT 4-BA K ROUND 31 pt,p = density of the fluid at flowing conditions ( p f , Tf). Y = expansion factor. output: qv = volume flow rate at flowing (actual) conditions. Constants: N, = unit conversion factor (orifice flow). Procedure: Step 1. Calculate mass flow factor according to the formula: (4-45) Step 2. Calculate volume flow rate according to the formula: Fmasscd (ml yd2Pt,pAp (4-46b) qv= Pt,P Note: The term under the radical has been calculated in procedure 4.3.2.8 as FIP. Procedure 4.3.2.12 Calculation of Volume Flow Rate at Base (Standard) Conditions Input: Cd(FT) = converged orifice plate coefficient of discharge. d = orifice plate bore diameter calculated at flowing temperature, q. AP = orifice differential pressure. E, = velocity of approach factor. p b = density of the fluid at base conditions (4,Tb). pt,p = density of the fluid at flowing conditions (Pf, Tf). Y = expansion factor. output: Qb = volume flow rate at base conditions. Constants: N, = unit conversion factor (orifice flow). Procedure: Step 1. Calculate mass flow factor according to the formula: (4-45) Step 2. Calculate volume flow rate according to the formula: (4-46c) Note: The term under the radical has been calculated in procedure 4.3.2.8 as FIP. 4.3.3 SPECIAL PROCEDURES AND EXAMPLE CALCULATIONS FOR NATURAL GAS APPLICATIONS Procedure 4.3.3.1 Calculation of Natural Gas Flowing Density Using Ideal Gas Relative Density (Specific Gravity), G I Input: Gi = ideal gas relative density (specific gravity). Tj = flowing temperature. 9 = flowing pressure (upstream tap). ,COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 32 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT output: pf,p = density of the fluid at flowing conditions (Pf,Tf). Constants: Mr,, = molecular weight of air. R = universal gas constant. N5 = unit conversion factor (absolute temperature). Procedure: Step 1. Use appropriate A.G.A. Transmission Measurement Report No. 8 procedure to calculate the compressibility at flowing conditions, Z f , at G i ,Tf, and 4. Step 2. Calculate the density of the fluid at flowing conditions according to the formula: (4-47) Procedure 4.3.3.2 Calculation of Natural Gas Base Density Using Ideal Gas Relative Density (Specific Gravity), G, Input: Gi = ideal gas relative density (specific gravity). G = base temperature. Pb = base pressure. output: pb = density of the fluid at base conditions (4,Tb). Constants: Mr,, = molecular weight of air. R = universal gas constant. N5 = unit conversion factor (absolute temperature). Procedure: Step 1. Use appropriateA.G.A. Transmission Measurement Report No. 8 procedure to calculate the compressibility at base conditions, z b , at G , G, pb . and Step 2. Calculate the density of the fluid at base conditions according to the formula: (4-47) Procedure 4.3.3.3 Calculation o Natural Gas Flowing Density Using f Real Gas Relative Density (Specific Gravity), G, Input: Gr = real gas relative density (specific gravity). 9, = flowing pressure (upstream tap). Pm,, = measured air pressure. Pmglls measured gas pressure. = Tf flowing temperature. E Tmair= measured air temperature. Tmgas= measured gas temperature. output: Tf). P , , ~= density of the fluid at flowing conditions (P,, Constants: Mair = molecular weight of a r i. R = universal gas constant. N5 = unit conversion factor (absolute temperature).COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 33 e Procedure: Step I . Use the appropriateprocedure from A.G.A. Transmission Measurement Report No. 8 to calculate the a r compressibility at air measurement conditions, Zma,,at i &;. Since air is amixture of other gases, the full analysis method of A.G.A. Transmission ,, Measurement Report No. 8 can be utilized to determine its compressibility.For those ver- sions of A.G.A. Transmission Measurement Report No. 8 which do not contain Argon as a component, combine the Argon fraction and ail other missing fractions into the Carbon Dioxide fraction. Step 2. Use the appropriate procedure fr0mA.G.A. Transmission Measurement Report No. 8 to calculate the gas compressibilityat gas measurement conditions, Z,jlgas, Gr,Tmga,, at and elga. Step 3. Calculate the ideal gas relative density (specific gravity), Gi,using the follow- ing formula: Gi = G , (4-48) Step 4. Use the appropriate procedure fr0mA.G.A. TransmissionMeasurement Report No. 8 to calculate the compressibility at flowing conditions, Zf, Gi, Tf, and P at f: Step 5. Calculate the density of the fluid at flowing conditions according to the formula: (4-49) Procedure 4.3.3.4 Calculation of Natural Gas Base Density Using Real Gas Relative Density (Specific Gravity), G, Input: G, = real gas relative density (specific gravity). Pb = base pressure. Pmair = measured air pressure. ejlgm = measured gas pressure. = base temperature. = Tmair measured air temperature. = Tmgm measured gas temperature. output: pb = density of the fluid at base conditions (4, q). Constants: Mrair = molecular weight of air. R = universal gas constant. N5 = unit conversion factor (absolute temperature). Procedure: Step I . Use the appropriate procedure from A.G.A. TransmissionMeasurement Report No. 8 to calculate the air compressibility at air measurement conditions, Zmajr, Tma,and at Ga,,Since air is a mixture of other gases, the full analysis method of A.G.A. Transmission Measurement Report No. 8 can be utilized to determine its compressibility. For those versions of A.G.A. Transmission Measurement Report No. 8 which do not contain Argon as a component, combine the Argon fraction and all other missing fractions into the Carbon Dioxide fraction.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - _I ___ API M P M S M 1 4 - 3 - 4 72 W 0732270 0506322 310 34 CHAPTER 14-NATURAL GAS FLUIDS AEASUREMENT Step 2. Use the appropriate procedure from A.G.A. Transmission Measurement Report No. 8 to calculate the gas compressibilityat gas measurement conditions, Zmga,r,G,, Tmga,r, at and PmRi. Assume that G, is an ideal gas relative density (specific gravity) for this calculation. Step 3. Calculate the ideal gas relative density (specific gravity), Gi, using the follow- ing formula: (4-50) Step 4. Use appropriate A.G.A. Transmission Measurement Report No. 8 to calculate the compressibility at base conditions, z b at Gj, & and Pb. Step 5. Calculate the density of the fluid at base conditions according to the formula: (4-5 1) Procedure 4.3.3.5 Natural Gas Isentropic Exponent Input: k = isentropic exponent, for calculation of expansion factor. output: k = isentropic exponent, for calculation of expansion factor. Procedure: Step 1.Recommended procedure is to use k = 1.3. Procedure 4.3.3.6 Natural Gas Viscosity Input: p = absolute viscosity of the flowing fluid, for calculation of Reynolds number or iteration flow factor. output: p = absolute viscosity of the flowing fluid, for calculation of Reynolds number or iteration flow factor. Procedure: Step 1. Recommended procedure is to use y = 0.0000069 lbm/ft*sec or p = 0.010268 cP. 4.3.3.7 Example Calculations Using Natural Gas Procedures 4.3.3.7.1 U.S. Units Examples For the following two examples, a nominal 4 inch meter tube having a nominal 2 inch bore diameter is assumed. The geometric data for the meter is as follows: meter tube internal diameter 4.025 inches at 68°F orifice plate bore diameter 2.000 inches at 68°F meter tube material carbon steel pipe 6.20 x lod iníin -OF coefficient of thermal expansion (&) orifice plate material austenitic stainless steel 9.25 x lo6 idin -OF coefficient of thermal expansion (a,)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*L4.3-4 72 m 0732270 O506323 257 m SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 35 Example 1 Calculate the mass flow rate and base volume flow rate of a natural gas having an ideal gas relative density (specific gravity) of 0.65 with 2.0% mole carbon dioxide and 5.0% mole nitrogen. The gas is flowing at 86F and a downstream pressure of 199.3 psia with an orifice differentialpressure of 20 inches of water column at 60°F. Base conditions are 60°F and 14.73 psia. In this example, the flowing pressure must be calculated according to Procedure 4.3.2.6A. Procedure4.3.3.1 can then be used to calculate the density of the fluid at flowing conditions and Procedure 4.3.3.2 can be used to calculate the density of the fluid at base conditions. 20 p f = 199.3 + - 27,707 200.022 psia Using A.G.A. Transmission Measurement Report No, 8 GCN [real relative density (spe- cific gravity), % carbon dioxide, and % nitrogen] composition characterization procedure: Zj = 0.973174 AGA-8 (1985) requires input in terms of real gas gravity rather than ideal gas gravity. It is necessary to iteratively solve for the real gas gravity at the AGA-8 base conditions of 60°F and 14.73 psia using the formula: Gr = c * zbair~zbgas i For the first iteration assume that Gr = Ci calculate the initial value of to This procedure must be repeated until the assumed and calcuIated values of Gr agree within 2 x lod. The value of to be used for this procedure is 0.999590. For this example the iteration history is as follows: Iter Gr zbenv O 0.65 0.997646 1 0.65 1267 0.997634 2 0.651275 0.997634 3 0.65 1275 0.997634 200.022 x 28.9625 x 0.65 Pt. - - 0.973174 x 10.7316 x (86 + 459.67) = 0.660758 lbmlft3 zb = 0.997634 14.73 x 28.9625 x 0.65 pb = 0.997634 x 10.7316 x (60 + 459;67) = 0.0498412 lbm/ft3 At flowing conditions, the orifice plate bore diameter and the meter tube internal diam- eter are calculated using Procedures 4.3.2.1B and 4.3.2.2B and the p ratio is calculated according to Procedure 4.3.2.3A. d = 2.00 x [ 1 + 9.25 x - ] (86 68) = 2.00033COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - - A P I MPMS*L4-3-4 9 2 W 0732290 0506324 193 W 36 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT D = 4.025 X [ 1 + 6.20 x (86 - 68) ] = 4.02545 2.00033 ß = 4.02545 = 0.496921 The velocity of approach factor is calculated according to Procedure 4.3.2.4. 1 = -J = 1.03195 The expansion factor is calculated according to Procedure 4.3.2.7A using the isentropic exponent value provided by Procedure 4.3.3.5. k = 1.30 20.0 x = 27.707 x 200.022 = 3.6088 x 0.41 -k 0.35 x 0.4969214 Yp = 1.30 = 0.331801 Y = 1 - 0.331801 x 3.6088 x iob3 = 0.998803 The iteration flow factor is calculated using Procedure 4.3.2.8with the absolute viscosity provided by Procedure 4.3.3.6. p = 0.010268cP 4000 x 6.23582x lop4x 4.02545 x 0.010268 FI, = 1.03195 x 2.000332x 0.998803 = 0.0249984 FrP = d 2 x 0 . 6 6 0 7 5 8 ~ 2 0 = 5.14104 0.0249984 - 6- 5.14104 = 4.86252 x lo-’ Procedure 4.3.2.5 is used to calculate the orifice plate coefficient of discharge correlation constants. L1 = Lz = - 1 .o 4.02545COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION M O N C E N T R I C , SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 37 = 0.248419 2 x 0.248419 Mz = 1 - 0.496921 = 0.987594 = 1.69652 x To = -0.0116 (0.987594 -0.52 x O.987594la3) 0.496921" = -2.55828 x T, = 0.0 c , = d, 0.5961 -k 0,0291 x 0.496921- 0.229 X 0.4969211- 1.69652 X w3-2.55828 X = 0.601573 cd, = 0.000511 x 0.496921°7 x 250°*7 = 0.0149410 cd, = 0.021 x 0.4969214 x 250°.35 = 8.84398 x cd3 = 0.0049 x 0.4969214.8x 4.75°8 x 250°.3J = 4.10213 x loy3 c4 = ( -0.23 x 1.69652 x I- 0.14 x 2.55828 x 0.496921°.8X 4.75"¿? = -6.36917 x i r 5 Using Procedure 4.3,2.9 to calculate tbe orifice plate coefficient of discharge results in the following iteration history: cd = 0.601573 X = 8.08301 x F, = 0.603738 0 = 9.49450~lo4 , scd = -0.00216159 cd = 0.603735 X = 8.05406 x loy3 F, = 0.603735 0 = 9.47757 x lo4 , scd = -o.~o() cd = 0.603735COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • _ - - A P I MPMS*L4-3-4 92 m 0732290 0506326 Tbb m 38 CHAPTER 14-NATURAL GASFLUIDS MEASUREMENT The mass flow rate can now be Calculated using Procedure 4.3.2.10. 3.14159 x 1.03195 x 2.000332 323.279.~ Fmoss = 4 = 1048.40 qm = 1048.40 x 0.998803 x 0.603735 x 5.14104 = 3250.16 lbm/hr The base (standard) volume flow rate is calculated using Procedure 4.3.2.12. 1048.40 x 0.998803 x 0.603735 x 5.14104 Qb = 0.0498412 = 65.2102 x lo3f?/hr Example 2 Calculate the mass flow rate and base volume flow rate of a natural gas having a real gas relative density (specific gravity) of 0.65 with 2.0% mole carbon dioxide and 5.0% mole nitrogen. The real gas relative density (specific gravity) was measured at 60°F and 14.73 psia. The gas is flowing at 86°F and an upstream pressure of 200.0 psia with an orifice differential pressure of 20 inches of water column at 60°F. Base conditions are 60°F and 14.73 psia. In this example, the flowing pressure must be calculated according to Procedure 4.3.2.6B. Procedure 4.3.3.3 can then be used to calculate the density of the fluid at flowing conditions, and Procedure 4.3.3.4 can be used to calculate the density of the fluid at base conditions. Pf z 200.0 Using the A.G.A. Transmission Measurement Report No. 8 compositional characteriza- tion procedure for air and the composition for air given by Jones", the air compressibility for air at gravity measurement conditions is: = 0.999590 Using the A.G.A. Transmission Measurement Report No. 8 GCN composition character- ization procedure, assuming that the ideal gas relative density (specific gravity), G j ,is the same as the real gas relative density (specific gravity), G,: Zmgos0.997646 = Using these values to calculate the ideal gas relative density: 0.65 x 0.997646 Gì = 0.999590 = 0.648736 Using A.G.A. Transmission Measurement Report No.8 GCN composition characteriza- tion procedure: . Zf = 0.973311 200.0 x 28,9625 x 0.648736 tp = 0.973311 x 10.7316 x (86 + 459.67) = 0.659307 l b d f ? I* Jones, Frank E., "The Air Density Equation and the Transfer of the Mass Unit," Journal of Research o the f National Bureau of Standards, Vol. 83, No. 5, 1978, pp. 419-428.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14-3=4 9 2 W 0732290 0506327 9T2 SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 39 Zb = 0.997646 14.73 x 28.9625 x 0.648736 pb = 0.997646 x 10.7316 x (60 + 459.67) = 0.0497437 I b d f ? At flowing conditions, the orifice pIate bore diameter and the meter tube internal diame- ter are calculated using procedures 4.3.2.1B and 4.3.2.2B and the ßratio is calculated using Procedure 4.3.2.3A. d = 2.00 x [ 1 + 9.25 X (86 - 68) ] = 2.00033 D = 4.025 x I]1 + 6.20 x (86 - 68) ] = 4.02545 2.00033 ß = 4.02545 = 0.496921 The velocity of approach factor is calculated according to Procedure 4.3.2.4. 1 = 1.03195 The expansion factor is calculated according to Procedure 4.3.2.7A using the isentropic exponent value provided by Procedure 4.3.3.5. k = 1.30 20.0 x = 27.707 x 200.0 = 3.60920 x iod3 0.41 f 0.35 x 0.496921 Yp = 1.30 = 0.331801 Y = 1 - 0.331801 x 3.60920 x = 0.998802 The iteration flow factor is calculated using Procedure 4.3.2.8 with the absolute viscosity provided by Procedure 4.3.3.6. p = 0.010268cP 4000 x 6.23582 x x 4.02545 x 0.010268 FIc = 1.03195 x 2.000332 x 0.998802 = 0.0249984COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 40 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT FIP = A2 x 0.659307 x 20 = 5.13540 0.0249984 FI = 5.13540 = 4.86786 x Procedure 4.3.2.5 is used to calculate the orifice plate coefficient of discharge correlation constants. LI = L, - - 1.o 4.02545 = 0.248419 2 x 0.248419 M = 2 1 - 0.496921 = 0.987594 0,1145~-6.0~0.248419 0.4969214 Tu = ( 0.0433 + 0.0712 -8.5~0.248419 - 1 - 0.4969214 = 1.69652 x 10" TO = -00116 ( 0.987594 - 0.52 x 0,987594.3) 0.496921" = -2.55828 x T = 0.0 S c 0 = 0.5961 0.0291 x 0.4969212- 0.229 X 0.4969218+1.69652 X w3- d 2.55828 X 10- = 0.601573 c , = d 0.000511 x 0.496921°7x 250°a7 = 0.0149410 C& = 0.021 x 0.4969214 x 250°.35 = 8.84398 x lou3 Cd, = 0.0049 x 0.4969214" x 4.75°.8x = 4.10213 X ¡O-3 c4= d ( -0.23 x 1.69652 x + 0.14 x 2.55828 x x ) 0.496921°*8 4.75" = -6.36917 x 10" Using Procedure 4.3.2.9 to calculate the orífice plate coefficient of discharge results in the following iteration history: Cd = 0.601573 X = 8.09189x lod3 F, = 0.603739COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14*3-4 9 2 W 0732290 0506329 775 SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 41 0, = 9.49968 x lo4 6cd = -0.00216258 cd = 0.603736 X = 8.06290 x F, = 0.603736 0, = 9.48274 x lo4 scd = -0.000~ cd = 0.603736 The mass flow rate can now be calculated using Procedure 4.3.2.10. 323.279 x 3.14159 x 1.03195 x 2.00033* F",O, = 4 = 1048.40 qm = 1048.40 x 0.998802 x 0.603736 x 5.13540 = 3246.59lbmíhr The base (standard) volume flow rate is calculated using Procedure 4.3.2.12. 1048.40 x 0.998802 x 0.603736 x 5.13540 Qb = 0.497437 = 65.2664 x lo3f?/hr 4.3.3.7.2 Metric Units Examples For the following two examples, a nominal 100 millimeter tube having a nominal 50 millimeter bore diameter is assumed. The geometric data for the meter is as follows: meter tube internal diameter 102.24 millimeters at 20°C orifice plate bore diameter 50.8 millimeters at 20°C meter tube material carbon steel pipe 11.16 x lo4 mím - O C coefficient of thermal expansion (q) orifice plate material austenitic stainless steel 16.65 x lod m/m -OC coefficient of thermal expansion (a,) Example 1 Calculate the mass flow rate and base volume flow rate of a natural gas having an ideal gas relative density (specific gravity) of 0.65 with 2.0% mole carbon dioxide and 5.0% mole nitrogen. The gas is flowing at 30°C and a downstream pressure of 13.74 bar with an orifice differential pressure of 49.8 millibar. Base conditions are 15°C and 1.01325 bar. In this example, the flowing pressure must be calculated according to Procedure 4.3.2.6A. Procedure 4.3.3.1 can then be used to calculate the density of the fluid at flowing conditions, and Procedure 4.3.3.2 can be used to calculate the density of the fluid at base conditions. 49.8 Pf = 13.74+- 1000.0 = 13.7898barCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 42 - -_____ A P I MPMS*LY-3-4 92 CHAPTER 14-NATURAL __ - __-.I_---- 0 7 3 2 2 9 0 0506330 LI97 GAS FLUIDS MEASUREMENT - AGA-8 (1985) requires input in terms of real gas gravity rather than ideal gas gravity. It is necessary to iteratively solve for the real gas gravity at the AGA-8 base conditions of 60°F and 14.73 psia using the formula: Gr= zbR;r/zbgns For the first iteration assume that G, = G j to calculate the initial value of Zbg,,. This procedure must be repeated until the assumed and calculated values of G, agree within 2 x lo4. The value of ZbRir be used for this procedure is 0.999590. For this example the to iteration history is as follows: Iter O 0.65 0.997635 1 0.65 1267 0.997634 2 0.651275 0.997634 3 0.651275 0.997634 Using A.G.A. Transmission Measurement Report No. 8 GCN composition characteriza- tion procedure: Zf = 0.973174 13.7898 x 28.9625 x 0.65 pr*p = 0.973174 x 0.0831451 x (30 + 273.15) = 10.5834 kg/m3 zb = 0.997624 1.01325 x 28.9625 x 0.65 pb = 0.997624 x 0.0831451 x (15 273.15) + = 0.798078 kg/m3 At flowing conditions, the orifice plate bore diameter and the meter tube internal diame- ter are calculated using procedures 4.3.2.1B and 4.3.2.2B and the diameter ratio, ß, is calculated using procedure 4.3.2.3A. d = 50.8 x [ 1 + 16.65 x (30 - 15) ] = 50.8085 D = 102.24 X [1 + 1 1 . 1 6 ~ (30- 15)] = 102.251 50.8085 ß = 1221 0.5 = 0.496900 The velocity of approach factor is calculated according to Procedure 4.3,2.4. 1 -J = 1.03195COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I f l P M S * 3 4 - 3 - 4 92 0732290 O506333 3 2 3 SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 43 The expansion factor is calculated according to Procedure 4.3.2.7A using the isentropic exponent value provided by Procedure 4.3.3.5. k = 1.30 49.8 x = 1000.0 x 13.7898 = 3.61136 x loL3 yp= 0.41 + 0.35 x 0.4969004 1.30 = 0.331798 Y = 1- 0.331798 x 3.61136 x lod3 = 0.998802 The iteration flow factor is calculated using Procedure 4.3.2.8 with the absolute viscosity provided by Procedure 4.3.3.6. /= i 0.010268cP 4000 x 0.10000 x 102.251 x 0.010268 F;, = 1.03195 x 50.80852x 0.998802 = 0.157835 = 2/2 x 10.5834 x 49.8 = 32.4671 0.157835 FI = 32.4671 = 4.86138 x Procedure 4.3.2.5 is used 0 alculate the orifice pl^; coefficient of discharge correlation constants. - - 25.4 - 102.251 = 0.248408 2 x 0.248408 M2 = 1 - 0.496900 = 0.987509 T = -0.0116 ( 0.987509 - 0.52 x 0.9875091.3) 0.4969001. O = -2.55802 xCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT T, = 0.0 Cdo = 0.5961 + 0.0291 x 0.4969002- 0.229 x 0.496900’+ 1.69615 x 2.55802 x 10” O’ = 0.601572 Cd, = 0.000511 x 0.496900°‘7x = 0.0149406 Cdz = 0.021 x 0.4969004x = 8.84248 x Cd3 = 0.0049 x 0.4969004” x 4.75’“ x 250°.35 = 4.10130 x c4= d ( -0.23 x 1.69652 x + 0.14 x .2.55828 x 0.496921O” x 4.75”’ = -6.35927 x lo-’ Using Procedure 4.3.2.9 to calculate the orifice plate coefficient of discharge results in the following iteration history: C = 0.601572 , X = 8.08113 x F, = 0.603737 0 = 9.49231 x lo4 , 6cd = -0.00216159 Cd = 0.603734 X = 8.05219 x 10” F, = 0.603733 0 = 9.47539 x lo4 , s, c = 0.00000 Cd = 0.603733 The mass flow rate can now be calculated using Procedure 4.3.2.1 O. . - 0.003600 x 3.14159 x 50.80852 mass - 4 = 75.3223 qm = 75.3223 x 0.998802 x 0.603733 x 32.4671 = 1474.66kgíhr 1 The base (standard) volume flow rate is calculated using Procedure 4.3.2.12. 1 75.3223 x 0.998802 x 0.603733 x 32.4671 Qb = 0.798078 = 1847.76 x m3/hr ad WCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14-3-4 92 = 0732290 0506333 LTb SECTION -CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 45 Example 2 Calculate the mass flow rate and base volume flow rate of a natural gas having a real gas relative density (specific gravity) of 0.65 with 2.0% mole carbon dioxide and 5.0% mole nitrogen. The real gas relative density (specific gravity) was measured at 15°C and 1.01325 bar. The gas is flowing at 30°C and an upstream pressure of 13.79 bar with an orifice dif- ferential pressure of 49.8 millibar. Base conditions are 15°C and 1.01325 bar. In this example, the flowing pressure must be calculated according to Procedure 4.3.2.6B. Procedure 4.3.3.1 can then be used to calculate the density of the fluid at flowing conditions and Procedure 4.3.3.2 can be used to calculate the density of the fluid at base conditions. p f = 13.79 bar Using the compositional characterization procedure for air from A.G.A. Transmission Measurement Report No. 8 and the composition for air given by Jones (see footnote 12), the compressibility for air at gravity measurement conditions is: = Z,,zair 0.999586 (SI basis) and 0.999590 (AGA-8 basis) AGA-8 (1985) requires input in terms of real gas gravity at 60°F and 14.73 psia rather than the specified base conditions of 15°C and 101.325 kPa. It is necessary to iteratively solve for the real gas gravity at the AGA-8 base conditions using the formula: = GrAcAm, GrSI/@ba, zbgas)SL (zba;r/zbgas)AGA-8 = For the first iteration assume that GrAGA-, GrSI calculate the initial value of zbgos to at both sets of base conditions. The compressibility factor for air, zba;,, at the AGA-8 condi- tions is 0.999590 and at SI base conditions is 0.999586. The procedure must be repeated until the assumed and calculated values ofGr agree within 2 x lo-. The value OfZbairto be used for this procedure is 0.999590. For this example the iteration history is as follows: AGA-8 Basis SI Basis Iter Gr bPos zbpa.r O 0.65 0.997646 0.997635 1 0.649996 0.997646 0.997635 2 0.649996 0.997646 0.997635 Using the A.G.A.Transmission MeasurementReport No. 8 GCN compositioncharacter- ization procedure, assuming that the ideal gas relative density (specific gravity), Gi,is the same as the real gas relative density (specific gravity), G, : = 0.997635 (SI basis) and 0.997646 (AGA-8 basis) ZmgaS Using these values to calculate the ideal gas relative density (specific gravity): 0.65 x 0.997635 Gi = 0.999586 = 0.648731 Using A.G.A.Transmission MeasurementReport - .J. 8 GCN composition characteriza- tion procedure: z f = 0.973312 13.79 x 28.9625 x 0.648731 pt,p = 0.973312 x 0.0831451 x (30 + 273.15)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 46 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT = 10.5614 k g h 3 Zb = 0.997635 1.01325 x 28.9625 x 0.648731 pb = 0.997635 x 0.0831451 x (15 + 273.15) = 0.796511 kg/m3 At flowing conditions, the orifice plate bore diameter and the meter tube internal diameter are calculated using procedures 4.3.2.1B and 4.3.2.2B and the p ratio is calculated using Procedure 4.3.2.3A. d = 50.8 x [ 1 + 16.65 x (30 - 15) ] = 50.8085 D = 102.24 x [ 1+ 11.16 x (30 - 15) ] = 102.251 50.8085 ß = 1221 0.5 = 0.496900 The velocity of approach factor is calculated using Procedure 4.3.2.4. 1 E, = J1-orl.969004 = 1.03195 The expansion factor is calculated according to Procedure 4.3.2.7A using the isentropic exponent value provided by Procedure 4.3.3.5. k = 1.30 49.8 x = 1000.0 x 13.79 = 3.61131 x 0.41 + 0.35 x O.4969OO4 yp= 1.30 = 0.331798 Y = 1 - 0.301635 x 3.61131 x = 0.998802 The iteration flow factor is calculated using Procedure 4.3.2.8. The absolute viscosity is calculated using Procedure 4.3.3.6. ,= li 0.010268cP 4000 x 0.1ooOO x 102.251 x 0.010268 FI, = 1.O3195 x 50.8085 x 0.998802COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I f l P M S * 1 4 = 3 - 4 92 m 0732290 0506335 T79 = SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS,PART 4-BACKGROUND 47 = 0.157835 FIp = A2 x 10.5614 x 49.8 = 32.4333 0.157835 FI = 32.4333 = 4.86645 x Procedure 4.3.2.5 is used to calculate the orifice plate coefficient of discharge correlation constants. - - - 25.4 102,251 = 0.248408 2 x 0.248408 M = Z 1- 0.496900 = 0.987509 ( 0.0433 + 0,0712 e-8.5 X 0.248408 - 0.1145 e-6.0 x 0.248408 0*4969004 T, = ) 1- O.4969OO4 = 1.69615 x T = -0.01 16 ( 0.987509 - 0.52 x 0.9875091.3 ) 0.496900 O = -2.55802 x T, = 0.0 cdo = 0.5961 -k 0.0291 X 0.496900’- 0.229 X 0.4969008+ 1.69615 X m3- 2.55802 X 10” = 0.601572 Cdi= 0.0005 11X 0.496900°’7 x 250°’7 = 0.0149406 cd, = 0.021 x 0.4969004x 250°.35 = 8.84248 x cd, = 0.0049 x 0.4969004‘8 4.75°‘8 x x = 4.10130 x cd, = (-0.23 x 1.69615 x + 0.14 X 2.55802 X 0.496900°‘8 x4.75°’8l = -6.35927 x lo9 Using Procedure 4.3.2.9 to calculate the orifice plate coefficient of discharge results in the following iteration history: cd = 0.601572 X = 8.08956 x F, = 0.603738COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 48 CHAPTER . -NATURAL AS FLUIC MEASUREMENT 0, = 9.49723 x 10" S , = -0.00216259 C C = 0.603735 , X = 8.06057 x F, = 0.603734 0, = 9.48029 x lo4 s, c = 0.0000 C = 0.603734 , The mass flow rate can now be calculated using Procedure 4.3.2.10. 0.003600 x 3.14159 x 50.80852 Fm, = 4 = 75.3223 4m - 75.3223 x 0.998802 x 0.603734 x 32.4333 = 1473.13 k g k The base (standard) volume flow rate is calculated using Procedure 4.3.2.12. 75.3223 x 0.998802 x 0.603734 x 32.4333 Qsb = 0.7965 11 = 1849.47 x m3/hr 4.3.4 EXAMPLE CALCULATIONS This section provides sample test cases that can be used to verify computer logic devel- oped to represent the implementation procedure. The final computed flow rates obtained from a computerized solution must agree with the final solutions in these example cases to within 50 parts per million. The values for all key parameters as well as the values for the intermediate terms are provided so the cause of deviations in final results outside the acceptable tolerance can be resolved. A possible source of difference between two indepen- dent calculations may be input precision. A set of acceptable input precision levels is presented in Table 4-B-1 of Appendix 4-B. If computed rates continue to differ by more than 50 parts per million, check the deviation of the following intermediate values: a. Orifice diameter (d) should be within 25 ppm. b. Velocity of approach factor (E,) should be within 50 ppm. c. Expansion factor (Y) should be within 50 ppm. d. Orifice coefficient (C,) should be within 50 ppm. e. Flowing densiiy ( P ~ ,should be within 100 ppm. ~) The values for constants given in Table 4-5 must be used to the precision stated. The input values for the six examples are given in Table 4-6. 4.3.4.1 Example Test Case Number 1 Calculate the mass and volumetric flow rate for a liquid hydrocarbon stream fiowing through a mild carbon steel two inch schedule 80 pipe with a 316 SS plate (see Table 4-4). Assume the reference diameters were measured at standard conditions. Output for example test case number 1 is shown in Table 4-7. The input physical parameters and flowing con- ditions are noted with an asterisk (*). See Table 4-5 for the US, IF, metric, and SI units.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 49 Table 4-ô-Input Parameters for Six Example Test Cases (US, iP, Metric, and Si Units) US Units ExampleTest T/ 9 Pf4J P k p6 q n "2 dm ai APinches of Case No. "F mia lb/ft3 CP lb/ft3 in in/in-"F in in/in-"F H?O at 60°F 1 210.00 14.696 58.792 2.8250E-01 -1.0 62.366 1.93945 0.00000620 1.45311 O.OoooO925 110.1736 2 0.00 14.696 58.199 1.8650E+03 -1.0 56.861 7.98146 0.00000620 1.59374 O.oooO0925 8.9938 3 0.00 200.00 2.0466 1.3520E-02 1.3198 0.116198 4.02638 0.00000620 2.66406 O.OoooO925 56.21 10 4 0.00 200.00 2.0466 1.3520E-02 1.3198 0.116198 1.93945 O.OoooO620 0.19531 0.00000925 2.2484 5 0.00 200.00 2.0466 1.3520E-02 1.3198 0.116198 1.93945 O.OoooO620 0.19531 0.00000925 440.6943 6 0.00 14.696 58.199 1.8650E+03 -1.0 56.861 7.98146 0.0oooO620 0.79689 0.00000925 2.2484 iP Units G p l e Test-- T/ k a, Case No. OF 9 psia % :i P lbdft-s P6 lb/ft3 "2 ftlft -OF d1 l1 ft ft/ft-"F APinches of H,O at 60°F ~ ~ 1 210.00 14.696 58.792 1.8983E-04 -1.0 62.366 0.1616208 O.OoooO620 O. 1210925 0.00000925 110.1736 2 0.00 14.696 58.199 í.2532 -1.0 56.861 0.6651217 0.0oooO620 O. 1328117 O.oooO0925 8.9938 3 0.00 200.00 2.0466 9.0850E-06 1.3198 0.116198 0.3355317 O.OoooO620 0.2220050 0.00000925 56.21 10 4 0.00 200.00 2.0466 9.0850E-06 1.3198 0.116198 0.1616208 0.00000620 0.0162758 0.00000925 2.2484 5 0.00 200.00 2.0466 9.0850E-06 1.3198 0.116198 0.1616208 0.00000620 0.0162758 O.OoooO925 440.6943 6 0.00 14.696 58.199 1.2532 -1.0 56.861 0.6651217 0.00000620 0.0664075 0.00000925 2.2484 Metric Units Example Test 7 Pr Pt,p P k P6 Dni "2 d,, "i AP Case No. "C bar kg/m3 CP kg/m3 mm mm/mm°C mm mm/m-"C millibar 1 98.89 1.01325 941.75 2.8250E-01 -1.0 999.01 49.262 O.oooO112 36.909 O.ooOo167 274.159 2 -17.78 1.01325 932.26 1.8650E+03 -1.0 910.83 202.729 0.0000112 40.481 0.0000167 22.380 3 -17.78 13.7895 32.783 1.3520E-02 1.3198 1.86131 102.270 O.oooO112 67.667 O.oooO167 139.877 4 -17.78 13.7895 32.783 1.3520E-02 1.3198 1.86131 49.262 O.ooOo112 4.961 O.oooO167 5.595 5 -17.78 13.7895 32.783 1.3520E-02 1.3198 1.86131 49.262 O.oooO112 4.961 0.0000167 1096.635 6 -17.78 1.01325 932.26 1.8650E+03 -1.0 910.83 202.729 0.0000112 20.241 O.ooOo167 5.595 SI Units ExampleTest T/ 9 PCP P k P6 Dn r a2 4 1 "i AP Case No. "K Pa kdm Pa-s kdm3 m m/m-K m m/m-K Pa 1 372.04 1.01325E+05 941.75 2.82503-04 -1.0 999.01 0.049262 O.ooOo112 0.036909 O.oooO167 27415.9 2 255.37 1.01325E+05 932.26 1.8650 -1.0 910.83 0.202729 O.oooO112 0.040481 0.0000167 2238.0 3 255.37 1.37895E+06 32.783 1.3520E-05 1.3198 1.86131 0.102270 O.oooO112 0.067667 O.oooO167 13987.7 4 255.37 lt37895E+06 32.783 1.3520E-05 1.3198 1.86131 0.049262 0.0000112 0.004961 O.ooOo167 559.5 5 255.37 1.37895E+06 32.783 1.3520E-05 1.3198 1.86131 0.049262 0.0000112 0.004961 O.oooO167 109663.5 6 255.37 1.01325E+05 932.26 1.8650 -1.0 910.83 0.202729 O.oooO112 0.020241 O.oooO167 559.5 Note: For all cases, the reference diameters (& and DnJ are assumed to be at standard conditions. A value of -1 .O for the isentropic exponent (k) indicates that the fluid is incompressible.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3.4 92 W 0732290 050b338 7 8 8 W 50 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 4.3.4.1 Example Test Case Number 2 Calculate the mass and volumetric flow rate for a liquid hydrocarbon stream flowing through a mild carbon steel eight inch schedule40 pipe with a 316 SS plate (see Table 4-4). Assume the reference diameters were measured at standard conditions. Output for example test case number 2 is shown in Table 4-8. The input physical parameters and flowing conditions are noted with an asterisk (*). See Table 4-5 for the US, IP, metric, and SI units, 4.3.4.1 Example Test Case Number 3 Calculate the mass and volumetric flow rate for a gas hydrocarbon stream flowing 8 through a mild carbon steel four inch schedule 40 pipe with a 316 SS plate (see Table 4-4). Assume the reference diameters were measured at standard conditions. Output for example test case number 3 is shown in Table 4-9. The input physical parameters and flowing conditions are noted with an asterisk (*). See Table 4-5 for the US, IP, metric, and SI units, 4.3.4.1 Example Test Case Number 4 Calculate the mass and volumetric flow rate for a gas hydrocarbon stream flowing through a mild carbon steel two inch schedule 80 pipe with a 316 SS plate (see Table 4-4). Assume the reference diameters were measured at standard conditions. Output for example test case number 4 is shown in Table 4-10. The input physical parameters and flowing conditions are noted with an asterisk (*). See Table 4-5 for the US, IP, metric, and SI units. 4.3.4.1 Example Test Case Number 5 This example calculation is the same as example 4 but with a much higher differential pressure. Output for example test case number 5 is shown in Table 4-11. 4.3.4.1 Example Test Case Number 6 This example calculation is the same as example 2 but with a lower differential pressure and a smaller orifice diameter, causing the iteration flow factor to exceed the 1000 maxi- mum limit. Output for example test case number 6 is shown in Table 4-12.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION %CONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART &BACKGROUND 51 Table 4-7-Intermediate Output for Example Test Case No. 1 Symbol us Units IP units Metric Units SI Units Calculate temperaturecorrected diameters *Measured pipe diameter 1.939450E+00 1.616208E-01 4.9262OOE+O1 4.926200E-02 *Coefficient of thermal expansion 6.200000E-06 6.200000E-06 1.116000E-05 1.116OOOE-05 *Pipe diameter measurement temperature 6.8ooOoOE+01 6.800000E+01 2.000000E+01 2.931500E+02 *Flowing fluid 2.100000E+02 2.100000E+02 9.889000E+O1 3.720400E+02 Pipe diameter 1.941157E+00 1.617631E-01 4.930537E+01 4.930537E-02 *Measured orifice diameter 1.453110E+00 1.210925E-01 3.690900E+01 3.690900E-02 *Pipe coefficient of thermal expansion 9.250000E-06 9.25oooOE-06 1.665000E-05 1.665000E-05 *Orifice diameter measurement temperature 6.800000E+01 6.800000E+01 2.000000E+01 2.9315OOE+02 Orifice diameter 1.455019E+00 1.212516E-01 3.695748E+01 3.695748E-02 Calculate diameter ratio (ß) Orifice diameter 1.455019E+OO 1.212516E-01 3.695748E+Ol 3.695748E-02 Pipe diameter 1.941157E+00 1.617631E-01 4.930537E+01 4.930537E-02 Diameter ratio, p 7.495624E-01 7.495626E-01 7.495630E-01 7.495630E-01 Calculate cd correlation constants Upstream tap position 5.151566E-01 5.151565E-01 5.15 1569-1 5.15 1 5 6 9 H 1 Downstream tap position 5.151566E-01 5.151565E-01 5.151569E-01 5.15 1569E-01 Dam height 4.1 14051E+OO 4.114053E+ûO 4.1 14063E+00 4.114063E+OO Upstream tap term 1.798428E-02 1.79843OE-02 1.798436E-02 1.798436E-02 Downstream tap term -7.13OO30E-03 -7.130031E-03 -7.130033E-03 -7.130033E-03 Small pipe diameter correction term 6.452594E-04 6.452587E-04 6.452587E-04 6.452587E-04 Pipe diameter 1.941157E+00 1.617631E-01 4.930537E+OI 4.930537E-02 Diameter ratio, p 7.495624E-01 7.495626E-01 7.495630E-01 7.495630E-01 Conversion factor 1.000000E+00 8.333330E-02 2.54oooOE+01 2.54oooOE-02 Correlation constant 1 6.011301E-01 6.011301E-01 6.011301E-01 6.011301E-01 Correlationconstant 2 1.99225OE-02 1.992250E-02 1.99225 1E-02 1.992251E-02 Correlation constant 3 4.578563E-02 4.578567E-02 4.578578E-02 4.578578E-02 Correlation constant 4 2.950576E-02 2.950579E-02 2.950587E-02 2.950587E-02 Correlation constant 5 -8.667194E-03 -8.667208E-03 -8.667252E-03 -8.667252E-03 Calculate velocity of approach factor Diameter ratio, ß 7.495624E-01 7.495626E-01 7.495630E-01 7.495630E-01 ß squared 5.6 18438E-01 5.618440E-01 5.618447E-01 5.618447501 ß raised to fourth power 3.156684E-01 3.156687E-01 3.156694E-01 3.156694E-01 Velocity of approach factor 1.208834E+OO 1.208834E+00 1.208835E+3+00 1.208835E+CKl Calculate fluid expansion factor *Compressiblefluid switch (1 = yes) O O O O Units conversionfactor 2.770709E+01 2.770700E+01 1.000000E+03 1.000000E+00 Diameter ratio, ß 7.495624E-01 7.495626501 7.495630E-01 7.495630E-01 *Isentropic exponent -1.000000E+00 -1.000000E+00 -1.000000E+OO -1.000000E+00 *Differential pressure 1.101736E+02 1.101736E+02 2.741590E+02 2.741590E+04 *Flowing pressure 1.4696OOE+01 1.4696OOE+Ol l.O1325OE+OO 1.013250E+05 Expansion factor 1.000000E+00 1.OOOO00E+00 1.000000E+OO l.OCKKIOOE+OO Calculate iteration flow factor Unit conversion constant 6.235820Eo4 7.733270E-02 1.000000E-01 1.000000E+00 Pipe diameter 1.941157E+OO 1.617631E-01 4.930537E+Ol 4.930537E-02 Orifice diameter 1.455019E+00 1.212516E-01 3.695748E+O 1 3.695748E-02 Velocity of approach factor 1.208834E+oO 1.208834E+00 1.208835Em 1.208835E+00 Huid expansion factor 1.000000E+00 1.000000Em 1.000000E+00 1.000000E+00 *Fluid viscosity 2.825000E-01 1.8983ûOl%O4 2.825OOOE-O1 2.825000E-04 *Huid density 5.8792OOE+Ol 5.879200E+Ol 9.4175OOE+02 9.417500E+02 Differentialpressure 1.101736E+02 1.101736E+02 2.741590E+02 2.741590E+04 AP independent part of 4 5.344769E-01 5.344733E-01 3.374434E+00 3.374434E+Ol AP dependent part of 4 1.138185E+02 1.138185E+02 7.185948E+02 7.185948E+03 Maximum value of i$ 1.000000E+03 1.OCKKIOOE+03 1.000000E+03 l.OOOOOOE+03 Iteration flow factor 4.695870E-03 4.695838E-03 4.695879E-03 4.695879E-03 Calculate the orifice coefficient Iteration flow factor 4.695870E-03 4.695838E-03 4.695879E-03 4.695879E-03 Correlation constant 1 6.011301E-01 6.011301E-01 6.011301E-01 6.011301E-01 Correlationconstant 2 1.992250E-02 1.99225OEXQ 1.992251E-02 1.992251E-02 Correlation constant 3 4.578563E-02 4.578567E-02 4.5785780-02 4.578578E-02COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • ____ I - - - __ __ _ _ ___ A P I M P M S * L 4 - 3 * 4 7 2 W 0732270 0506340 336 W 52 CHAPTER NATUF TU FI AL GAS FLUIDS MEASUREMENT Table 4-7-Intermediate Output for Example Test Case No. 1 (continued) Symbol US Units IP Units Metric Units SI Units Correlation constant 4 cd3 2.950576E-02 2.950579E-02 2.950587E-02 2.950587E-02 Correlation constant 5 cd4 -8.667 194E-03 -8.667208E-03 -8.667252503 -8.667252E-03 Initial orifice coefficient c d 6.011301E-01 6.01 1301E-01 6.011301E-01 6.011301E-01 Convergence flag (counter) ICD O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 7.81 1737E-03 7.811684E-03 7.811751E-03 7.811751E-03 Term raised to power of .35 ~0.35 1.830045E-01 1.83OO40E-01 1.830O46E-01 1.83OO46E-01 Term raised to power of -80 xO.80 2.061570E-02 2.061559E-02 2.061573E-02 2.06 1573E-02 Calculated orifice coefficient FC 6.101089E-01 6.101089E-01 6.101089E-01 6.101089E-01 Derivative of orifice coefficient resid D C 3.384765E-03 3.384758E-03 3.384777E-03 3.384777E-03 Change in C, for an iteration sc, -8.928556E-03 -8.928540E-03 -8.928588E-03 -8.928588E-03 Calculated orifice coefficient c d 6.100587E-01 6.100586E-01 6.100586E-01 6.100586E-01 Convergence flag (counter) ICD 1 1 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 7.697407E-03 7.697356E-03 7.697422E-03 7.697422E-03 Term raised to power of .35 ~0.35 1.820625E-01 1.820621E-01 1.820626E-01 1.820626E-01 Term raised to power of -80 xo.80 2.037397E-02 2.037386E-02 2.037400E-02 2.037400E-02 Calculated orifice coefficient Fc 6.100592EcOl 6.100591E-01 6.1OO592E-O1 6.100592E-01 Derivative of orifice coefficient resid D C 3.364399E-03 3.364392E-03 3.364410E-03 3.364410E-03 Change in c for an iteration d SC, -5.171605E-07 -5.171575E-07 -5.171659E-07 -5.171659E-07 Calculated orifice coefficient 6.1OO592E-01 6.10059 1E-01 6.1OO592E-01 6.100592E-01 Convergence flag (counter) ICD 2 2 2 2 Calculate the mass flow rate Unit conversion constant NI 3.232790E+02 4.655210E+04 3.6OOOOOE-02 l.OOOOOOE+OO Entrance flow factor E 1.208834E+OO 1.208834E+00 1.208835E+00 1.208835E+OO Orifice diameter d 1.455019E+OO 1.2125 16FA1 3.695748E+01 3.695748E-02 Fluid expansion factor Y 1.000000E+00 1.OOOOOOE+OO l.OOOOOOE+OO 1.OOOOOOE+OO Fluid density Pl,P 5.879200E+O1 5.879200EtOl 9.417500E+02 9.417500E+02 Differential pressure AP 1.101736E+02 1.101736E+02 2.741590E+02 2.741590E+04 Converged orifice coefficient c d 6.100592E-01 6.100591E-01 6.100592E-01 6.100592E-01 Intermediate mass flow factor FI,,, 6.497867E+02 6.497858E+02 4.668354E+01 1.296765E-03 Universal constant, n E 3.141590E+OO 3.141590E+00 3.141590E+00 3.141590E+00 Mass flow rate Q", 4.51 1861E+3+04 4.5 11854E+3+O4 2.046538E+04 5.684827E+OO Calculate the volumetric flow rate Unit conversion constant NI 3.232790E+02 4.655210E+04 3.600000E-02 1.000000E+00 Entrance flow factor E 1.208834E+00 1.208834E+Oo 1.208835E+00 1.208835E+00 Orifice diameter d 1.455019E+OO 1.212516E-01 3.695748E+O1 3.695748E-02 Fluid expansion factor Y 1.000000E+00 1.OOOOOOE+00 l.OOOOOOE+OO 1.000000E+00 Fluid density P1.P 5.879200E+01 5.879200E+O1 9.417500E+02 9.4175OOE+02 Differential pressure AP 1.101736E+02 1.101736E+02 2.741590E+02 2.741590E+04 Converged orifice coefficient cd 6.100592E-01 6.100591E-01 6.1OO592E-01 6.100592E-01 *Fluid density at base conditions Pb 6.2366OOE+Ol 6.236600E+01 9.990100E+02 9.9901 OOE+02 Intermediate mass flow factor FI,,,, 6.497861E+02 6.497858E+02 4.668354E+Ol 1.296765E-03 Universal constant, n n 3.141590E+00 3.14159OE+OO 3.141590E+00 3.141590E+00 Volumetric flow rate Q" 7.234488E+02 7.234477E+02 2.048566E+Ol 5.690461E-03COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14-3-4 92 m 0732290 0506343 272 m SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 53 Table 4-8-Intermediate Output for Example Test Case No. 2 Symbol us units IP Units Metric Units SI Units Calculate temperature corrected diameters *Measured pipe diameter 7.981460E+00 6.651217E-01 2.027290E+02 2.027290E-0 1 "Coefficient of thermal expansion 6.200000E-06 6.200000E-06 1,116000E-05 1.116OOOE-O5 *Pipe diameter measurement temperature 6.800000E+01 6.800000E+01 2.000000E+01 2.93 1500E+02 *Flowing fluid 0.000000E+00 0.000000E+00 -1.778CKKlE+01 2.553700E+02 Pipe diameter 7.978095E+00 6.648413E-01 2.026435E+02 2.026435E-01 *Measured orifice diameter 1.59374OE+00 1.328117E-01 4.048100E+01 4.048 100E-02 *Pipe coefficient of thermal expansion 9.250000E-06 9.25oooOE-06 1.665000E-05 1.665000E-05 *Orifice diameter measurement temperature 6.800000E+01 6.800000E+Ol 2.000000E+01 2.9315OOE+O2 Orifice diameter 1.592738E+00 1.327282E-01 4.045554E+Ol 4.045554E-02 Calculate diameter ratio (P, Orifice diameter 1.592738E+OO 1.327282E-01 4.045554E+OI 4.045554E-02 Pipe diameter 7.978095E+00 6.648413E-01 2.026435E+02 2.026435E-01 Diameter ratio, ß 1.996388E-01 1.996389E-01 1.996389E-01 1.99638950 1 Calculate cd correlation constants Upstream tap position 1.253432E-O1 1.253431E-01 1.253433E-01 1.253433E-0 1 Downstream tap position 1.253432E-01 1.253431E-01 1.253433E-01 1.253433E-o1 Dam height 3.132166E-01 3.132165E-01 3.132168E-01 3.132168E-01 Upstream tap term 2.205076E-05 2.205076E-05 2.205081E-05 2.205081E-05 Downstreamtap term -3.907720E-04 -3.907719E-04 -3.907724E-W -3.907724E-04 Small pipe diameter correction term 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 pipe diameter 7.978095E+OO 6.648413E-01 2.026435E+02 2.026435E-01 Diameter ratio, ß 1.996388E-01 1.996389E-01 1.996389E-01 1.996389E-01 Conversion factor 1.000000E+00 8.333330E-02 2.54oooOE+O1 2.54oooOE-02 Correlation constant 1 5.968905E-01 5.968905E-01 5.968905E-01 5.968905E-01 Correlation constant 2 7.891325E-03 7.89 1326E-03 7.891328E-03 7.89 1328E-03 Correlation constant 3 2.303977E-04 2.303979E-04 2.303981E-04 2.303981E-04 Correlation constant 4 5.152351E-05 5.152356E-05 5.152364E-05 5.152364E-05 Correlation constant 5 4.757 194E-05 4.757194E-05 4.757200E-05 4.757200E-05 Calculate velocity of approach factor Diameter ratio, ß 1.996388E-01 1.996389E-01 1.996389E-01 1.996389E-01 ß squared 3.985566E-02 3.985568E-02 3.985570E-02 3.985570E-02 fl raised to fourth power 1.588474E-O3 1.588475E-03 1.588477E-03 1.588477E-03 Velocity of approach factor 1.000795E+00 1.000795E+00 1.000795E+00 1.000795E+00 Calculate fluid expansion factor *Compressible fluid switch (I = yes) O O O O Units conversion factor 2.7707OOE+O1 2.770700E+01 1.000000E+03 1.000000E+00 Diameter ratio, p 1.996388E-01 1.996389E-01 1.996389E-01 1.996389E-01 *Isentropicexponent -1.000000E+00 -1.000000E+00 -1.000000E+00 -1.000000E+ûO *Differential pressure 8.993800E+00 8.993800E+00 2.238000E+01 2.238000E+03 *Flowing pressure 1.469600E+Ol 1.469600E+Ol 1.013250E+00 l.O1325OE+05 Expansion factor 1.000000E+00 1.000000E+00 1.000OOOE+00 1.000000E+00 Calculate iteration flow factor Unit conversion constant 6.235820E-04 7.733270E-02 1.000000E-01 1.000000E+00 Pipe diameter 7.978095E+00 6.648413E-01 2.026435E+02 2.026435E-01 Orifice diameter 1.592738E+OO 1.327282E-01 4.045554E+Ol 4.045554E-02 Velocity of approach factor 1.000795E+00 l.O00795E+00 1.000795E-1.00 1.000795E+00 Fluid expansion factor 1.000000E-FOO 1.000000E+00 1.000000E+Oo 1.000000E+00 *Fluid viscosity 1.865000E+03 1.253200E+OO 1.865ooOE+O3 1.865OOOE+00 *Fluid density 5.819900E+Ol 5.819900E+Ol 9.322600E+02 9.322600E+02 Differential pressure 8.993800E+Oo 8.993 800E+00 2.238000E+01 2.238000E+03 AP independent part of F, 1.461834E+O4 1.461807E+04 9.229335E+04 9.229335E+05 AP dependent part of F, 3.235522E+01 3.235522E+Ol 2.042742E+02 2.042742E+03 Maximum value of F, LOOOOOOE+03 l.OOOOOOE+03 l.OOOOOOE+03 1.000000E+03 Iteration flow factor 4.518077E+02 4.517996E+02 4.5 18111E+02 4.518111E+02 Calculate the orifice coefficient Iteration flow factor 4.518077E+02 4.517996E+û2 4.5 18111E+02 4.5 181llE+02 Correlation constant 1 5.968905E-01 5.968905E-01 5.968905E-01 5.968905E-01 Correlation constant 2 7.891325E-03 7.891326E-03 7.891328E-03 7.891328E-03 Correlation constant 3 2.303977E-04 2.303979E-04 2.303981E-04 2.303981E-04COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 54 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-8-Intermediate Output for Example Test Case No. 2 (continued) Symbol US Units IP Units Metric Units SI Units Correlation constant 4 Cd3 5.152351E-05 5.152356E-05 5.152364E-05 5.152364E-05 Correlation constant 5 C4 d 4.757194E-05 4.757 194E-05 4.757200E-05 4.757200E-05 Initial orifice Coefficient cd 5.968905E-01 5.968905E-01 5.968905E-O 1 5.968905E-0 1 Convergence flag (counter) ICD O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 7.569356E+02 7.569220E+02 7.569413E+02 7.5694 13E+02 Term raised to power of .35 ~0.35 1.O 178l9E+01 1.017813E+01 1.017822E+OI l.OI7822E+Ol Term raised to power of .80 x.0 o8 2.0 10236E+02 2.010208E+02 2.0 10249E+02 2.010249E+02 Calculated orifice coefficient F, 1.469896E+00 1.469885E+OO 1.469901E+00 1.469901E+00 Derivative of orifice coefficient resid D E 6.159067E-01 6.158990E-0 1 6.159103E-01 6,159103E-01 Change in Cd for an iteration SC, -4.296585E-01 4.296559E-01 4.296597E-01 -4.296597E-01 Calculated orifice coefficient Cd l.O26549E+00 l.O26546E+0 1.026550E+OO 1.026550E+00 Convergence flag (counter) ICD 1 1 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 4,401228E+02 4.401 16IEi02 4.401256E+02 4.401256E+02 Term raised to power of .35 ~0.35 8.418813E+00 8.418768B+m 8.418832E+OO 8.418832E+00 Term raised to power of -80 xO.80 1.302744E+02 1.302728E+02 1.30275 1E+02 1.302751E+02 Calculated orifice coefficient F, 1.192493E+00 1.192486Ed 1.192496E+00 1,192496E+00 Derivative of orifice coefficient resid Dc 4. I98 112E-01 4.198067E-01 4. I98 133E-01 4.198133E-01 Change in C for an iteration d SCd -1.177779E-01 -1.177755E-01 -1.177790E-01 -1.177790E-01 Calculated orifice coefficient c d 1.144327E+00 1.144322E+00 1.144329E+OO I. 144329E+00 Convergence flag (counter) ICD 2 2 2 2 Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 3.948239E+02 3.948186E+02 3.948261E+02 3.948261E+02 Term raised to power of .35 ~0.35 8.104780E+00 8.10474 1E+00 8.104795E+00 8.104795E+00 Term raised to power of .80 xO.80 1.194326E+O2 1.194313E+02 1.194331E+02 1.194331E+02 Calculated orifice coefficient F, 1.148601E+00 1.148596E+00 1.148604E+00 I. 148604E+00 Derivative of orifice coefficient resid De 3.887946E-0 I 3.887909E-01 3.887963E-01 3.887963E-01 Change in C for an iteration d c d -3.1904 16E-03 -3.190279E-03 -3.190479E-03 -3.190479E-03 Calculated orifice coefficient c d 1.l47517E+OO I. 147512E+00 l,14752OE+OO 1.14752OEd Convergence flag (counter) ICD 3 3 3 3 Calculate the orifice coefficient Reduced reciprocal Reynolds no. X 3.937262E+02 3.937209E+02 3.937284E+02 3.937284E+02 Term raised to power of .35 ~0.35 8.096886E+00 8.096848E+00 8.096901E+00 8.096901E+00 Term raised to power of .80 xo.80 I. 191669E+02 1.191656E+02 1.191674E+02 1.191674E+02 Calculated orifice coefficient E? 1 147520E+00 I 1.147515E+00 1.147522E+00 1.147522E+00 Derivative of orifice coefficient resid Dc 3.880304E-01 3.880268E-01 3.880321E-O1 3.880321E-01 Change in cd for an iteration SCd -1.922336E-06 -1.922173E-06 -1.922411E-06 -1.922411E-M Calculated orifice coefficient c d 1.147519E+00 1,1475l4E+OO 1.147522E+00 1.147522E+OO Convergence flag (counter) ICD 4 4 4 4 Calculate the mass flow rate Unit conversion constant NI 3.232790E+02 4.655210E+04 3.6oooOOE-02 1.000000E+00 Entrance flow factor E l.O00795E+OO 1.000795E+00 1.000795E+00 1.000795E+00 Orifice diameter d 1.592738E+00 1.327282E-01 4.045554E+01 4.045554E-02 Fluid expansion factor Y l.OOOOOOE+OO 1.000000E+QO 1.000000E+00 1.000000E+00 Fluid density Pt.P 5.8 l99OOE+01 5.8199OOE+01 9.322600E+02 9.322600E+02 Differential pressure AP 8.9938OOE+00 8.993800E+00 2.238oOOE+O1 2.238000E+03 Converged orifice coefficient cd 1.1475l9E+00 1.147514E+OO I. 147522E+00 1.147522E+00 Intermediate mass flow factor F;,,,, 6.446154E+02 6.446146E+02 4.631196E+01 1.286443E-03 Universal constant, n n 3.141590E+00 3.141590E+00 3.14159OE+OO 3.141590E+00 Mass flow rate Q", 2.393343E+04 2.393330E+04 l.O85594E+04 3.015540E+00 Calculate the volumetric flow rate Unit conversion constant NI 3.232790E+02 4.655210E+04 3.600000E-02 1.000000E+00 Entrance flow factor E 1,000795E+OO 1.000795E+ûO 1.000795E+00 1.000795E+OO Orifice diameter d 1.592738E+W 1.327282E-01 4.045554E+01 4.045554E-02 Fluid expansion factor Y 1.000000E+00 1.000000E+00 1.OOOOOOE+00 1.oOOOOOE+00 Huid density Pt. P 5.819900E+Ol 5.819900E+01 9.322600E+02 9.322600E+02 Differential pressure AP 8.993800E+00 8.993800E+OO 2.238000E+01 2.238000E+03 Converged orifice coefficient c d I. 147519E+W 1.147514E+00 1.147522E+OO 1.147522E+00 *Fluid density at base conditions Pb 5.6861OOE+Ol 5.686100E+01 9.108300E+02 9.108300E+02 Intermediate mass flow factor Fmms 6.446154E+02 6.446146E+02 4.63 1196E+01 1.286443E-03 Universal constant, n n 3.141590E+00 3.141590E+00 3.14159OE+OO 3.141590E+00 Volumetric flow rate Q" 4.209 112E+02 4.209089E+02 1.191874E+O1 3.310760E-03COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 55 Table 4-9-Intermediate Output for Example Test Case No. 3 Symbol us Units i Units P Metric Units SI Units Calculate temperature corrected diameters *Measured pipe diameter 4.026380E+00 3.355317E-01 1.022700E+02 1.0227OOE-01 *Coefficient of thermal expansion 6.200000E-06 6.200000E-06 1.116000E-05 1.116000E-05 *Pipe diameter measurement temperature 6.800000E+01 6.800000E+Ol 2.000000E+01 2.931500E+02 *Flowing fluid O.OOOOOOE+OO O.O00000E+NJ -1.7780OOE+Ol 2.553700E+02 Pipe diameter 4.024682E+OO 3.353902E-01 l.O22269E+O2 1.022269E-01 *Measured orifice diameter 2.664060E+00 2.220050E-01 6.76670OE+Ol 6.766700E-02 *Pipe coefficient of thermal expansion 9.25oooOE-06 9.25oooOE-06 1.665000E-05 1.665000E-05 *Orifice diameter measurement temperature 6.800000E+01 6.800000E+01 2.000000E+01 2.931500E+02 Orifice diameter 2.662384E+00 2.218654E-01 6.762443E+Ol 6.762443E-02 Calculate diameter ratio (P, Orifice diameter 2.662384E+00 2.218654E-01 6.762443E+Ol 6.762443E-02 Pipe diameter 4.024682E+OO 3.353902E-01 l.O22269E+O2 1.022269E-01 Diameter ratio, ß 6.615141E-01 6.615141E-01 6.615132E-01 6.6 15132E-0 1 Calculate cd correlation constants Upstream tap position 2.484668E-01 2.484667E-01 2.484669E-01 2.484669E-01 Downstream tap position 2.484668E-01 2.484667E-01 2.484669E-01 2.484669E-01 Dam height 1.468107E+OO 1.468106E+00 1.468104E+00 1.468104E+OO Upstream tap term 6.189049E-03 6.189044-3 6.189011E-03 6.189011E-03 Downstream tap term 4.502338E-03 -4.502336E-05 -4.502326E-03 -4.502326E-03 Small pipe diameter correction term O.O00000E+00 OO O O E O . O O O+ O OO O O E O . O O O+ O 0.000000E+00 Pipe diameter 4.024682Et00 3.353902E-01 1.022269E+02 1.022269E-01 Diameter ratio, ß 6.615141E-01 6.615141E-01 6.615132E-01 6.615132E-01 Conversion factor 1.000000E+00 8.333330E-02 2.54000OE+Ol 2.54oooOE-02 Correlation constant 1 6.021234E-01 6.021234E-0 1 6.021235E-01 6.021235E-01 Correlation constant 2 1.825391E-02 1.825390E-02 1.825389E-02 1.825389E-02 Correlation constant 3 2.777503E-02 2.777502502 2.777488E-02 2.777488E-02 Correlation constant 4 1.619635E-02 1.619634E-02 1.6 19625E-02 1.619625E-02 Correlation constant 5 -1.982181E-03 -1.982179E-03 -1.982161E-03 -1.982161E-03 Calculate velocity of approach factor Diameter ratio, ß 6.615141E-01 6.615141E-01 6.615132E-01 6.615132E-01 ß squared 4.376009E-01 4.376009E-01 4.375998E-01 4.375998E-01 ß raised to fourth power 1.914946E-O1 1.914945E-01 1.914936E-01 1.914936E-01 Velocity of approach factor 1.112138E+OO 1.112138E+oO 1.112137E+OO 1.112137E+00 Calculate fluid expansion factor *Compressiblefluid switch (1 = yes) 1 1 1 1 Units conversion factor 2.770700E+Ol 2.770700E+Ol 1.OOOOOOE+O3 1.000000E+00 Diameter ratio, ß 6.615141E-01 6.615141E-01 6.615132E-01 6.615 132E-01 *Isentropicexponent 1.3198oOE+oO 1.319800E+00 1.319800E+oO 1.319800E+00 *Differentialpressure 5.6211OOE+Ol 5.621100E+O1 1.398770E+02 1.398770E+W *Flowing pressure 2.000000E+02 2.000000E-tO2 1.37895OE+O1 1.378950E+06 Expansion factor 3.614359E-01 3.614359E-01 3.614356E-01 3.614356E-01 Pressure independent term 1.014383E-02 1.014383E-02 1.014373E-02 1.014373E42 Pressure ratio 4.376009E-01 4.376009E41 4.375998E-01 4.375998E-01 Expansion factor 9.963337E-01 9.963337E-01 9.963337E-01 9.963337501 Calculate iteration flow factor Unit conversion constant 6.235820E-04 7.733270E-02 1.000000E-01 l.OOOOOOE+OO Pipe diameter 4.024682E+00 3.353902E-01 1.022269E+02 1.022269E-01 Orifice diameter 2.662384E+00 2.218654E-01 6.762443E+01 6.762443E-02 Velocity of approach factor I. 112138E+W 1.112138E+M) 1.112137E+00 1.112137E+OO Fluid expansion factor 9.963337E-01 9.963337E-01 9.963337E-01 9.963337E-01 *Fluid viscosity 1.352000E-02 9.085000E-06 1.352000E-02 1.352000E-05 *Fluid density 2.046600E+00 2.046600E+00 3.2783OOE+Ol 3.278300E+01 Differentialpressure 5.621100E+01 5.621 100E+O1 1.398770E+02 1.398770E+3+04 AP independent part of 4. 1.728053E-02 1.728050E-02 1.091017E-01 1.091017E+00 AP dependent part of 4 1.516848E+Ol 1.516848E+Ol 9.576625E+Ol 9.576625E+02 Maximum value of 4 1.000000E+03 1.000000E+03 1.000000E+03 1.000000E+03 Iteration flow factor 1.139239E-03 1.139237E-03 1.13925OE-03 1.13925OE-03 Calculate the orifice coefficient Iteration flow factor 1.139239E-03 1.139237E-03 1.139250E-03 1.13925OE-03COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 56 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-9-Intermediate Output for Example Test Case No. 3 (continued) Symbol US Units IP Units Metric Units SI Units Correlation constant 1 6.021234E-O1 6.02 1234E-01 6.021235E-01 6.021235E-01 Correlation constant 2 3.825391E-02 1.825390E-02 1.825389E-02 1.825389E-02 Correlation constant 3 2.777503E-02 2.777502E-02 2.777488E-02 2.777488E-02 Correlation constant 4 1.619635E-02 1.619634E-02 1.619625E-02 1.619625E-02 Correlation constant 5 -1.9821 8 1E-03 -1.982179E-03 -1.982161E-03 -1.982161E-03 Initial orifice coefficient 6.021234E-01 6.021234E-0 1 6.02 1235E-01 6.021235E-01 Convergence flag (counter) O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. 1.892036E-03 1.892032E-03 1.892053E-03 1.892053E-03 Term raised to power of .35 1.1 14103E-01 1.114102E-o 1 1.114106E-O1 1.1 14106E-01 Term raised to power of .80 6.630458E-03 6.630447E-03 6.630506E-03 6.630506E-03 Calculated orifice coefficient 6.054432E-01 6.054432E-01 6.054433E-01 6.054433E-01 Derivative of orifice coefficient resid 1.244894E-03 1.244892E-03 1.244892E-03 1.244892E-03 Change in C for an iteration d -3.3 12968E-03 -3.3 12964E-03 -3.312963E-03 -3.312963E-03 Calculated orifice coefficient 6.054364E-O1 6.054364E-01 6.054364E-01 6.054364E-01 Convergence flag (counter) 1 1 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. 1.881683E-03 1.88 1679E-03 1.8817OOE-03 1.881700E-03 Term raised to power of .35 1.111965E-01 I. 111965E-01 1.11l969E-01 1.111969E-01 Term raised to power of .80 6.601416E-03 6.601406E-03 6.601465E-03 6.601465E-03 Calculated orifice coefficient 6.054364E-01 6.054364E-01 6.054364E-O1 6.054364E-01 Derivative of orifice coefficient resid 1.242167E-03 1.242166E-03 1.242166E-03 1.242166E-03 Change in Cd for an iteration -2.620428E-08 -2.620419-8 -2.620417E-08 -2.620417E-08 Calculated orifice coefficient 6.054364E-01 6.054364E-01 6.054364E-01 6.054364E-0 1 Convergence flag (counter) 2 2 2 2 Calculate the mass flow rate Unit conversion constant 3.232790E+02 4.6552 10E+04 3.6OWOOE-02 1.000000E+00 Entrance flow factor 1.112138E+00 1.112138E+3+00 I. 112137E+00 1.112137E+00 Orifice diameter 2.662384E+OO 2.218654E-01 6.762443E+Ol 6.762443E-02 Fluid expansion factor 9.963337E-01 9.963337E-ol 9.963337E-01 9.963337E-01 Fluid density 2.046600E+OO 2.046600E+00 3.2783OOE+Ol 3.278300E+O1 Differential pressure 5.6211OOE+O1 5.621lOOE+Ol 1.398770E+02 1.398770E+04 Converged orifice coefficient 6.054364E-O1 6.054364E-O1 6.054364E-01 6.054364E-01 Intermediate mass flow factor 2.001553E+03 2.001549E+03 1.437996E+02 3.994432E-03 Universal constant, A 3.14159OE+OO 3.141590E+OO 3.14 1590E+OO 3.141590E+OO Mass flow rate 1.831397E+M 1.831394E+M 8.306985E+03 2.307496E+00 Calculate the volumetric flow rate Unit conversion constant 3.232790E+02 4.655210E+04 3.600000E-02 1.000000E+00 Entrance flow factor 1.112138E+OO 1.112138E+OO 1.112137E+OO 1.112137E+00 Orifice diameter 2.662384E+OO 2.218654E-01 6.762443E+01 6.762443E-02 Fluid expansion factor 9.963337E-01 9.963337E-01 9.963337E-01 9.963337E-01 Fluid density 2.0466OOE+OO 2.046600E+OO 3.278300E+01 3.278300E+Ol Differential pressure 5.6211OOE+01 5.6211OOE+01 1.398770E+02 1.398770E+04 Converged orifice coefficient 6.054364E-01 6.054364E-01 6.054364E-O1 6.054364E-01 *Fluid density at base conditions 1.161980E-01 1.161980E-01 1.8613 lOE+OO 1.861310E+OO Intermediate mass flow factor 2.001553E+03 2.001549E+03 1.437996E+02 3.994432E-03 Universal constant, n 3.141590E+OO 3.141590E+OO 3.141590E+OO 3.141590E+OO Volumetric flow rate 1.5761OOE+05 1.576098E+05 4.462978E+03 1.239716E+OOCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION 3--CONCENTRIC, SQUARE-EDGEDORIFICE METERS.PART 4-BACKGROUND 57 Table 4-1 O-Intermediate Oufput for Example Test Case No. 4 Symbol US Units IFUnits Metric Units SI Units Calculate temperaturecorrected diameters *Measured pipe diameter 1.93945OE+OO 1.616208E-01 1.616208E-01 4.926200E-02 *Coefficient of thermal expansion 6.200000E-06 6.200000E-06 6.200000E-06 1.116000E-05 *Pipe diameter measurement temperature 6.800000E+01 6.800000E+01 6.800000E+01 2.931500E+02 *Flowing fluid 0.000000E+00 0.000000E+00 0.000000E+00 2.553700E+02 Pipe diameter 1.938632E+00 1.615527E-01 1615527E-01 . 4.924123E-02 *Measured orifice diameter 1.953100E-01 1 6 7 80E-02 .25 1.62758OE-02 4 9 1OOOE-03 .6 *Pipe coefficient of thermal expansion 9.25oooOE-ûó 9.25oooOE-06 9.25oooOE-06 1.665000E-05 *Orificediameter measurement temperature 6.800000E+01 6.800000E+01 6.800000E+01 2 9 1500E+02 .3 Orifice diameter 1.951872E-01 1.626556E-02 1.626556E-02 4.957879E-03 Calculate diameter ratio (P, Orifice diameter 1.951872E-01 1.626556E-02 1.626556E-02 4.957879E-03 pipe diameter 1.938632E+00 1.615527E-01 1.615527E-01 4.924123E-02 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006827E-01 1.006855E-01 Calculate c correlation constants d . Upstream tap position 5,158276E-01 5.158275E-01 5.158275E-01 5.158279E-01 Downstream tap position 5.158276E-01 5.158275E-01 5.1582750101 5.158279E-01 Dam height 117 . 4 154E+OO 117 . 4 153E+00 1.147153E+OO 117 . 4 158E+oO Upstream tap term 4.008413E-06 4.008383E-06 4.008383E-06 4.008830E-06 Downstream tap term -4.878946E-04 -4.878935E-04 4.878935E-04 -4.879096E-04 Small pipe diameter correction term 2.323928E-03 2.323927E-03 2.323927E-03 2.323925E-03 Pipe diameter 1.938632E+00 16 . 15527E-01 1.615527E-01 4.924123E-02 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006827E-01 1.006855E-01 Conversion factor 1.000000E+00 8.333330E-02 8.333330E-02 2.54oooOE-02 Correlation constant 1 5.982350E-01 5.982350E-01 5.982350E-01 5.982350E-01 Correlation constant 2 4.887058E-03 4.887051E-03 4.88705 E 0 1-3 4.887147E-03 Correlation constant 3 1.490463E-05 1.490452E-05 1.490452E-05 1 4 0 18E-05 .96 Correlation constant 4 1.927601%06 1.927584E-06 1.927584E-06 1.927841E-06 Correlation constant 5 3.734835E-05 3.734822E-05 3.734822E-05 3.735025E-05 Calculate velocity of approach factor Diameter ratio, fl 1.006829E-01 1.006827E-O1 1.006827E-01 1.006855E-01 ß squared 1.O 13705E-02 1.013701E-02 1.013701E-02 1.013758E-02 ß raised to fourth power 1.027598E-04 1.027590E-04 1.027590E-04 1.027704E-04 Velocity of approach factor 1.oooO5 E+ûû 1 1.oooO51E+OO l.oooO51E+OO 1.oooO51E+OO Calculate fluid expansion factor *Compressible fluid switch ( = yes) 1 1 1 1 1 Units conversion factor 2.770700E+Ol 2.770700E+Ol 2.770700E+Ol 1.000000E+00 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006827E-01 1.006855E-01 *Isentropicexponent 1.319800E+00 1.3í9800E+00 13 . 198OOE+OO 1.319800E+OO *Differential pressure 2.248400E+Oo 2.248400E+Oû 2.248400E+Cû 5.595000E+02 *Flowingpressure 2.000000E+02 2.000000E+02 2.000000E+02 1.378950E+06 Expansion factor 3.106804E-01 3.106804E-01 3.106804E-01 3.106804E-01 Pressure independent term 4.057458E-04 4.057458E-04 4.057458E-04 4.057435E-04 Pressure ratio 1.013705Eo2 1.013701E-02 1.013701E-02 1.013758E-02 Expansion factor 9.998739E-01 9.9987390-01 9.998739E-01 9.998739E-01 Calculate iteration flow factor Unit conversion constant 6.235820E-M 7.733270E-02 7.733270E-02 1.000000E+00 Pipe diameter 1.938632E+00 1.615527E-01 1.615527E-01 4.924123E-02 Orifice. diameter . 5 872E-01 191 1.626556E-02 1.6265563-02 4.957879E-03 Velocity of approach factor l.oooO51E+oO l.oooO51E+00 l.oooO51E+00 1.oooO51E+00 Fluid expansion factor 9.998739E-01 9.998739E-01 9.998739E-01 9.998739E-01 *Huid viscosity 1.352000E-02 9.085000E-06 9.085000E-06 1.352000E-05 *Fluid density 2.046600E+00 2.046600E+OO 2.046600E+00 3.278300E+O1 Differential pressure 2.248400E+Oû 2.248400E+00 2.248400E+00 5.595000E+02 AP independent part of F, 1.716152Em 1.716155E+Oû 1.716155E+00 1.083443E+02 AP dependent part of F, 3.03367OE+OO 3.033670E+00 3.033670E+00 1.915311E+02 Maximum value of 4 1.000000E+03 1.000000E+03 1.000000E+03 1.000000E+03 Iteration flow factor 56711 .50- 5.657026E-01 5.657026E-01 5.656746E-01 Calculatethe orifice coefficient Iteration flow factor 5.657016M1 5.657026E-01 5.657026E-01 5.656746E-01COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*L4-3*4 92 0732290 050634b 854 = 58 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-1 &Intermediate Output for Example Test Case No. 4 (continued) Symbol US Units I Units P Metric Units SI Units ~ Correlation constant 1 5.982350E-01 5.982350E-01 5.982350E-01 5.982350E-0 1 Correlation constant 2 4.887058E-03 4.887051E-03 4.887051E-03 4.887 147E-03 Correlation constant 3 1.490463505 1.490452E-05 1.490452E-05 1.490618E-05 Correlation constant 4 1.927601E-06 1.927584E-06 1.927584E-06 1.927841E-06 Correlation constant 5 3.734835505 3.734822E-05 3.734822E-05 3.735025E-05 Initial orifice coefficient 5.982350E-01 5.982350E-01 5.982350E-01 5.9823503-0 I Convergence flag (counter) O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. 9.456177E-01 9.456 194E-01 9.456 l94E-01 9.455726E-01 Term raised to power of .35 9.806193E-01 9.806200E-01 9.8062OOE-01 9.806030E-O1 Term raised to power of .80 9.562522E-01 9.562536E-01 9.562536E-01 9.562158E-O1 Calculated orifice coefficient 6.029866E-O1 6.029866E-01 6.029866E-01 6.029866E-0 1 Derivative of orifice coefficient resid 3.325391E-03 3.32539IE-03 3.325391E-03 3.325342E-03 Change in C, for an iteration -4.725336E-03 -4.725335E-03 4725335E-03 -4.725267E-03 Calculated orifice coefficient 6.029604E-O1 6.0296ME-O I 6.029604E-01 6.029603E-O1 Convergence flag (counter) 1 I 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. 9.382070E-01 9.382087E-O 1 9.382087E-01 9.381623E-01 Term raised to power of -35 9.779227E-01 9.779233E-O1 9.779233E-01 9.779064E-01 Term raised to power of .80 9.502523E-01 9.502537E-01 9.502537E-01 9.502161E-01 Calculated orifice coefficient 6.029605E-0 1 6.029605E-01 6.029605E-01 6.029605E-01 Derivative of orifice coefficient resid 3.3071 llE-03 3.307 111E-03 3.307111E-03 3.307063E-03 Change in Cd for an iteration -1.742147E-07 -1.742147E-07 -1.742147E-07 -1.742071E-07 Calculated orifice coefficient 6.029605E-01 6.029605E-OI 6.029605E-01 6.029605E-0 1 Convergence flag (counter) 2 2 2 2 Calculate the mass flow rate Unit conversion constant 3.232790E+02 4.655210E+04 4.655210E+04 l.O00000E+OO Entrance flow factor 1.OOOo51E+OO 1.O00051E+OO 1.00005lE+OO 1.000051E+OO Orifice diameter 1.951872E-01 1.626556E-02 1.626556E-02 4.957879E-03 Fluid expansion factor 9.998739E-01 9.998739E-01 9.998739E-01 9.998739E-01 Fluid density 2.0466OOE+OO 2.046600E+00 2.0466OOE+OO 3.2783OOE+01 Differential pressure 2.248400E+OO 2.248400E+00 2.2484OOE+OO 5.595000E+02 Converged orifice coefficient 6.029605E-0 1 6.029605E-O1 6.029605Ml 6.029605E-01 Intermediate mass flow factor 9.673681E+OO 9.673626E+OO 9.673626E+00 1.930651E-05 Universal constant, n 3.14159OE+OO 3.141590E+OO 3.14159OE+OO 3.141590E+OO Mass flow rate 1.769270E+01 1.769260E+Ol 1.76926OE+Ol 2.229345E-03 Calculate the volumetric flow rate Unit conversion constant 3.232790E+02 4.655210E+04 4.655210E+04 1.00000OE+00 Entrance flow factor 1.OW51E+OO 1.000051E+OO 1.000051E+00 l.ooOo51E+OO Orifice diameter 1.951872E-01 1.626556E-02 1.626556E-02 4.957879E-03 Fluid expansion factor 9.998739E-01 9.998739E-01 9.998739E-01 9.998739E-01 Fluid density 2.0466OOE+OO 2.046600E+00 2.046600E+00 3.278300E+01 Differential pressure 2.2484OOEtûO 2.248400E+00 2.248400E+OO 5.595000E+02 Converged orifice coefficient 6.029605E-01 6.029605E-01 6.029605E-01 6.029605E-01 *Fluid density at base conditions 1.16198OE-O 1 1.161980E-01 1.161980E-01 1.86I3 10E+00 Intermediate mass flow factor 9.673681E+OO 9.673626E+00 9.673626Ei00 1.930651 5 0 5 Universal constant, n 3.141590E+OO 3.14159OE+OO 3.141590E+00 3.141590E+00 volumetric flow rate 1.522634E+02 1.522625E+02 1.522625E+O2 1.197729E-03COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 59 Table 4-Il-Intermediate Output for Example Test Case No. 5 Symbol US Units IP Units Metric Units SI Units Calculate temperature corrected diameters *Measured pipe diameter 1.939450E+OO 1.616208E-01 4.926200E+Ol 4.926200E-02 *Coefficient of thermal expansion 6.200000E-06 6.200000E-06 1.116000E-05 1.116OOOE-O5 *Pipe diameter measurement temperature 6.800000E+01 6.800000E+01 2.oooOOOE+Ol 2.93 1500E+02 *Flowing fluid 0.000000E+00 O.OM1000E+OO -1.7780OOE+Ol 2.553700E+02 Pipe diameter 1.938632E+00 1.615527E-01 4.924 123E+01 4.924123E-02 *Measured orifice diameter 1.953100E-01 1.627580E-02 4.961000E+00 4.961OOOE-03 *Pipe coefficientof thermal expansion 9.250000E-06 9.250000E-06 1.665000E-05 1.66500OE-05 *Orifice diameter measurement temperature 6.800000E+01 6.8000OOE+Ol 2.000000E+Ol 2.931500E+02 Orifice diameter 1.951872E-01 1.626556E-02 4.957879E+00 4.957879E-03 Calculate diameter ratio (ß) Orifice diameter 1.951872E-01 1.626556E-02 4.957879E+00 4.957879E-03 Pipe diameter 1.938632E+OO 1.615527E-01 4.924123E+01 4.924123E-02 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006855E-01 1.006855E-01 Calculate C , correlation constants Upstream tap position 5.158276E-01 5.158275E-0 1 5.158279E-01 5.158279E-01 Downstream tap position 5.158276E-O 1 5.158275E-01 5.158279E-01 5.158279E-01 Dam height 1.147154E+00 1.147 153E+OO 1.147 158E+OO 1.147158E+OO Upstream tap term 4.008413E-06 4.008383E-06 4.008830E-06 4.008830lW6 Downstream tap term -4.878946E-04 4.878935E-04 -4.879096E-04 4.879096E-04 Small pipe diameter correction term 2.323928E-03 2.323927E-03 2.323925E-03 2.323925E-03 Pipe diameter 1.938632E+OO 1.615527E-01 4.924123E+Ol 4.924123E-02 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006855E-01 1.006855E-01 Conversion factor l.OOOOOOE+00 8.333330E-02 2.54ooOOE+Ol 2.540000E-02 Correlation constant 1 5.982350E-01 5.982350E-01 5.982350E-O1 5.982350E-O1 Correlation constant 2 4.887058E-03 4.887051E-03 4.887147E-03 4.887 147E-03 Correlation constant 3 1.490463E-05 1.490452E-05 1.490618E-05 1.4906 18E-05 Correlation constant 4 1.927601E-06 1.927584E-06 1.92784 1E-06 1.92784 1E-06 Correlation constant 5 3.734835E-05 3.734822E-05 3.735025E-05 3.735025E-05 Calculate velocity of approach factor Dinmefer ratio, ß 1.006829E-01 1.006827E-01 1.006855E-01 1.006855E-01 ß squared 1.013705E-02 1.013701E-02 1.013758E-02 1.O 13758E-02 ß raised to fourth power 1.027598E-04 1.027590E-04 1.027704E-04 1.027704E-04 Velocity of approach factor 1.oooO51E+00 l.oooO51E+00 1.O00051E+00 l.ooOO5 1E+00 Calculate ñuid expansion factor *Compressiblefluid switch (1 = yes) 1 1 1 1 Units conversion factor 2.77070OE+Ol 2.770700E+O 1 1.oooOOOE+03 1.000000E+00 Diameter ratio, ß 1.006829E-01 1.006827E-01 1.006855E-01 1.006855E-01 *Isentropicexponent 1.3198OOE+OO 1.319800E+00 1.319800E+OO 1.319800E+00 *Differential pressure 4.406943E+02 4.406943E+02 1.096635E+03 1.096635E+05 *Flowing pressure 2.000000E+02 2.oooOOOE+O2 1.37895OE+Ol 1.378950E+06 Expansion factor 3.106804E-01 3.106804E-0 1 3.1068O4E-01 3.106804E-01 Pressure independent term 7.952761E-02 7.952761E-02 7.95268 1E-02 7.952681E-02 Pressure ratio 1 13705E-02 .O 1.013701E-02 1.013758E-02 1.013758E-02 Expansion factor 9.752923E-01 9.752923E-01 9.752926E-01 9.752926E-01 Calculate iteration flow factor Unit conversion constant 6.235820E-04 7.733270E-02 1.000000E-01 l.O00000E+00 Pipe diameter 1.938632E+Oû 1.615527E-O1 4.924123E+Ol 4.924 123E-02 Orifice diameter 1.951872E-01 1.626556E-02 4.957879E+ûO 4.957879E-03 Velocity of approach factor 1.000051E+00 l.oooO51E+00 1.O0005 1E+00 1.OoOO51E+00 Fluid expansion factor 9.752923E-01 9.752923E-01 9.752926501 9.752926E-01 *Fluid viscosity 1.352OOOE-02 9.085000E-06 1.352000E-02 1.352OOOE-05 *Fluid density 2.046600E+00 2.046600E+00 3.2783OOE+Ol 3.278300E+01 Differential pressure 4.406943Et02 4.406943E+02 1.096635E+03 1.096635E+05 AP independent part of 4 1.759406E+00 1.759409E+00 l.l10750E+01 1.110750E+O2 AP dependent part of l$ 4.247 175E+Ol 4.247175Ei01 2.68 1454E+02 2.681454E+03 Maximum value of 4 l.OOOOOOE+03 1.000000E+03 1.000000E+03 1.000000E+03 Iteration flow factor 4.142533E-02 4.142540E-02 4.142343E-02 4.142343E-02 Calculate the orifice coefficient Iteration flow factor 4.142533E-02 4.142540E-02 4.142343E-02 4.142343E-02COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 60 CHAPTER 1&NATURAL GAS FLUIDS MEASUREMENT Table 4-il-Intermediate Output for Example Test Case No. 5 (continued) Symbol US Units i Units P Metric Units SI Units Correlation constant 1 5.982350E-01 5.982350E-01 5.982350E-01 5.982350E-01 Correlation constant 2 4.887058E-03 4.88705 1E-03 4.887147E-03 4.887 147Ei-03 Correlation constant 3 1.490463E-05 1.490452E-05 1,490618E-05 1.490618E-05 Correlation constant 4 1.927601E-06 1.927584E-06 1.927841E-06 1.927841E-06 Correlation constant 5 3.734835E-05 3.734822E-05 3.735025E-05 3.735025E-05 Initial orifice coefficient 5.982350E-01 5.982350E-01 5.982350E-01 5.982350E-01 Convergence flag (counter) O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. 6.924591E-02 6.924603E-02 6.92427333-02 6.9242730-02 Term raised to power of .35 3.927697E-01 3.927699E-01 3.927634E-01 3.927634E-0 1 Term raised to power of .80 1.181178E-01 1.181179E-01 1.181135E-01 1.181135E-01 Calculated orifice coefficient 5.989993E-01 5.989993E-01 5.989993E-01 5.989993E-01 Derivative of orifice coefficient resid 5.334226E-04 5.334226E-04 5.334155E-04 5.334155E-04 Change in c d for an iteration -7.635908E-04 -7.635907E-04 -7.635809E-04 -7.635809- Calculated orifice coefficient 5.989986E-01 5.989986E-01 5.989986E-01 5.989986E-01 Convergence flag (counter) 1 1 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. 6.915763E-02 6.915776E-02 6.915446E-02 6.915446502 Term raised to power of .35 3.925943E-01 3.925946E-01 3.925881E-01 3.925881E-01 Term raised to power of .80 1.179973E-01 1.179975E-01 1.179930E-01 1.179930E-01 Calculated orifice coefficient 5.989986E-01 5.989986E-01 5.989986E-01 5.989986E-01 Derivative of orifice coefficient resid 5.329469E-04 5.329469- 5.329399E-04 5.329399E-04 Change in c d for an iteration -7,369381610 -7.369379E-10 -7.369093E-10 -7.369093E10 Calculated orifice coefficient . 5.989986E-01 5.989986E-01 5.989986E-01 5.989986E-01 n Convergence flag (counter) 2 2 2 L Calculate the mass flow rate Unit conversion constant 3.232790E+02 4.655210Ei04 3.600000E-02 1.000000E+00 Entrance flow factor l.ooOo51E+OO l.ooOo51E+00 1.000051E+00 1.oooO51E+00 Orifice diameter 1.951872E-01 1.626556E-02 4.957879E+W 4.957879E-03 Fluid expansion factor 9.752923E-01 9.752923E-01 9.752926E-01 9.752926E-01 Fluid density 2.046600E+OO 2.046600E+ûO 3.278300E+01 3.278300E+01 Differential pressure 4.406943E+02 4.406943E+02 1.096635E+03 1.096635E+05 Converged orifice coefficient 5.989986E-01 5.989986E-01 5.989986E-01 5.989986E-ûl Intermediate mass flow factor 9.673681E+OO 9.673626E+OO 6.950343E-01 1.93065 1E-05 Universal constant, n 3.14 1590E+OO 3.141590E+OO 3.141590E+OO 3.141590B+OO Mass flow rate 2.400229E+02 2.400215E+02 1.088773E+02 3.024370E-02 Calculate the volumetric flow rate Unit conversion constant 3.232790E+02 4.655210E+04 3.6oooOOE-02 l.OOOOOOE+OO Entrance flow factor 1.ooOo51E+OO 1.000051E+Oû 1.oooO51Etoo 1.~51EiOO Orifice diameter 1.951872E-01 1.626556E-02 4.957879E+OO 4.957879E03 Fluid expansion factor 9.752923E-01 9.752923E-01 9.752926E-01 9.752926E-01 Fluid density 2.046600Etûû 2.046600Etûû 3.2783ûûE+Ol 3.278300E+01 Differential pressure 4.406943E+02 4.406943E+02 1.096635E-tO3 1.096635E+05 Converged orifice coefficient 5.989986E-01 5.989986E-01 5.989986E-01 5.989986E-01 *Fluid density at base conditions 1.161980E4ll 1.161980E41 1.861310E+00 1.861310E+00 Intermediate mass flow factor 9.673681EtOO 9.673626EtOO 6.950343E-01 1.930651E-05 Universal constant, n 3.141590E+OO 3.141590E+Oo 3.141590E+OO 3.141590E+00 Volumetric flow rate 2.065637E+03 2.065625E+03 5.849499E+01 1.624861Eo2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION %CONCENTRIC. SQUARE-EDGED VFICE METERS, PART 4-BACKGROUND 61 Table 4-í2-lntermediate Output for ExampleTest Case No. 6 Symbol us units IP units Metric Units SI Units Calculate temperature corrected diameters *Measured pipe diameter 7.981460E+00 6.651217E-01 2.027290E+02 2.027290E-0 1 *Coefficient of thermal expansion 6.200000E-06 6.200000E-06 1.116OOOE-05 1.1160OOE-05 *Pipe diameter measurement temperature 6.8oooM1E+01 6.800000E+Ol 2.000000E+01 2.931500E+02 *Flowing fluid 0.000000E+ûO 0.000000E+00 -1.778000E+01 2.553700E+02 Pipe diameter 7.978095E+OO 6.648413E-01 2.026435E+02 2.026435E-01 *Measured orifice diameter 7.968900E-01 6.640750E-02 2.024100E+01 2.024 100E-02 *Pipe coefficient of thermal expansion 9.25oooOE-06 9.25oooOE-06 1.665OOOE-05 1.665000E-05 *Orificediameter measurement temperature 6.800000E+01 6.800000E+01 2.000000E+01 2.93 15OOE+02 Orifice diameter 7.963888E-01 6.636573E-02 2.022827E+01 2.022827E-02 Calculate diameter ratio (P, Orifice diameter 7.963888E-01 6.636573E-02 2.022827E+Ol 2.022827E-02 Pipe diameter 7.978095E+00 6.648413E-01 2.026435E+02 2.026435E-01 Diameter ratio, ß 9.982192E-02 9.982 191E-02 9.982193E-02 9.982193E-02 Calculate cd correIation constants Upstream tap position 1.253432E-01 1.253431E-01 1.253433E-01 1.253433E-01 Downstream tap position 1.253432E-01 1.253431E-01 1.253433E-01 1.253433E-01 Dam height 2.784854E-01 2.784852E-01 2.784855E-01 2.784855-1 Upstream tap term 1.376258E-06 1.376257E-06 1.376259E-06 1.376259E-06 Downstream tap term -1.653483E-04 -1.653482E-M -1.653483E-M -1.653483E-04 Small pipe diameter correction term 0.000000E+00 0.000000E+00 0.000000E+CQ 0.000000E+00 Pipe diameter 7.978095E+00 6.6484 13E-01 2.026435E+02 2.026435E-01 Diameter ratio, ß 9.982192E-02 9.982191E-02 9.982193E-02 9.982193E-02 Conversionfactor 1.000000E+CQ 8.333330E-02 2.540000E+01 2.54oooOE-02 Correlation constant 1 5.962260E-01 5.962260E-O1 5.962260E-0 1 5.962260E-01 Correlation constant 2 4.857766E-03 4.857766E-03 4.857766E-03 4.857766E-03 Correlation constant 3 1.440130E-05 1.440130E-05 1.440131E-05 1.440131E-05 Correlation constant 4 1.849753E-06 1.849753E-06 1.849754E-06 1.849754E-06 Correlationconstant 5 1.25685OE-05 1.256849E-05 1.256851E-05 1.256851E-05 Calculate velocity of approach factor Diameter ratio, p 9.982192E-02 9.982191E-02 9.982193E-02 9.982193E-02 ß squared 9.964416-3 9.964415E-03 9.964418E-03 9.964418E-03 ß raised to fourth power 9.928958E-05 9.928956E-05 9.928962E-05 9.928962E-05 Velocity of approach factor l.oooO5OE+00 l.oooO5OE+00 1.OOO050E+OO 1.000050E+00 Calculate fluid expansion factor *Compressiblefluid switch (1 =yes) O O O O Units conversion factor 2.770700E+Ol 2.770700E+Ol 1.000000E+03 1.000000E+00 Diameter ratio, ß 9.982192E-02 9.982191E-02 9.982193E-02 9.982193E-02 *Isentropicexponent -1.000000E+00 -1.000000E+00 -l.OOOOOOE+W -1.000000E+00 *Differential pressure 2.2484OOE+00 2.248400E+00 5.595000E+ûO 5.595000E+02 *Flowing pressure 1.469600E+01 1.469600E+O1 1.013250E+ûO 1.O 13250E+05 Expansion factor 1.000000E+00 l.oooOOOE+ûû 1.000000E+00 1.000000E+00 Calculate iteration flow factor Unit conversion constant 6.235820E-04 7.733270E-02 1.000000E-01 1.000000E+00 Pipe diameter 7.978095E+00 6.648413E-01 2.026435E+02 2.026435E-01 Orifice diameter 7.963888E-01 6.636573E-02 2.02282íE+01 2.022827E-02 Velocity of approach factor 1.oooO50E+OO l.ooo05OE+00 l.oooO5OE+00 1.000050E+00 Fluid expansion factor 1.000000E+00 1.000000E+00 1.000000E+00 1.000000E+00 *Fluid viscosity 1.865000E+03 1.253200E+00 1.865000E+03 1.865000E+OO *Fluid density 5.819900E+OI 5.819900E+01 9.322600E+02 9.322600E+02 Differential pressure 2.248400E+00 2.248400E+ûO 5.595000E+00 5.595000E+02 Mindependent part of 4 5.851400E+04 5.851298E+04 3.694304E+05 3.694304E+06 AP dependent part of F, 1.617743E+01 1.617743E+01 1.021371E+02 1.O21371E+03 Maximum value of F, 1.ocQOOOE+03 1.000000E+03 l.OOO000E+O3 1.000000E+03 Iteration flow factor 1.-E+03 1.000000E+03 l.OOOOOOE+03 1.OC#OOE+03 Calculate the orifice coefficient Iteration flow factor 1.000000E+03 1.OC#OOE+03 1.000000E+03 1.000000E+03 Correlationconstant 1 5.962260E-O1 5.962260E-01 5.962260E-01 5.962260E-0 1 Correlationconstant 2 4.857766E-03 4.857766E-03 4.857766E-03 4.857766E-03 Correlation constant 3 1.440130E-05 1.440130E-05 1.44013 1E-05 1.440131E-05COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 62 CH PTER 14-NATURAL GAS FLUIDS ME SUREMENT Table 4-12-Intermediate Output for Example Test Case No. 6 (continued) Symbol US Units IP Units Metric Units SI Units Correlation constant 4 1.849753E-06 1.849753E-06 1.849754E-06 1.849754E-06 Correlation constant 5 1.25685OE-05 I .256849E-05 1.25685 1E-05 1.25685 I EX5 Initial orifice coefficient 5.962260E-OI 5.962260E-o 1 5.962260E-O 1 5.962260E-OI Convergence flag (counter) O O O O Calculate the orifice coefficient Reduced reciprocal Reynolds no. 1.677216E+03 1.677216E+03 1.677216E+03 1.677216E+03 Term raised to power of -35 1.344640E+01 1.344640E+01 1.34464OE+Ol 1.344640E+01 Term raised to power of .80 3.799017E+02 3.799017E+02 3.799017E+02 3,799017E+02 Calculated orifice coefficient 1.482426E+OO I .482426E+OO 1.482426E+OO 1.482426E+00 Derivative of orifice coefficient resid 6.210806E-01 6.2I 0806E-o 1 6.2 10806E-01 6.210806E-01 Change in Cd for an iteration 4.340531E-01 4.340530E-01 4 3 4 0 5 3 1E-01 4 3 4 0 5 3 1E-01 Calculated orifice coefficient I .030279E+00 l.O30279E+OO 1.030279E+00 1.030279E+00 Convergence flag (counter) 1 1 1 1 Calculate the orifice coefficient Reduced reciprocal Reynolds no. 9.706 I 08E+02 9.706108E+02 9.706108E+02 9.706108E+02 Term raised to power of .35 1.110365E+OI I . 1lO365E+Ol 1.110365E+01 1.110365E+Ol Term raised to power of .80 2.452653E+02 2.452653E+02 2.452653E+02 2.452653E+02 Calculated orifice coefficient 1.200259E+OO 1.200259E+OO 1.2OO259E+OO 1.200259E+OO Derivative of orifice coefficient resid 4.232863E-01 4.232863E-01 4.232864E-01 4.232864E-01 Change in C for an iteration d -1.204809E-01 -1.204808E-01 -1.204809E-01 -1.204809E-01 Calculated orifice coefficient 1.150760E+OO I. 150760E+OO 1.150760E+00 1.150760E+00 Convergence flag (counter) 2 2 2 2 Calculate.theorifice coefficient Reduced reciprocal Reynolds no. 8.689910E+02 8.6899fOE+02 8.689910E+02 8.689910E+02 Term raised to power of .35 l.O68207E+Ol 1.068207E+01 l.O68207E+Ol l.O68207E+Ol Term raised to power of .80 2.244979E+02 2.244979E+02 2.244979E+02 2.244979E+02 Calculated orifice coefficient 1.155215E+00 1.155215E+OO 1.155215E+00 1.155215E+OO Derivative of orifice coefficient resid 3.917128E-01 3.917128E-01 3.917128E-01 3.917128E-01 Change in C, for an iteration -3.323755E-03 -3.323754E-03 -3.323756E-03 -3.323756E-03 Calculated orifice coefficient 1.154084E+00 1.154084E+00 1.154084E+00 1.154084E+00 Convergence flag (counter) 3 3 3 3 Calculate the orifice coefficient Reduced reciprocal Reynolds no. 8.664883E+02 8.664883E+02 8.664883E+02 8.664883E+02 Term raised to power of -35 1.067129E+O1 1.O67 129E+01 1.067129E+01 1.O67129E+01 Term raised to power of .80 2.239805E+02 2.239805E+02 2.239805E+02 2.239805E+02 Calculated orifice coefficient 1.154086E+OO 1.154086E+00 1.154086E+OO 1.154086E+00 Derivative of orifice coefficient resid 3.909217E-01 3.909217E-01 3.909217E-O 1 3.909217E-01 Change in Cd for an iteration -2.070598E-06 -2.070597E-06 -2.070599E-06 -2.070599E-06 Calculated orifice coefficient 1.154086E+00 1.154086E+OO 1.154086E+00 1.154086E+00 Convergence flag (counter) 4 4 4 4 Calculate the mass flow rate Unit conversion constant 3.232790E+02 4.655210E+04 3.600000E-02 l.OOOOOOE+OO Entrance flow factor l.O00050E+00 1.000050E+00 1.00005OE+OO 1.000050E+00 Orifice diameter 7.963888E-01 6.636573E-02 2.022827E+01 2.022827E-02 Fluid expansion factor 1.000000E+OO 1.000000E+00 1.OoooOOE+OO l.O00000E+OO Fluid density 5.8 199OOE+01 5.819900E+01 9.322600E+02 9.3226OOE+02 Differential pressure 2.248400E+00 2.2484OOE+OO 5.595000E+00 5.595000E+02 Converged orifice coefficient 1.154086E+00 1.154086E+00 1.154086E+00 1.154086E+OO Intermediatemass flow factor 1.610419E+02 1.610416E+02 1,156994E+01 3.213871E-04 Universal constant, it 3.141590E+OO 3.141590E+00 3.141590E+00 3.141590E+00 Mass flow rate 3.006675E+03 3.006670E+03 1.363806E+03 3.788350E-01 Calculate the volumetric flow rate Unit conversion constant 3.232790E+02 4.655210E+04 3.6oooOOE-02 1.000000E+00 Entrance flow factor l.O00050E+OO l.OOoO50E+OO 1.000050E+00 l.OOO05OE+00 Orifice diameter 7.963888E-01 6.636573E-02 2.022827E+01 2.022827E-02 Fluid expansion factor 1.OOOOOOE+OO 1.000000E+00 1.000000E+00 1.000000E+00 Fluid density 5.819900E+Ol 5.8199OOE+01 9.322600E+02 9.322600E+02 Differential pressure 2.2484OOE+OO 2.248400E+OO 5.595000E+00 5.595OOOE+O2 Converged orifice coefficient 1.154086E+00 1.154086E+00 1.154086E+OO 1.154086E+00 *Fluid density at base conditions 5.686100E+OI 5.686 100E+01 9.108300E+02 9.108300E+02 Intermediatemass flow factor 1.610419E+02 1.610416E+02 1.156994E+Ol 3.213871E-04 Universal constant, A 3.141590E+00 3.141590E+OO 3.141590E+OO 3.141590E+OO Volumetric flow rate 5.287762E+Ol 5.287754E+Ol 1.497322E+00 4.159229E-04COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I flPflS*14.3-4 42 m 0732240 0 5 0 6 3 5 3 3 3 3 m APPENDIX 4-A-DEVELOPMENT OF FLOW EQUATION SOLUTION ALGORITHM 4-A.l General Flow Equations In Part 1of this standard, the flow equation is written as: (4A-1) Where: Cd = orifice plate coefficient of discharge. d = orifice plate bore diameter at flowing temperature (Tf. A P = orifice differential pressure. E, = velocity of approach factor. N, = unit conversion factorI3. n = universal constant (3.14159...). 4m = mass flow rate. q). Pt,p = density of fluid at flowing conditions (9, Y = expansion factor. Part 1 also shows that c d is a function of the orifice plate bore diameter (d), the meter tube internal diameter (D), and the pipe Reynolds number (Re,). For practical application of the flow equation, Re, can be expressed as: (4A-2) Where: D = meter tube internal diameter at flowing temperature ( T f ) , Y = absolute viscosity of flowing fluid. x = universal constant (3.14159...). 4 = mass flow rate. m Re, = pipe Reynolds number. The discharge coefficient equation for flange tapped orifice meters is presented in Part 1 of ANSI 2530 in the following form: Cd(FT) = C i F ) + 0.000511 - Re, [ ] 106ß + (0.0210 + 0.0049A) p4C (4A-3) C i F ) = C,(CT) + Tup Term (4A-4) G(CT) = 0.5961 + 0.0291 ß2 - 0.2290ß8 + 0.003 (1 -p) 4 (4A-5) Tap Term = Upstrm + Dnstrm (4A-6) Upstnn = [ 0.0433 + 0.0712 ]( - 0.1145ë6.OL 1 - 0.23A) B (4A-7) Dnstrm = -0.01 16 [M2 - 0.52Mk3 ] ß ( 1 - O. 14A) (4A-8) l3 Note that definitionfor N is different from the N Iused i Part 1. In Part 1, N,contained the constants ?ü4 and , n 3. in Appendix 4-A, N is strictly a units conversion constant.The g, shown in Part 1 is a units conversion , constant and is therefore included in N. , 63COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • ~ I _ __ ______ ~ - A P I MPMS*L4-3.4 9 2 W 0732290 O506352 O58 W 4 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Also, B = - ß4 (4A-9) 1 -p4 M , = max (2.8--, D 0.0) , (4A- 10) N4 (4A- 11) 0.8 19, OOOß =[ Re, ] (4A-12) (4A- 13) According to Part 1, the equations and their associated uncertainty statements are limited to ßratios of O. 10 to 0.75, d greater than 0.45 inches (11.4 millimeters), and pipe Reynolds numbers greater than or equal to 4,000. Equation 4A-13 can also be used for pipe Reynolds numbers between 3500 and 4000. For Reynolds numbers less than 3500 the following equation for C is provided: I::[ C = 30-6500 - (4A-13B) The results of the Cd(FT)calculation for Reynolds numbers less than 4000 is not covered by the uncertainty statement of Part 1. Where: A = high bore Reynolds number correlation function. B = fluid momentum ratio. ß = ratio of orifice plate bore diameter to meter tube internal diameter. = (d/D) calculated at flowing temperature, q. C = low bore Reynolds number correlation function. Cd(FT) = coefficient of discharge at a specified pipe Reynolds number for flange- tapped orifice meter. Cj(FT) = coefficient of discharge at infinite pipe Reynolds number for flange-tapped orifice meter. C;:(CT) = coefficient of discharge at infinite pipe Reynolds number for corner-tapped orifice meter. d = orifice plate bore diameter calculated at flowing temperature, Tf. D = meter tube internal diameter calculated at flowing temperature, Tf. e = Napierian constant (2.71828...). LI,L2 = N,/D for flange taps. N4 = 1.0 when D is in inches. = 25.4 when D is in millimeters. ReD = pipe Reynolds number. Note: For corner-tapped orifice meters L I , L2 = O, and for radius-tapped (0-012) orifice meters L, = 1 andL2 = 0.47.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14.3.4 92 m 0732290 0506353 T 9 4 W SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS. PART &BACKGROUND 65 As is apparent, the orifice plate coefficient of discharge is a non-linear function of the pipe Reynolds number and the pipe Reynolds number is a function of the orifice plate coefficient of discharge. This means that an iterative solution technique must be used to determineeither the pipe Reynolds number and/or the orifice plate coefficient of discharge. This appendix shows the development of the solution algorithmpresented i - document. n& 4-A.2 Rearrangement of Orifice Plate Coefficient of Discharge Correlation As presented, the orifice plate coefficient of discharge equation requires a number of terms to be computed each time the assumed Reynolds number changes. It is not apparent what the contribution of each term might be for a change in Reynolds number. For these reasons, the equation was rearranged for presentation in this document, by introducing the following intermediate terms: Tu = [ 0.0433 + 0.07 12ë85L ë6OL1 - O. 1145 ]B (4A-14) TD = -0.0116 [ M,- ]pi. 0.52~4:~ (4A-15) T, = 0.003 (1 - p ) Ml (4A- 16) With the introduction of these terms, the Tap Term now becomes: Tup Tenn = Tu(l - 0.23A) + TD(1- 0.14A) (4A- 17) And Ci(FT) becomes: Ci(FT) = 0.5961 + 0.0291p2 - 0.2290p8 -tT, + Tu ( 1 - 0.23A) + T,( 1 - 0.14A) (4A- 18) By defining to contain all terms in C,(Fï) that are independent of Reynolds number, the following is obtained: Cdo = 0.5961 + 0.0291p2 -0.2290p8 + T, + Tu + To (4A- 19) And, CI,(CT) c d O + (-0.23Tu - O.l4T,)A (4A-20) Using this new expression for Ci(FT)in Cd(FT), cd(FT) = cdo+(-0.23Tu -O.l4T~)A+0~000511 + (0.0210 + 0.0049A) ß4C Since in this expression, the pipe Reynolds number appears in several terms raised to several exponents combined with several additional factors, it is convenient to define a new variable, X,which is equal to 4,000 divided by the pipe Reynolds number. Substituting X into the expressions for A and C yield: o w 08 . A = [ 19, Re, ]COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 66 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT (4A-22) For Reynolds numbers greater than 4,000: c= [E] 0.35 0.35 4000 (4A-23) [ @] [ Similarly, 0.7 = - io6 ~ O O O ]0.7 - Re, 4000 Re, = [250/3]0.7X07 (4A-24) By grouping all terms having X raised to similar powers together, the orifice plate coefficient of discharge equation is transformed into: c, = c,, + cd4xo.80 + c,,x0.70c,2x0*35 + + cd3x.5 (4A-25) Where the coefficients are given by: Cd, = (- 0.14Tu - 0.23TD) [4.758] o.8o (4A-26) Cd, = 0.000511 250°.70 (4A-27) c, d = 0.0210 p425~0.35 (4A-28) C& = 0.0049 [4.75 p] p4p0.7 250°.35 (4A-29) Since the fractional exponents ase relatively impractical calculations, it is advantageous to rewsite equation 4A-25 in the following manner so that only two fractional exponents are required:COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3-4 92 W 0732290 0506355 Ab7 W SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFLCE METERS. PART &BACKGROUND 67 This method of formulating the equations makes the relative importance of terms more succinct. Within the bounds of the standard, X will always be less than or equal to one and greater than zero. Therefore, it is apparent how much each term contributes to the calculat- ed value of the orifice plate coefficient of discharge. This compact form also makes it easier to solve for the coefficient of discharge. In order to handle the case where the Reynolds number is below 4,000, a modification must be made to the algorithm to account for the switching function used for the C term. For functional smoothness, the transition takes place when the two functional forms used for Care equal. This occurs when: 0.35 (4A-31) Or, in terms of the reduced Reynolds number, when: ~0.35 B (4A-32) =*-X Where: A = 4.343252 = 30 (4 1 0 - ~ ) ~ . ~ ~ B = 3.764387 = 6500 (4 1 0 - ~ ) ~ . ~ ~ (4A-32a) It can be shown that the crossover point, X,, occurs at X = 1.142129 or a Reynolds number of 3502.20. Therefore, the solution algorithm must be modified to compute c d as shown in equation 4A-30 for X less than X , as: For X greater than X,. 4-A.3 Development of Solution Equations By combining equations (4A-1) and (4A-2), it can be shown that: (4A-34) where N, is a unit conversion factor for Reynolds number. The reduced Reynolds number used in the modified orifice plate coefficient of discharge correlation is: (4A-35) For a given set of flow conditions, aíi terms on the right hand side of equation4A-35, except the orifice plate coefficient of discharge, are constant. It is convenient to define an iteration constant, FI such that: (4A-36)COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 68 ~ ~ CHAPTER 14-NATURAL ~ ~ GAS FLUIDS MEASUREMENT ~~ ~~ ~ ~~ Equation 4A-36 can then be substituted into the orifice plate coefficient of discharge correlation equation, equations 4A-30 and 4A-33, to get a single equation which can then be solved for C, using any one of a number of numerical techniques. Two numerical techniques were investigated, direct substitution and Newton-Raphson. The direct substitution algorithm can be summarized as: Step 1: Guess a î d . Step 2: Calculate X using equation 4A-36. Step 3: Calculate a new C, using equation 4A-30 or 4A-33. Step 4: Repeat steps 2 and 3 until C, changes less than some specified tolerance between iterations (for example, 0.000005 ). As can be seen in Figure 4-A-1, the number of iterations needed to solve for the orifice plate coefficient of discharge varies strongly with the beta ratio ( p )and the pipe Reynolds number. For many, if not most, natural gas applications (ReD > lo5),the direct substitution method converges in relatively few iterations. However, many more iterations are required for liquid applications (Re, > lo5).In the case of a very viscous fluid, the method will not converge in 50 iterations. A Newton-Raphson method requires an explicit statement of the function to be solved and the first derivative of that function with respect to the solution variable. The function to be solved is: f(C,) = FI c, - 9 ( c, ) (4A-37) Where: For X < X,: g (x)= Cd, + c d , x070 c,2x035 f- + c,3x070 + cd4xo80 (4A-38A) 1x100 1XIOi 1x102 1x103 1x104 1x105 1x106 1x107 1x108 Pipe Reynolds Number Figure 4-A-1-Number of Iterations Required to Solve for Orifice Plate Coefficient of Discharge-Direct Substitution MethodCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION 3-CONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART 4--BACKGROUND 69 For X > X,: The first derivative of the function f with respect to c d is: (4A-39) Where: For X e X,: For X > Xc: (4A-40B) This formulation allows both the function and its derivative to be calculated using only two fractional powers, X0‘3s and Xo‘80. The value of X0’7 is calculated by taking the square of X0’35.This calculation scheme allows the iterations to be performed very economically. Figure 4-A-2 shows the number of iterations required to solve equation 4A-35 as a func- tion of p ratio and pipe Reynolds number. The Newton-Raphson algorithm never requires more than 10 iterations to solve any case that falls within the bounds of the standard. Even at extremely low Reynolds numbers, the algorithm is able to solve for the orifice plate coefficient of discharge in fewer than 10 iterations in any case tested.. The stability in num- ber of iterations required for solution as well as the economy of the iterations, makes the Newton-Raphson algorithm the preferred solution algorithm. The Newton-Raphson algorithm can be summarized as follows: Step 1: Guess a c d . Step 2: Calculate X using equation 4A-36. Step 3: Calculatef and f’according to equations 4A-37 through 4A-40. Step 4: Calculate the change in c d for the next iteration, 6 c d . 6cd =f/f‘ Step 5: Update the guess for c d . c d = cd - 6 c d . Step 6: Repeat steps 2 through 5 until 6 c d is less than some predetermined tolerance (for example, 0.000005). 4-A.4 Additional Precautions Required In cases where either very low flow or no flow is encountered, the iteration factor for c d , 6, defined by equation 4A-36, will become very large or infinite. Therefore, it is neces- as sary to limit the iteration flow factor to some maximum value, qlirn. limit has been This arbitrarily set to 1000 in this standard to allow computation of the orifice plate coefficientCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 70 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT of discharge outside the range of applicability of this standard. This limit is sufficiently large that only a small number of cases will actually use this value. The limit also ensures that all computations will occur within the machine floating point range without causing any exceptions (for example, overflow or underflow). 8 7 6 v> .- 5 5 - c 2 (I> 5 4 f 5 3 z 2 1 O 1x10’ 1x102 1x103 1x104 1x105 1x106 I XI 07 1x10* Pipe Reynolds Number Figure 4-A-2-Number of Iterations Required to Solve for Orifice Plate Coefficient of Discharge-Newton-Raphson MethodCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • ~~ API flPflS*L4.3.4 92 m 0732290 0506359 402 m APPENDIX 4-B-RECOMMENDED ROUNDING PROCEDURES The rounding procedures presented must be implemented in a manner such that only decimal (base 10) arithmetic is used in all operations. Ifthe input and/or output data are not in decimal form, the implementation must provide a method for converting the input data to andíor from a decimal representation. These procedures will not give consistent results unless decimal arithmetic is used. The number of decimal digits used in the implementation shall be atleast two more than required for output. 4-B.l Absolute Rounding Absolute rounding shall be used for those quantities that have a fixed magnitude and a fixed precision. The output result will be an exact multiple of the input precision, rounded from zero or towards infinity. This rounding procedure is outlined in Procedure 1. Examples of the results of applying the procedure are: 2.3451 t 0,001 + 2,345 f 0.001 6.5435 f0.002 3 6,544 f 0.002 6.5430 f0.002 + 6.544 f 0.002 Procedure 1 -Absolute Rounding Input: x = value to be rounded. y = absolute rounding factor. output: z = roundedvalue. Procedure: Step I . If x = O then set z = O and return. Step 2. Divide x by y. Step 3. I f x > O then add 0.5 to the result of Step 2, else subtract 0.5 from result of Step 2. Step 4. Truncate the result of Step 3 to an integer value. Step 5. Multiply the result of Step 4 by y. This is the returned value z. 4-B.2 Relative Rounding Relative rounding is to be used for those quantities that have a variable magnitude and a fixed relative precision. For these types of quantities, the precision is often expressed as a percentage of the final value. This procedure multiplies the relative precision by the value to obtain a nominal absolute precision for the observation. The nominal absolute precision is converted to the final rounding precision by truncating to 1,2, or 5 times an appropriate power of ten. The final rounding precision is then used according to the absolute rounding procedure to develop the properly rounded value. These rounding increments were chosen such that numbers which rounded up with one increment would exactly match numbers rounded down using the next larger increment. The output result will be an exact multiple of the final rounding precision, rounded towards infinity. This rounding procedure is out- lined in Procedure 2. Examples of the results of applying the procedure are: 2.3451 f 0.1% + 2.3451 f0.0023 + 2.345 1f 0.002 3 2.346 f 0.002 + 2.346 f O. 1% 71COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • _ _ _ I I__ _ -- ~ -_ A P I MPMS*L4=3-4 92 0732290 0506360 124 H 72 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT 2.3451 f 0.05% 3 2.3451 k 0.00118 3 2.3451 f 0.001 3 2.345 f 0.001 3 2.345 f 0.05% - Procedure 2 Relative Rounding Input: x = value to be rounded. y = absolute rounding factor. output: z = roundedvalue. Procedure: Step 1. I f x = O then set z = O and return. Step 2. Multiply x times y and take the absolute value of the result. Step 3. If ( x < O ) then set w = -1 else set w = 1. Step 4. Determine q and w such that the result of Step 2 equals the absolute value of q times w. q will be between 1 and 10 and w will equal some integral power of ten. w will have the same sign as x. a. set q = result of Step 2 b. while (q c: 1) setq=qx10 setw=wx10 end-while c. while (q > 10) set q = q / 10 set w = w /10 end-while Step 5. Truncate q to either 1,2, or 5 and round x. This is accomplished by: if (q < 2) then set ix = trunc( x x w + 0.5 ) else if (q < 5) then set ix = 2 x trunc( x x w/2 + 0.5 ) else if (q > 5 + 5 x y) then set ix = 5 x trunc(x x w/5 + 0.5) else begin set n2 = 10 x trunc( x x w/10 + 0.5 ) set ix = 2 x trunc( x x w/2 -+ 0.5 ) if ( ix > n2 ) then set ix = 5 x trunc( x x w/5 + 0.5 ) end. Step 6. Setz = idw. Note: The function trunc(x) returns the largest integer value less than or equal to x. 4-8.3 Mixed Rounding Mixed rounding shall be used for those quantities that have a variable magnitude and the precision is expressed as a combination of a fixed relative precision for large values and a fixed absolute precision for smaller values. The rounding increment used is the larger of the input absolute rounding factor or the absolute rounding factor determined according to Procedure 3.2.2. In order to maintain consistency, the fixed absolute precision must be equal to the rounding factor determined using the relative precision at the cross-over point. The output resuIt will be an exact multiple of the final rounding precision, rounded towards infinity. This rounding procedure is outlined in Procedure B-3.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 73 Examples of the results of applying the procedure are: 2.3451 f (0.1% or 0.005) 3 2.3451 f (0.0023 or 0.005) + 2.345 f0.005 2.3451 k (0.05% or 0.0005) a 2.3451 f (0,00118 or 0.0005) *2.3451 f (0.001 or 0.0005) 3 2.345 f 0.001 2.345 f 0.05% Procedure 3 -Mixed Rounding Input: x = value to be rounded. yl = relative rounding factor. y2 = absolute rounding factor. output: z = roundedvalue. Procedure: Step 1. If x = O then set z = O and return. Step 2. Multiply x times yl and take the absolute value of the result. Step 3. If the result of Step 2 is greater than y2. then go to Step 6, else go to Step 4. Step 4. If( x > O ) then set z = y z x trunc( x/y2 + 0.5 ) else setz = y2 x trunc( x/y2- 0.5 ). Step 5. Go to Step 10. Step 6. If( x < O ) then set w = -1 else set w = 1. Step 7. Determine q and IV such that the result of Step 2 equals the absolute value of q times w. q wili be between 1 and 10 and w wiU equal some integral power of ten. w will have the same sign as x. a. set q = result of Step 2 b. while (q < 1) set q = q x 10 set IV = w x 10 end-while c. while (q > 10) set q = q / 10 set w = w / 10 end-while Step 8. Truncate q to either 1,2, or 5 and round x. This is accomplished b: if (q < 2) then set ix = trunc( x x w + 0.5 ) else if (q < 5) then set rh = 2 x trunc( x x w/2 + 0.5 ) else if (q > 5 + 5 x y> then set ix = 5 x trunc(x x w/5 + 0.5) else begin set n2 = 10 x frunc( x x w/10 + 0.5 ) set ix = 2 xtrunc( x x w/2 + 0.5 ) if ( ix > n2) then setix = 5 x trunc( x x w/5 + 0.5 ) end. Step 9. Setz = i x h . Step 10.Return vdue of z.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 74 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-B-1-Recommended Rounding Tolerances Item us IP Metric SI cw,, cc, 0.001 Re1 0.001 Rel. 0.001 Rel. 0.001 Rel. dm di 3 < 0.5 0.0010 Re1 e 0.05 0.0010 Rel. 10 0.0010 Rel. 0,010 0,0010 Rel. > 0.10 0.0005 Rel. > 1.0 0.0005 Rel. > 25 0.0005 Rel. > 0.025 0.0005 Rel. 0.05 to 0.1 0.00005 Abs. 0.5 to 1.0 0.0005 Abs. 10 to 25 0.0100 Abs. 0.010 to 0.025 O.oooO1 Abs. Dm9 4 0.0025 Rei. 0.0025 Rel. 0.0025 Rei. 0.0025 Rel. k 0.01 Abs. 0.01 Abs. 0.01 Abs. 0.01 Abs. Pi,Pz. 4, 0.001 Rel. 0.001 Rel. 0.001 Rel. 0.001 Rel. p b , &iair %I,,, 9 Lip > 20 0.001 Rel. e 20 0.02Abs. >20 0.001 Rel. < 20 0.02 Abs. > 50 0.001 Rel. 50 0.05Abs. > 5000 0.001 Rel. < 5000 5.0Abs. 0.001 Rel. 0.001 Rel. 0.001 Rel. 0.001 Rel. 0.001 Rel. 0.001 Rei. 0.1 Abs. 0.05 Abs. 0.05 Abs. 0.001 Rel. 0.001 Rei. 0.001 Rel. 0.001 Rel. 0.001 Rel. 0.001 Rei.COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14.3.4 9 2 W 0732290 0506363 9 3 3 APPENDIX 4-C-ROUND ROBIN TESTING To test the recommended implementation, an extensive round robin test procedure was conducted. Participants were solicited from the Committee on Petroleum Measurement, the Committee on Gas Measurement, and the Chapter 14.3 Working Group and other interested parties. Each participant was provided with a test matrix of values which would provide a wide variety of conditions of pipe geometry, flow conditions, and differential pressures. The matrix was designed to test results within normal operating ranges, extreme operating ranges, and outside the bounds of the RG equation. The test matrix was available in US, IP, metric, and SI units. In addition, the participants were provided with a draft version of Part 4 and both FOR- TRAN and C versions of the implementation procedure. Also included in the test package were the baseline output results from the test matrix in each of the four systems of input units. The implementation procedure was tested on a variety of computers ranging from 286 PCs to large mainframes and implemented in several different programming languages. Some of the computers used in the round robin test included: Dell 8 MMHZ 286 Dell 310 20 MHz 386 Gateway 33 MHz 486 Gateway 25 MHz 486 IBM RSl6000 - 320 IBM PSI2 Mod 70 20 MHz 386 DEC VAX 6220 VMS 5.3 DEC VAX 8800 VMS 5.3 Dataworld 25 MMHz 386 Apollo DN10000 Toshiba 25 MHz 386 IBM 3090 - 600s LandMark v2.0 CPU 110.34 MHz This list is representative but not inclusive of all computer systems that would be capable of making the necessary calculations to the required reproducibility. Several vendors of rack-mounted and low-powered field-mounted flow computers also tested the procedures on their systems. Regardless of the equipment or the language used to program the calculational proce- dure, the final computed flow rates, calculated using single precision arithmetic, agreed with the baseline output results to within the stated 50 parts per million. Thus the calcula- tional procedure was deemed to be of the desired accuracy and reproducibility. At the time the round robin testing was begun, it was hoped that statistics concerning execution times could be provided. It was found that execution times were varying widely and were híghIy dependent on the speed of the processor, the programming language, and the VO requirements. As a result, insufficient data was collected within any particular operating environment to be meaningful. Therefore, no timing information is being pre- sented. It should be noted that none of the participants expressed a concern about execution time. Tables 4-C-1,4-C-2,4-C-3, and 4-C-4 present the actual test matrices used in the round robin testing. Since each matrix represents 10,080 test points, and there are five unique val- ues output for each point, the output from an individual test matrix is substantial. To be able to provide a reasonable number of values to verify calculational accuracy and provide a means of testing for the full realm of conditions, a subset of the output results is presented in Tables 4-C-5 and 4-C-6. Each cell in the output results matrix contains values of the following quantities: C, Discharge coefficient qin Mass flow rate Q, Volume flow rate at flowing conditions Y Expansion factor ICD Convergence flag A value of convergence flag, ICD, less than zero means outside correlation range. The absolute value is the number of iterations to convergence. 75COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • Table 4-C-1-Round Robin Test Parameters (US Units) Pipe Geometry 4 1 4, D1 l 1 41, D1 l 1 41, in in in in in in i ,04882 0.10157 29.37598 5.87500 7.98 I46 4;25000 2.90039 2.17189 1,93945 O. 19531 47.25000 9.453 1 1 14.31 I54 7.62500 4.02638 3.02343 2.90039 0.28906 1.04882 0.42969 29.37598 15.65626 7.98146 5.98437 4.02638 0.40626 1.93945 0.78906 47.25000 25.17969 14.31154 10.73437 7.98146 O. 79689 2.90039 1.17969 i .O4882 0.6953 1 29.37598 22.03 126 14.31154 1.42969 4.02638 1.64063 1.93945 1.28126 47.25000 35.43752 29.37598 2.93752 7.98 146 3.25000 2.90039 1.92189 1.04882 0.83594 47.25000 4.72657 14.31154 5.82811 4.02638 2.66406 1.93945 1.55469 1.04882 0.21094 29.37598 11.96094 7.98146 5.28906 2.90039 2.3203 1 1.93945 0.39063 47.25000 19.23437 14.31154 9.47657 4.02638 3.2 1874 2.90039 0.57811 1.04882 0.56252 29.37598 19.46094 7.98146 6.38280 4.02638 0.80469 1.93945 1.03126 47.25000 3 1.29689 14.31154 11.45511 7.98146 1.59374 2.90039 1.54689 1.04882 0.78906 29.37598 23.5oooO 14.31154 2.85937 4.02638 2.14843 1.93945 1.4531i 47.25000 37.79689 Meter tube material is carbon steel pipe, cq? = 9.25 x 1O4in/in-"F. Orifice plate material is austenitic stainless steel, al = 6.20 x IO4in/in-"E Flowing Conditions T/ l u ka Pb "F 4 psia 2 t 3 CP ib/f? 0.00 14.696 58.199 1.8650E+03 -1.0 56.861 68.00 14.696 56.660 2.1220E+02 -1.0 56.861 176.00 14.696 54.214 1.7490E+01 -1-0 56.861 60.00 14.696 62.366 1.1990 -1.0 62.366 2 10.00 14.696 58.792 2.8250E-01 -1.0 62.366 0.00 14.696 O. I3223 I .3070E-02 1.3198 0.116198 50.00 100.00 0.31 109 1.0670E-02 1.3622 0.044210 0.00 1000.00 65.072 1.5430E-01 -1.0 0.116198 0.00 200.00 2.0466 1.3520E-02 1.3198 0.116198 50.00 150.00 140.00 500.00 1000.00 2000.00 1.6623 2.7573 32.465 1.1310E-02 1.3650E-02 4.17 10E-02 - 1.3622 1.3622 -1.0 0.044210 0.044210 0.1 16198 aA value of -1.0 for the isentropic exponent k indicates that the fluid is incompressible. Differential Pressures AP inches H20 at 60°F ~~ 0.0000 224.8440 2.2484 80.9438 272.0613 8.9938 110.1736 323.7754 20.2360 143.9002 379.9864 35.9750 182.1236 440.6943 The test matrix of 10,080 data points is formed by using all combinations of the 56 pipe geometry values, the 12 values for flowing conditions, and the 15 differential pressures (56 x 12 x 15 = 10,080).COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*1q-3-q 92 m 0732290 0506365 706 m SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 77 Table 4-CP-Round Robin Test Parameters (IP Units) Piue Geometrv D m 41, 4, 4, DI,, 41, ft ft f t ft ft f t 0.0874017 0.0084642 2.4479983 0.4895833 0.6651217 0.3541667 0.2416992 0.1809908 O. 1616208 0.0162758 3.9375000 0.7877592 1.1926283 0.6354167 0.3355317 0.25 19525 0.2416992 0.0240883 0.0874017 0.0358075 2.4479983 1.3046883 0.6651217 0.4986975 0.3355317 0.0338550 & 1616208 0.0657550 3.9375000 2.0983075 1.1926283 0.8945308 0.665 1217 0.0664075 0.2416992 0.0983075 0.0874017 0.0579425 2.4479983 1.8359383 1.1926283 0.1191408 0.3355317 0.1367192 O. 1616208 0.1067717 3.9375000 2.9531267 2.4479983 0.2447933 0.6651217 0.2708333 0.2416992 O. 1601575 0.0874017 0.0696617 3.9375000 0.3938808 1.1926283 0.4856758 0.3355317 0.2220050 O. 1616208 O. 1295575 0.0874017 0.0175783 2.4479983 0.9967450 0.6651217 0.4407550 0.2416992 0.1933592 O. 1616208 0.0325525 3.9375000 1.6028642 1.1926283 0.7897142 0.3355317 0.2682283 0.2416992 0.0481758 0.0874017 0.0468767 2.4479983 1.6217450 0.665 1217 0.5319000 0.3355317 0.0670575 O. 1616208 0.0859383 3.9375000 2.6080742 I1926283 . 0.9544258 0.6651217 O. 1328117 0.2416992 O. 1289075 0.0874017 0.0657550 2.4479983 1.9583333 1.1926283 0.2382808 0.3355317 0.1790358 O. 1616208 0.1210925 3.9375000 3.1497408 Meter tube matenal is carbon steel pipe, a,= 9.25 X 104idi-oF. Orifice plafe material is austenitic stainless steel, a,= 6.20 x 10dinlin-oF. Flowing Conditions 0.00 14.696 58.199 1.2530 -1.0 56.861 68.00 14.696 56.660 1.4260E-01 -1.0 56.861 176.00 14.696 54.214 1.1750E-02 -1.0 56.861 60.00 14.696 62.366 8.0560E-04 -1.0 62.366 210.00 14.696 58.792 1.8980E-04 -1.0 62.366 0.00 14.696 O. 13223 8.7850M6 1.3198 0.1 16198 50.00 100.00 0.31109 7.1720E-06 1.3622 0.044210 0.00 1000.00 65.072 1.0370E-04 -1.0 0.116198 0.00 200.00 2.0466 9.0840E-06 1.3198 0.116198 50.00 500.00 1.6623 7.6000E-06 1.3622 0.044210 150.00 1000.00 2.7573 9.1740E-06 1.3622 0.044210 140.00 2000.00 32.465 2.8030E-05 -1.0 0,116198 aA value of -1.0 for the isentropic exponent k indicates that the fluid is incompressible. Differential Pressures AP inches H-O at 60°F ~~~ O.oo00 56.2110 224.8440 2.2484 80.9438 272.06 13 8.9938 110.1736 323.7154 20.2360 143.9002 379.9864 35.9750 182.1236 440.6943 The test matrix of 10,080 data points is formed by using all combinations of the 56 pipe geometry values, the 12 values for flowing conditions, and the 15 differentialpressures (56 x 12 x 15 = 10,080).COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 78 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-3-Round Robin Test Parameters (Metric Units) Pipe Geometry Din 411 D1 l 1 41 Dlll dni Dm dni mm mm mm mm mm mm mm mm 26.640 2.580 746.150 149.225 202.729 107.950 73.670 55.166 49.262 4.961 1200.150 240.109 363.513 193.675 102.270 76.795 73.670 7.342 26.640 10.914 746.150 397.669 202.729 152.003 102.270 10.319 49.262 20.042 1200.150 639.564 363.5 13 272.653 202.729 20.241 73.670 29.964 26.640 17.661 746. I50 559.594 363.513 36.314 102.270 41.672 49.262 32.544 1200.150 900.113 746.150 74.613 202.729 82.550 73.670 48.816 26.640 21.233 1200.150 120.055 363.513 148.034 102.270 67.667 49.262 39.489 26.640 5.358 746. I50 303.808 202.729 134.342 73.670 58.936 49.262 9.922 1200.150 488.553 363.513 240.705 102.270 8 1.756 73.670 14.684 26.640 ,14.288 746.150 494.308 202.729 162.I23 102.270 20.439 49.262 26.194 1200.150 794.941 363.5 13 290.909 202.729 40.48 1 73.670 39.29 i 26.640 20.042 746.150 596.900 363.513 72.628 102.270 54.570 49.262 36.909 1200.150 960.041 Meter tube material is carbon steel pipe, a, 9.25 x 104idin-oF. Orifice plate material is austenitic stainless steel, a,= 6.20 x lO4in/in-F. = Flowing Conditions ? 9 Pl# P ka Pb "C bar kdm3 CP kg/m3 -17.78 1.01325 932.26 1.8650E+03 -1.0 910.83 20.00 1.01325 907.60 2.1220E+02 -1.0 910.83 80.00 1.01325 868.43 1.7490E+01 -1.0 910.83 15.56 1.01325 999.01 1.1990 -1.0 999.01 98.89 1.01325 941.75 2.8250E-01 -1.0 999.01 -17.78 1.01325 2.1181 1.3070E-02 1.3198 1.86131 10.00 6.895 4.9831 1.0670Eo2 1.3622 0.70817 -17.78 68.9476 1042.35 1.5430E-01 -1.0 1.86131 -17.78 13.7895 32.783 1.3520E-02 1.3198 1.86131 10.00 34.474 26.627 1.131 0 W 2 1.3622 0.70817 65.56 68.948 44.168 1.3650E-02 1.3622 0.70817 60.00 137.895 520.04 4.1710E-02 -1 .o 1.86131 A value of -1.0 for the isentropic exponent k indicates that the fluid is incompressible. Differential Pressures AP millibar 0.000 139.877 559.508 5.595 201.423 677.004 22.380 274.159 805.691 50.356 358.085 945.568 89,521 453.20 1 1096.635 The test matrix of 10,080 data points is formed by using all combinations of the 56 pipe geometry values, the 12 values for flowing conditions, and the 15 differential pressures (56 x 12 x 15 = 10,080).COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4.3.4 72 0732290 050b367 587 SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 79 Table 4-C-4-Round Robin Test Parameters (SI Units) Pipe Geometry Dm dm Dm dm Dm d* m m m m m m 0.026640 0.002580 0.746150 0.149225 0.202729 O. 107950 0.073670 0.055166 0.049262 0.004961 1.200150 0.240109 0.363513 O. 193675 O. 102270 0.076795 0.073670 0.007342 0.026640 0.010914 0.746150 0.397669 0.202729 0.152003 0.102270 0.010319 0.049262 0.020042 1.200 150 0.639564 0.363513 0.272653 0.202729 0.020241 0.073670 0.029964 0.026640 0.017661 0.746150 0.559594 0.363513 0.036314 0.102270 0.041672 0.049262 0.032544 1.200150 0.900113 0.746150 0.074613 0.202729 0.082550 0.073670 0.048816 0.026640 0.021233 1.200150 0.120055 0.363513 0.148034 0.102270 0.067667 0.049262 0.039489 0.026640 0.005358 0.746150 0.303808 0.202729 0.134342 0.073670 0.058936 0.049262 0.009922 1.200150 0.488553 0.363513 0.240705 O. 102270 0.081756 0.073670 0.014684 0.026640 0.014288 0.746150 0.494308 0.202729 O. 162123 O. 102270 0.020439 0.049262 0.026194 1.200150 0.794941 0.363513 0.290909 0.202729 0.040481 0.073670 0.039291 0.026640 0.020042 0.746150 0.596900 0.363513 0.072628 0.102270 0.054570 0.049262 0.036909 1.200150 0.960041 Meter tube material i s carbon steel pipe, cc, = 9.25 x 10"in/ii-°F. Orifice plate material is austenitic stainless steel, a,= 6.20 x 104in/in-"F. Flowing Conditions í7 OK pr Pa PUJ kdm3 P Pa-s ka pb kdm3 255.37 932.26 1.8650 -1.0 910.83 293.15 907.60 2.1220-1 -1.0 910.83 353.15 868.43 I .7490E-02 -1.0 910.83 288.71 999.01 1.1990E-03 -1.0 999.01 372.04 941.75 2.8250E-04 -1.0 999.01 255.37 2.1181 1.30703-05 1.3198 1.86131 283.15 4.9831 1.0670E-05 1.3622 0.70817 255.37 1042.35 1.5430- -1.0 1.86131 255.37 32.783 1.3520E-05 1.3198 1.86131 283.15 26.627 1.1310E-05 1.3622 0.70817 338.71 44.168 1.3650E-05 1.3622 0.70817 333.15 520.04 4.1710E-05 -1.0 1.86131 aAvalue of -1.0 for the isentropic exponent k indicates that the fluid is incompressible. Differential Pressures AP Pa 0.0 13987.7 55950.8 559.5 20142.3 67700.4 2238.0 27415.9 80569.1 5035.6 35808.5 94556.8 8952.1 45320.1 109663.5 The test matrix of 10,080 data points is formed by using all combinations of the 56 pipe geometry values, the 12 values for flowing conditions, and the 15 differential pressures (56 x 12 x 15 = 10,080).COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 81 Table 4-C-&Selected Round Robin Test Results Matrix-US Units (Dm= 2.90039 in, % = 0.00000620 in/in-"F, d,,, = 0.57811 in, al = 0.00000925 in/in-"F) - Cell AP(inches H,O at 60"E) iralue 56.21 10 323.7754 440.6943 Flow Conditions 2.2484 20.2360 T/ = O.OO"F, PJ = 14.696 psh, c d I. I8 122E+OO 9.61 16OE-O1 ?.3I O4 1E-0 I pf,p= 58.199 lb/f?, p = 1.8650E+03cP, b r 1.10400E+03 1.58261E+M 1.78852E+04 k = -1 .o, pb = 56.86 1 lb/ft3 QV 1.42523E+02 2.78330E+02 3.14543E+02 Y l.OOOE+OO 1. OOOOE+OO O I .00000E+OO iCD - 4 I d 4 ïj = 68.W°F, 9 = 14.696psia, c d 1.03233E+001 8.30723E-O1 7.69 144E-01 7.36966E-0 I I 7.0890 I E 4 I I 6.9664 I E-O I 5.87257E-01 pf,p= 56.660 Ib/ft3, p = 2.1220E+02 cP, 8 r 5.213 18E+03 6.993 1 1E+03 9.60971E+03 1.13322E+04 1.30428E+04 k = -1.0, pb = 56.861 Ib/ft3 Qv ?. 16828E+Ol 1.22986E+02 1.69004E+02 1.99297E+02 2.2938 1E+02 Y 1.00000E+OO 1.00000E+00 1.OOOOOE+OO 1.00000E+00 1 . OOOOE+OO O iCD -4 - 4 -3 -3 -3 -3 T/ = 176.00F, PJ = 14.696psia, cd 6.9729 1E-01 6.4588 1E-01 5.3 1661E-01 6.24554E-01 6.18538E-01 6.15959E-01 5.14002E-01 pf,p= 54.214 lb/ft3, p = 1.749OE+OI cP, 8 1 9.26447E+02 2.57445E+03 $.19628E+O3 5.80869E+03 8.21819E+03 9.82072E+03 1.14211E+O4 k =-i .o, pb = 56.86 i lb/ft3 Q,* 1.62932E+01 4.52762E+OI 7.37989E+OI 1.02156E+02 1.44531E+02 I .727 14E+02 2.00860E+02 Y 1.00000E+OO 1.00000E+00 l.OOOOOE+OO 1.00000E+OC 1.00000E+00 1.00000E+00 I .ooOOOE+OO tCD -3 - -3 -3 -3 -3 -3 -3 T/ = 60.00°F, ìf = 14.696 p i a , cd 6.12716E-01 6.03868E-01 5.01 673E-01 6.00597E-01 5.99699E-01 5.993 18E-01 5.99032E-0 1 pf,p= 62.366 ib/ft3, p = 1.1990 cP, 7nr 8.7 1268E+02 2.57608E+03 $.27786E+03 5.97830E+03 8.52765E+03 1.02267E+04 1.19254E+O4 k = -1.0, pb = 62.366 lb/ft3 Qv I .39702E+Ol 4.13059E+Ol 5.85929E+01 9.58583E+01 1.36736E+02 1.63979E+02 1.91217E+02 Y 1.OoooOE+OO l.OOOOOE+OO I.O(IOOOE+W 1.00000E+OC I.O(IOOOE+OO l.OOOOOE+OO I .OOOOOE+00 ICD -3 2 2 2 2 2 2 T/ = 210.0O0F, ìf = 14.696 psia, cd 6.02411E-01 5.99259E-01 5.98434E-01 5.9803OE-O 1 5.97692E-01 5.97549E-01 5.97441E-01 = 58.792 lb/ft3, p = 2.8250E-01 cP, Pnr 8.34018E+02 2.48899E+03 1.14260E+03 5.79572E+03 8.27492E+03 9.92753E+03 1.158OE+O4 k = -1.0, pb = 62.366 lb/ft3 Qv 1.33730E+01 3.99094E+OI 6.6424OE+Ol 9.29308E+01 1.32683E+02 1.59182E+02 1.85679E+02 Y 1.OOOOOE+00 1 .OOOOOE+OO I.OOOOOE+00 I.oOoOOE+OC 1.00000E+00 1 .OOOOOE+OO 1.ooO00E+OO tCD 2 - 2 2 2 2 2 2 PJ = O.OOF, = 14.696 psia, cd 6.02323E-01 5.99244E-01 5.98461E-01 5.98099E-01 5.97837E-01 5.97758E-01 5.97734E-01 pf+ = 0.13223 Ib/ft3, p = 1.3070E-02 cP, 41 11 3.93263E+01~ 1.1576€E+02 1.87305E+M 2.50779E+02 3.23845E+02 3.53 105E+02 3.6305 1E+02 k = 1.3198,pb=0.1161981b/ft3 Qv 3.38443E+02 9.96242E+02 1.61194E+03 2.15821E+03 2.78701E+03 3.03882E+03 3.12442E+03 Y 9.98282E-01 9.84540E-01 9.57057E-01 9.15832E-01 8.28228E-01 7.52648E-01 6.63327E-01 ICD 2 - 2 2 2 2 2 2 T/ = 50.00°F, 4= 100.00psia, c, 6.00256E-01 5.98252E-01 5.97729E-01 5.97474E-01 5.97264E-01 5.97 176E-0 1 5.97111E-01 pf,p= 0.31 109 ib/ft3, /= 1.0670E-02 cP, i %Il 6.02575E+01 1.79818E+02 2.98261E+02 4.14922E+02 5.85056E+02 6.94220E+02 7.99160E+02 k = 1.3622, pb = 0.044210 ib/ft3 Qv 1.36298E+03 4.06737E+03 6.74645E+03 9.38524E+01 1.32336E+04 1.57028E+O4 1.80765E+04 Y 9.99755E-01 9.97799E-01 9.93886E-01 9.88016E-01 9.75542E-01 9.64781E-01 9.52062E-01 ICD 2 - 2 2 2 2 2 2 T/ = O.OO°F, 4 = 1ooO.00 psia, cd 6.0O256E-O1 5.98249E-O 1 5.97724E-0 1 5.97466E-01 5.97250E-01 5.97159E-01 5.97090E-01 pf,p= 65.072 lb/ft3, p = 1.5430E-01 cP, %,i 8.70902E+02 2.60400E+03 4.33618E+03 6.06804E+03 8.66549E+03 1.03970E+04 1.21284E+04 k=-1.0, pb = 0.116198 Ib/ft3 Qv 7.49498E+03 2.24100E+04 3.73172E+04 5.22215E+O4 7.45752E+O4 8.94766E+04 1.04377E+05 Y 1.00000E+00 1.00000E+00 IO O O + C . O O EO l,OOOOOE+00 1 . O ~ E + o O l.OOOOOE+W 1.OOooOE+OO ICD 2 - 2 2 2 2 2 2 T/ = O.QQ°F, PJ = 200.00 psia, cd 5.98801E-01 5.97568E-01 5.97246E-01 5.97088E-01 5.96956E-01 5.96901E-01 5.96859E-01 p,,p = 2.0466 lb/ft3, p = 1.3520E-02 cP, Qi 1.54057E+02 4.60757E+02 7.65961E+02 1.06880E+03 1.51664E+03 1.80956E+03 2.09690E+03 k = 1.3198,pb=0.1161981b/ft3 e, Y 1.32581E+ü3 3.96528E+03 6.59186E+03 9.99874E-01 9.98864E-01 9.96845E-01 9.19813E+03 1.30522E+04 1.55731E+04 9.93815E-01 9.87378E-01 9.81825E-01 1.80459E+O4 9.75261E-01 ICD 2 - 2 2 2 T/ = 50.00°F, PJ = 500.00 psia, cd 5.98685E-01 5.97514E-01 5.97206E-01 5.97056E-01 5.96930E-01 5.96876E-01 5.96836E-01 P,,~= 1.6623 iblf?, p = 1.1310E-02 cP, 41 11 I.38954E+02 4.15886E+02 6.92245E+02 9.67759E+02 1.37876E+03 1.65079E+03 1.92086E+03 k = 1,3622, pb = 0.044210 lb/ff3 Qv 3.14304E+03 9.40707E+03 1.56581E+04 2.18901E+O4 3.11867E+O4 3.73398E+04 4.34486E+O4 Y 9.99951501 9.99560E-01 9.98777E-01 9.97603501 9.95108E-01 9.92956MI 9.90412E-0 1 ICD 2 - 2 2 2 2 2 2 T/ = lSO.OOF, PJ = 1OOO.00 psia, cd 5.98588E-01 5.97468E-01 5.97 174E-01 5.97030E-01 5.96910E-01 5.96858E-01 5.96820E-01 pf,p= 2.7573 Ib/ft3, p = 1.3650E-02 cP, 4 1 1.79267E+02 5.36696E+02 8.93703E+@ 1.25015E+03 1.78333E+03 2.13751E+03 2.49042E+03 k = 1.3622, pb = 0.044210 lb/ft3 Qv 4.05490E+03 1.21397E+04 2.02149E+04 2.82775E+M 4.03378E+O4 4.83490E+04 5.63315E+04 Y 9.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 9.96478E-01 9.95206E-01 ICD - 2 2 2 2 2 T/ = 140.00°F, 9 = 2000.00 psia, c d 5.97121E-01 5.96987E-01 5.96875-1 5.96828E-01 5.96792E-01 P,,~ 32.465 lb/ft3, j i = 4.1710E-02 cP, = 91 1 1 3.06764E+O? 4.29374E+03 6.13277E+03 7.35874E+03 8.58468E+03 &=-1.0, pb = 0.116198 ib/ft3 Qv 2.64001E+04 3.69519E+O4 5.27786E+04 6.33293E+04 7.38797E+04 Y 1.OOOOOE+O( l.OOOOOE+00 l.OOOOOE+OO 1.00000E+OC l.OOOOOE+OO ICD - 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4.3*4 92 0732290 050b3b9 351 m 82 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units (D, = 4.02638 in, a ! = 0.00000620 in/in-"F, d, = 0.80469 in, al = 0.00000925 in/in-"F) ; - Cell AP(inches H,O at 60F) 1 Flow Conditions vl 1 au 2.2484 I 20.2360 I 56.2110 I 110.1736 224.8440 323.7754 440.6943 i - T/ = O.W°F, 9 = 14.696 psia, cd 1.42942E+00 1.23678E+00 1.08598E+00 1.00447E+0 9.31233E-01 8.98444E-01 8.72953E-01 prp = 58.199 Ib/ft3, p = 1.8650E+03cP, qn, 3.8O1 OE+03 9.86394E+03 1.44354E+04 1.86928E+O 2.47569E+04 2.86622E+04 3.24905E+04 k = -1.0, p b = 56.861 Ib/ft3 Q" 6.68314E+01 1.73475E+02 2.53872E+02 3.28745E+O 4.35393E+02 5.04075E+02 5.71402E+02 Y l.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+O 1.00000E+00 1.00000E+00 l.OOOOOE+OC ICD - -5 -4 -4 -4 -4 -4 T/ = 68.00"F. i j = 14.696 psia, c d 9.58872E-01 7.88535E-01 7.37202501 7.10577E-0 6.87491E-01 6.77452E-01 6.69787E-01 pl,p= 56.660 lb/ft3, /.i = 2.1220E+02 cP, 41 11 2.51838E+03 6.21308E+03 9.68 102E+03 1.30639E+O 1.80564E+04 2.13513E+04 2.46280E+04 k = -1.0, p b = 56.861 Ib/ft3 Qv 4.42901E+Ol 1.09268E+02 1.70258E+02 2.29752E+O 3.17554E+02 3.75500E+02 4.33127E+02 Y 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+Oi 1.00000E+00 l.OOOOOE+OO l.OOOOOE+C€ ICD - -d -2 -2 -3 1-3 1-3 T/ = 176.00°F, 9 = 14.696 psia, cd 6.77984E-01 6.36219E-01 6.24766E-01 6.19050E-0 6.14205E-01 I6.12122E-01~6.10537E-01 pI,p = 54.214 Ib/ft3, /.i = 1.7490E+01cP, 4nr 1.74528E+03 4.91336E+03 8.04150E+03 1.11551E+O k = -1.0, pb = 56.861 Ib/ft3 Qv 3.06938E+Ol 8.64100E+01 1.41424E+02 1.96182E+0 Y l.OOOOOE+ûû l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+Oi ICD - -3 -3 -3 -3 -3 r f = GO.OO°F, 9 = 14.696 psia, cd 6.09491E-01 6.02522E-01 6.00780E-01 5.99926E-0 5.99213E-01 5.9891 1E-01 5.98683E-01 P,,~= 62.366 Ib/ft3, /.i = 1.1990 cP, %Il 1.67919E+03 4.98002E+03 8.27602E+03 1.15700E+O 1.65089E+04 1.98007E+04 2.30920E+04 k =-imo,pb = 62.366 ib/f$ Qv 2.69248E+Ol 7.98515E+01 1.32701E+02 1.85517E+0: 2.64709E+02 3.17491E+02 3.70266E+02 Y 1.00000E+OO l.OOOOOE+ûû l.OOOOOE+OO l.OOOOOE+O( l.OOOOOE+00 1.00000E+00 1.00000E+00 ICD - -2 12 12 12 2 2 2 = 210.ûû°F, 9 = 14.696psia, cd 5.01365E-01 I5.98864I5-01 I5.98209E-01 I5.97888E-o 5.97619E-01 5.97505E-01 5.97419E-01 pl,p = 58.792 Ib/ft3, p = 2.8250E-01 cP, 4nr 1.61330E+03 4.81922E+03 8.02323E+03 3.122658+0 1.60306E+04 1.92331E+04 2.24354E+04 k = -1.0, pb = 62.366 Ib/ft3 Qv 2.58650E+Ol 7.72731E+Ol 1.28648E+02 1.80010E+O: 2.57041E+02 3.08391E+02 3.59738E+02 Y 1.OOO00E+OO 1,0OOOOE+00 I .00000E+OO 1.OoooOE+O( l.OOOOOE+OO 1.00000E+00 l.OoooOE+OO ICD - 2 2 2 2 2 2 2 r/ = O.OO"F, 9 =14.696 psia, cd 5.01295E-01 5.98851E-O1 5.98230M1 5.97942E-01 5.97734E-01 5.97671E-01 5.97652E-01 P,,~= 0.13223 lb/f$, /.i = 1.3070E-02 cP, Qin 7.60645B+01 2.24140E+02 3.62761E+02 4.85755E+O: 6.27337E+02 6.84035E+02 7.03308E+02 k = 1.3198, p b = 0.116198 Ib/ft3 Qv 5.5461 IE+02 1.92895E+03 3.121928+03 4.18041E+O: 5.39887E+03 5.88680E+03 6.05267E+03 Y >.98282E-01 9.8454OE-O1 9.57056E-01 9.15830E-01 8.28225E-01 7.52645E-01 6.63322E-01 ~~ ICD - 1 12 12 (2 2 2 2 7j = 50.00F, 9 = 100.00 psia, cd 2.99655E-01 I5.98064E-01 I 5.97648E-01 I5.97446E-01 5.97278E-01 5.97208E-01 5.97157E-01 o , , ~ 0.31 109 Ib/ft3, p = 1.0670E-02 cP, = 9ni I.1G632E+02 3.48287E+02 5.777998+02 8.03869B+K 1.13357E+03 1.34512E+03 1.54848E+03 k = 1.3622, pb = 0.044210 Ib/ft3 Qv l.638 13E+03 7.878018+03 1.306948+04 1.81830E+@ 2.56405E+04 3.04256E+04 3.50256E+04 Y ).99755E-01 9.97799E-01 9.93885E-O1 9.88015E-01 9.75542E-01 9.64780E-01 9.52062E-01 [CD - ! 2 2 2 2 2 2 7j = O.OO°F, 9 = 1000.00 pcia, cd j.99655E-01 5.98062E-03 5.97644E-01 5.97439B-01 5.97267E-01 5.97 194E-01 5.97 140E-01 g,,p = 65.072 Ib/ft3, p = 1.5430E-01 cP, ~JJJ 1.68568E+03 5.04364E+03 8.40019E+03 1.17562E+@ 1.67898E+04 2.01453E+04 2.35007E+04 (=-1.0,pb=0.1161981b/ft3 Qv 1.45069E+04 4.34056E+04 7.22921E+W 1.01l74E+O: 1.44493E+05 1.73370E+05 2.02247E+05 Y I .OOO00E+00 1.00000E+OO 1.00000Et00 1.00000E+O( 1.00000E+00 l.OOOOOE+OO l.OOOM)E+OO iCD - ! 12 12 12 2 2 2 7 j = O.OO°F, 4= 200.00 psia, cd i.98500E4lI5.975208-OlI5.97264E-01 I5.97138E-01 5.97033E-01 5.96989E-01 5.96956E-01 I,p = 2.0466 lb/ft3, p = 1.3520E-02 cP, b r !.98333E+02 8.92641E+02 1.48409E+03 2.07097E+0: 2.93885E+03 3.50653E+03 4.06338E+03 i = 1,3198,pb = 0.116198 Ib/ft3 2" !.56746E+03 7.68207E+03 1.27721E+04 1.78228E+OL 2.52918E+04 3.01772E+04 3.49694E+04 Y 1.99874E-01 9.98864E-01 9.96845E-01 9.93815E-01 9.87378E-01 9.81824Eol 9.75261E-01 [CD - ! 2 2 2 2 2 2 rf = 50.00°F, 9 = 500.00 psia, : d i.98408E-01 5.97477E-01 5.97232E-01 5.97112E-01 5.97012E-01 5.96969Eo1 5.969370-01 = 1.6623 ib/ft3, /.i = 1.1310E-02 cP, t,p ?nt !.69097E+02 8.05727E+02 1.34128E+03 1.8752OE+Ol 2.67171E+03 3.19889E+03 3.72228E+03 := 1.3622, p b = 0.044210 lb/ft3 2 , 1.08679E+03 1.82250E+04 3.03388E+04 4.24158E+04 6.04323E+04 7.23568E+04 8.41955E+04 Y 1.99951E-01 9.99560E-01 9.98777E-01 9.97603E-01 9.95108E-01 9.92956E-01 9.90412E-01 CD - 2 2 2 2 2 2 7 = 150.00°F, p f = 1OOO.00 psia, n -d 1.98331E-01 5.97441E-01 5.97207E-01 5.97092E-01 5.96996E-01 5.96955E-01 5.96924E-01 = 2.7573 Ib/ft3, /.i = 1.3650E-02 cP, ),,p Im ~47180E+02 1.03980E+03 1.73164E+03 2.42240E+03 3.45569E+03 4.14208E+03 4.82601E+03 := 1.3622, pb = 0.044210 lb/ft3 3, .85297E+03 2.35195E+04 3.91684E+04 5.47931E+04 7.81655E+û4 9.36910E+04 1.09161E+05 f 1.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 9.96478E-01 9.95206E-01 CD - 2 2 2 2 2 2 y = 140.00"F. 4= 2000.00 psia, -I -d ,98202E-01 5.97380E-01 5.97164E-01 5.97058E-01 5.96969E-01 5.96931E-01 5.96902E-01 I , , ~= 32.465 lb/ft3, /= 4.1710E-02 cP, .i Im .19085E+03 3.56768E+03 5.94397E+03 8.32008E+03 l.I884OE+O4 1.426OOE+O4 1.66358E+04 :=-1.o, pb = 0.116198 lb/ft3 3V .02485E+04 3.07034E+04 5.1 1538E+04 7.16026E+04 1.02274E+05 1.22721E+05 1.43168E+05 .O~E+OO 1.OOOOOE+00 1.00000E+00 l.OOOOOE+OO 1.00000E+OO 1.00000E+00 1.00000E+00 CD - (2 12 12 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3.4 92 W 0732290 050b370 073 W + SECTION %-CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 83 Table 4-C-5-Selected Round Robin Test Results Matrix-US Units (O, = 7.98146 in, Q = 0.00000620 in/in-"F, d, = 1.59374 in, al= 0.00000925 in/in-OF) - Cell AP(inches H O at 60°F) , Now Conditions talue - 2.2484 20.2360 56.2110 I 110.1736 I 224.8440 323.7754 I 440.6943 I lj = 0.ûO0F, 4= 14.696 psia, cd [.3836OE+OO 1.04031E+00 3.3 1428E-01 8.73 195E-01 8.2 138 1E-0 I 7.98381E-01 7.80600E-01 D,,~ = 58.199 ib/ft3, p = 1.8650E+03cP, 4ni 1.44285E+04 3.25461E+04 6.8566 1E+04 6.37416E+04 8.56562E+04 ).99092E+04 1.13965E+05 ke-1.0, pb = 56.861 ib/ft3 Qv 1.53750E+02 5.72379E+02 8.54120E+02 1.12101E+03 1.50641E+03 I.75708E+03 2.00427E+03 Y I .OOOM)E+00 I .00000E+00 1.oooOOE+00 1.00000E+OC 1.00000E+00 I.OOOOOE+00 1.OoooOE+00 [CD - -5 4 4 4 4 rf = 68.00F. 4= 14.696 psia, Cd 3.40868E-01 7.22461E-01 6.87816E-01 6.701 11E-01 6.54928E-01 5.48378M1 6.43399E-01 D ~ = 56.660 Ib/ft3, p = 2.1220E+02 cP, , ~ qrr, 3.66295E+03 2.23294E+04 3.543 1OE+04 4.83266E+04 6.74737E+04 3.01587E+04 9.28004E+04 k = -1 .o, pb = 56.861 ib/ft3 Qv 1.52353E+û2 3.92702E+02 6.23 1 16E+02 8.49907E+02 1.18664E+03 I.40973E+03 1.63206E+03 Y I. OOOOE+OO l.OOOOOE+OO 1. OOOOE+OO 1 . OOOOE+OC 1. O E + 0 0 O O O 1.000OOE+00 1.00000E+00 ICD - 4 -3 -3 -3 -3 lj = 176.0O0F, 4 = 14.696 psia, cd 5.48724E-01 5.218 15E-01 6.14499E-01 6.10828E-01 6.07674E-01 5.06292E-01 6.05308E-01 = 54.2 14 ib/f$, p = 1.749OE+O1 cP, 4m 5.55063E+03 1.88369E+04 3.10254E+04 4.31761E+04 6.13617E+04 7.34665E+04 8.55719E+O4 k=-1.0, pb = 56.861 Ib/ft3 Qv I . 15204E+02 3.31280E+02 5.45637E+02 7.59328E+02 1.07915E+03 I .29204E+03 1.50493E+03 Y I .OOOOOE+00 1.000OOE+Oû 1.00000E+00 1.OOOOOE+00 1.OOOOOE+OO I .00000E+00 1.ooOOOE+W ICD - -3 -3 -3 1 -2 I -2 -2 -2 r f = 60.0o0F, if = 14.696 psia, c d 5.04694E-01 5.00563E-01 5.99481E-01~5.98950E-01 15.98507E-01 5.983 19E-01 5.98 I78E-01 = 62.366 Ib/ft3, p = 1.1990 cP, %I, 5.53499E+03 1.947 12E+04 3.23935E+04 4.53108E+04 6.46818E+04 7.75938E+04 9.05046E+04 k = -1.0, pb = 62.366 Ib/ft3 Qv 1.04784E+O2 3.12209E+02 5.19410E+02 7.26530E+02 1.O37 13E+03 1.244 17E+03 1.451 19E+03 Y I.OOO00E+OO 1.OOOOE+OO 1.000OOE+00 1.OOOOOE+OO 1.00000E+00 1.oMxH)E+00 I.OOOOOE+W ICD 2 2 2 2 2 2 2 r f =210.0O0F, 4= 14.696 psia, cd 5.99845E-01 5.98290E-01 5.97883E-01 5.97682E-01 5.975 15E-01 5.97444E-01 5.97390E-01 p,,p = 58.792 ib/ft3, p = 2.8250E-01 cP, 4rri 5.31158E+03 1.88859E+04 3.14549E+04 4.40222E+04 6.28712E+04 7.54365E+04 8.80013E+04 k=-l.o, pb = 62.366 Ib/ft3 Qv l.O1202E+O2 3.02823E+02 5.04361E+02 7.05868E+02 1.00810E+03 1.20958E+03 1.41105E+03 Y l.OOOOOE+OO l.OOOOOE+CG 1.OOOOOE+00 1.oooOOE+00 1.000OOE+00 1.OOO00E+OO 1.00OOOE+00 ICD - 2 2 2 12 12 rf = 0.OOoF, 4= 14.696 psia, c d 5.9980 1E-O 1 5.98282E-01 5.97895E-01 I 5.97716E-01 I 5.97586E-01 = 0.13223 Ib/ft3, p = 1.3070E-02 cP, e, 2.9763 1E+02 8.78380E+02 1.42218E+03 1.90471E+03 2.46020E+03 k = 1.3198, pb = 0.116198 Ib/ft3 Qv 2.56 141E+03 7.55934E+03 1.22393E+04 1.63920E+04 2.11725E+04 Y 9.98282E-01 9.84540E-01 9.57057E-01 9.15831E-01 8.28226E-01 ICD - 2 2 2 2 2 2 I I r/ = 50.00F, 6 = 100.00 psia, cd 5.98782E-01 5.97792E-O 1 5.97533E-01 5.97406E-01 5.97301E-01 5.97258E-01 5.97225E-01 ptP = 0.31109 lb/ft3, /i 1.0670E-02 cP, = 4n 1 4.56835E+02 1.36558E+03 2.26605E+03 3.15307E+03 4.44673E+03 5.27683E+03 6.0748 1E+03 k 1.3622, pb = 0.044210 Ib/ft3 Qv 1.03333E+04 3.08884E+04 5.12565E+04 7.13202E+04 1.00582E+05 1.19358E+05 1.37408E+05 Y 9.99755E-01 9.97799E-01 9.93885E-01 9.88016E-0í 9.75542E-01 9.64780E-O1 9.52062E-O1 ICD - 2 2 2 2 r/ = O.W"F, 4= 1OOO.00 psia, c d 5.98781E-01 5.97790E-01 5.97530E-01 5.97402E-01 5.97294E-01 = 65.072 ib/ft3, p = 1.5430E-01 cP, e, 6.60264E+03 1.97753E+04 3.29445E+04 4.61124E+04 6.58631E+04 k=-1.0, pb = 0.116198 ib/ft3 Qv 5.68223E+04 1.70187E+05 2.83520E+05 3.96844E+05 5.66817E+05 Y 1.000OOE+W I.OOOOOE+OC l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+W ICD - 2 2 2 2 2 r f = 0.00"F, 4= 200.00 psia, cd 5.98063E-01 5.97453E-01 5.97292E-01 5.97213E-01 5.97147E-01 5.97099E-01 P , , ~= 2.0466 Ib/ft3, p 1.3520EX2 cP, 4ra 1.16940E+03 3.50110E+03 5.82180E+03 8.12468E+03 1.15302E+04 k = 1.3198, pb =0.116198 Ib/ft3 Qv 1.00638E+04 3.01305E+04 5.01024E+04 6.99210E+04 9.92291E+04 Y 9.99874E-01 9.98864E-01 9.96845E-01 9.93815E-01 9.87378E-01 9.75261E-01 ICD - 2 2 T/ = 50.W°F,p f = 500.00 psia, cd 5.98006E-01 5.97426E-01 5.97273E-01 5.97 197E-01 5.97 134E-0 I 5.97108E-01 5.97088E-01 prP= 1.6623 ib/fe, p = 1.1310E-02 cP, 9lli 1.05486E+03 3.16029E+O? 5.26168E+03 7.35677E+03 1.04823E+04 1.2551OE+04 k L 1.3622, pb = 0.044210 ib/ft3 Qv 2.38601E+04 7.14837E+04 1.19016E+05 1.66405E+05 2.37102E+05 Y 9.99951E-01 9.99560E-01 9.98777E-01 9.97603E-01 9.95108E-01 9.92956E-01 9.90412E-01 ICD - 2 2 2 12 12 = 150.00"F, 4= 1000.00 psia, cd 5.97958E-01 5.9740450 1 5.97257E-0115.97185E-011 5.97125-1 pi,p = 2.7573 lb/ft3, p = 1.3650E-02 cP, Gnn t 1.36101E+O? 4.07848E+O: 6.79313E+03 9.50365E+03 1.35583E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 3.07851E+04 9.22523E+Of 1.53656E+05 2.14966E+05 3.06680E+05 Y 9.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 ICD - 2 2 2 2 2 Tf = 140.00"F. 9 = 2000.00 psia, cd 5.97878E-01 5.97366E-01 5.97230E-01 5.97164E-01 5.97108E-01 P , , ~ 32.465 ib/ft3, p = 4.1710E-02 cP, = 4m 4.66872E+03 1.39943E+W 2.33185E+04 3.26423E+04 4.66275E+04 k=-l.O,pb = 0.116198 ib/ft3 QV 4.01790E+04 1.20435E+O: 2.00679E+05 2.80920E+05 4.01276E+05 Y 1.00000E+OC 1.00000E+O( 1.000OOE+00 l.OOOOOE+00 I.OOOOOE+OC ICD - 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • -- --_____- - _ A P I MPMS*34-3*4 9 2 m 0 7 3 2 2 9 0 0506373 T O T m a4 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units Dm = 14.31154in, CS = 0.00000620 in/in-"F, d, = 2.85937in, al = 0.00000925 idin-"F Cell @(inches H,O at 6OoF) Valut Flow Conditions 2.2484 20.2360 56.2110 110.1736 224.8440 323.7754 440.6943 - q = 0.00F, 4 = 14.696 psia, c d 1.17826E+OO 9.17031E-0 8.35608E-01 7.92546E-01 7.54610E-01 7.37907E-01 7.25060E-01 pl,p = 58.199 ib/ft3, /.i = 1.8650E+03cP, %I 3.9551 1E+04 9.23478E+@ 1.40247E+05 1.86227E+05 2.53305E+05 2.97237E+05 3.40740E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 6.95574E+02 1.6241OE+O: 2.46649E+03 3.27513E+03 4.45480E+03 5.22744E+03 5.99250E+03 Y 1.00000E+00 l.OOOOOE+OI l.OOOOOE+OO l.OOOOOE+CO l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OC ICD - -4 -4 -4 -4 -3 -3 -3 T/ = 68.00F, 4 = 14.696 psia, c d 7.68831E-O1 6.83523E-01 6.59173E-01 6.46865E-01 6.36388E-01 6.31890E-01 6.28479E-01 = 56.660 Ib/ft3, /.i = 2.1220E+02 cP, %,I 2.54962E+04 6.80022E+01 1.09299E+05 1.50162E+05 2.1 1043E+05 2.51461E+05 2.91788E+05 k = -1.0, pb = 56.861 Ib/ft3 Q" 4.48395E+02 1.19594E+O: 1.92222E+03 2.64086E+03 3.71155E+03 4.42238E+03 5.13160E+03 Y 1.00000E+00 1.00000E+O( l.OOOOOE+00 1.00000E+00 l.OOOOOE+OO 1.00000E+00 l.OOOOOE+W ICD - -4 -3 -3 -3 -3 -3 -3 l = 176.00°F, 4 = 14.696 psia, j Cd 6.32128E-01 6.13732E-01 6.08682E-01 6.06089E-01 6.041 17E-01 6.03284E-01 6.02656E-01 P,,~= 54.214 Ib/ft3, /.i = 1.749OE+Ol cP, 41 11 2.05463E+04 5.98458E+ol 9.89222E+04 1.37901E+05 1.96361E+05 2.35308E+05 2.74240E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 3.6 I343E+02 l.O5249E+O: 1.73972E+03 2.42523E+03 3.45334E+03 4.13830E+03 4.82299E+03 Y 1.00000E+00 1.0000OE+o( 1.0OooOE-1-00 1.OOOOOE+00 l.OOOOOE+00 l.O0000E+00 1.0OOOOE+00 ICD - -? , . -? I " -2 1 -2 12 12 12 7 = 60.00F, 8 = 14.696 psia, c d 6.02246E-01 I 5.99492E-01 5.98771E-01 I 5.98417E-01 I 5.98121E-01 I 5.97995E-01 I5.97901E-01 pl,p = 62.366 Ib/ft3, /= 1.1990 cP, .i Qlri 1.04148E+05 1.45721E+05 2.08069E+05 2.49631E+05 2.91 190E+05 k = -1.0, pb = 62.366 Ib/ft3 Qv 1.66994E+03 2.33654E+03 3.33626E+03 4.00268E+03 4.66905E+03 Y l.OOOOOE+0O 1.OOOOOE+00 l.OOOOOE+OO 1.OOOOOE+00 1.00000E+OO ICD - 2 2 2 2 2 r f = 210.00°F, 4= 14.696 psia, cd 5.97704E-01 5.97570E-01 5.97458E-01 5.97410E-01 5.97374E-01 = 58.792 Ib/ft3, j i = 2.8250E-01 cP, !?Ili 1.01220E+05 1.41676E+05 2.02356E+05 2.42808E+05 2.83259E+05 i( = -1.0, pb = 62.366 Ib/ft3 Q" 1.62300E+03 2.27169E+03 3.24466E+03 3.89328E+03 4.54188E+03 Y 1.00000E+00 l.OOOOOE+OO 1.00000E+00 1.00000E+00 1.0OOOOE+00 [CD - 2 2 2 12 12 12 12 g = O.OO°F, 4= 14.696 psia, Cd 5.98984E-01 5.9797OE-O1 j.97712E-01 I 5.97592E-01 I 5.97505E-01 I 5.97479E-OlI5.97471E-01 = 0.13223 ib/ft3, j i = 1.3070E-02 cP, qlll 9.56737E+oi 2.82594E+O: $.57643E+03 6.12979E+03 7.91805E+03 8.63419E+O? 8.87763E+03 k = 1.3198, pb = 0.116198 lb/ft3 Qv 8.23368E+O: 2.43200E+OL 3.93848E+04 5.27530E+04 6.81427E+04 7.43059E+M 7.64009E+04 Y 9.98282E-01 9.84540E-01 9.57056E-01 9.15831E-01 8.28226E-01 7.52645E-01 6.63322E-01 [CD - 2 2 1 2 2 2 2 rf = 50.00"F, p f = 100.00psia, c, 5.98304E-O1 5.97643E-01 5.97469E-01 5.97384E-01 5.97314E-01 5.97285E-01 5.97263E-0 1 P,,~= 0.31 109 Ib/ft3, /.i = 1.0670E-02 cP, BI 1.46933E+O? 4.39455E+O? 7.29340E+03 1.01490E+04 1.43139E+04 1.69863E+04 1.95554E+04 i( = 1.3622, pb = 0.044210 Ib/ft3 Qv 3.32353E+04 9.94017E+OL I.64972E+05 2.29564E+05 3.23770E+05 3.84219E+05 4.42330E+05 Y 9.99755E-01 9.97799E-01 3.93885E-01 9.88015E-01 9.75542E-01 9.64780E-01 9.52062E-01 [CD 1 2 2 2 2 7 j = O.OO"F, p f = 1000.00 psia, cd 5.98304E-0 1 5.97642E-01 5.97467E-01 5.97381E-01 5.97309E-01 5.97278E-01 5.97255E-01 ?f,p = 65.072 Ib/ft3, j i = 1.5430E-01 cP, b i 2.12363E+04 6.36389E+3+04 i.O6034E+O5 1.48426E+05 2.1201 1E+05 2.54401E+05 2.96789E+05 i = -1.0, pb = 0.116198 Ib/ft3 2, 1.82759E+05 5.47676E+05 ).12526E+05 1.27735E+06 1.82457E+06 2.18937E+06 2.55417E+06 Y l.OOOOOE+OC l.OOOOOE+OC LO O O + O 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OC l.OOOOOE+OO . O O EO [CD - 2 2 l 2 2 2 2 rf = O.OO°F, íj= 200.00 psia, P -d 5.97824E-O1 5.974 16E-01 i97308E-01 5.97254E-01 5.97210E-01 5.97191E-01 5.97177E-01 >f,p= 2.0466 Ib/ft3, /.i = 1,3520E-02 cP, ?Ili 3.76265E+03 1.12690E+04 1.87402E+04 2.61543E+04 3.71185E+04 4.42902E+04 5.13253E+04 I = 1.3198, pb = 0.116198 Ib/ft3 2, 3.238 14E+04 9.69807E+04 1.61278E+05 2.25084E+05 3.19441E+05 3.81162E+05 4.41706E+05 Y 9.99874E-01 9.98864E-01 P.96845E-01 9.93815E-01 9.87378E-01 9.81824E-01 9.75261E-01 .CD 2 2 * * m m . - n I I I I r/ = 50.00F, p f = 500.00 psia, ?I 5.97786E-01 5.97397E-01 i.97295E-0II5.97244E-01I5.97201B41 I5.97183E-01 I5.97170&01 )f,p = 1.6623 Ib/ft3, j i = 1.1310E-02 cP, := 1.3622,pb = 0.044210 Ib/ft3 ?ni 2, Y - CD - I l I 3.39422E+03 1.01722E+04 1.69374E+04 2.36825E+04 3.37451E+04 4.04053E+04 4.70177E+04 7.67750E+04 2.30087E+05 I. 83 113E+05 5.35682E+05 7.6329 1E+05 9.13941E+05 1.O6351E+06 9.99951E-01 9.99560E-01 ).98777E-01 9.97603E-01 9.95108E-01 9.92956E-01 9.90412E-01 I I y = 15O.0O0F, 9 = 1OOO.00 psia, *d 5.97755E-01 5.97383E-01 i.97284E-01 5.97236E-01 5.97195E-01 5.97178E-01 5.97165E-01 = 2.7573 Ib/ft3, /= 1.3650E-02 cP, .i 4.37944E+03 1.31277E+04 !.18674E+04 3.05938E+04 4.36479E+04 5.23194E+04 6.09601E+04 : = 1.3622, pb = 0.044210 Ib/ft3 + b i 3.90600E+04 3.99976E-01 2.96940E+05 9.99780E-01 1.94625E+05 1.99389E-01 6.92011E+05 9.98802E-01 9.87286E+05 1.18343E+06 9.97554E-01 9.96478E-01 1.37888E+06 9.95206E-01 CD - . L I I* 1 2 2 2 2 = 140.00°F, 9 = 2000.00 psia, r. -d 5.97701E-01I5.97357E-01 i.97266E-01 5.97221E-01 5.97183E-01 5.97167E-01 5.97155E-01 = 32.465 Ib/ft3, /.i = 4.1710E-02 cP, 1111 .50644E+04 1.05082E+05 1.50108E+05 1.80125E+05 2.10141E+05 : = -1.0, pb = 0.116198 Ib/ft3 3, i.46004E+05 9.04338E+05 1.29183E+06 1.55015E+06 1.80847E+M .OOOOOE+00 l.OOOOOE+OO 1.OOOOOE+OO l.OOOOOE+OO l.OOO00E+OO CD -COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*14-3-4 92 m 0732290 O506372 9Llb = SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 85 Table 4-C-&Selected Round Robin Test Results Matrix-US Units D = 29.37598 in, a! = 0.00000620 in/in°F, d,,, = 5.87500 in, a = 0.00000925 in/in-"F m ; 1 AP(inches H?O at 60°F) i Cell Flow Conditions Value 2.2484 I 20.2360 56.21 10 110.1736 224.8440 323.7754 440.6943 T = O.GOOF, p/ = 14.696 psia, cd 9.91422E-01 8.07597E-01 7.5 1815E-01 7.22773E-O1 6.975 16E-01 6.86507E-01 6.78091E-01 = 58.199 lb/ft3, p = 1.8650E+03cP, 91 11 1.40492E+05 3.43331E+05 5.32694E+05 7.16964E+05 9.88442E+05 1.16741E+06 1.34528E+06 k=-1.0, pb = 56.861 Ib/ft3 Q v 2.47080E+03 6.03808E+03 9.36836E+03 I .26091E+04 I.73835E+04 2.053098+04 2.36591E+04 Y 1.OOOOOE+Oo 1.00000E+W 1.OOO00E+OC 1.00000E+00 1.OoooOE+00 1.00000E+W I .OOOOOE+OO ICD - -4 -4 -3 -3 TJ = 68.00"F, 4= 14.696 psia, cd 7.06945E-01 6.5 1218E-0 1 6.35725E-01 6.27969E-01 6.21400E-01 6.18585E-01 6.16449E-0 I p f p= 56.660 Ib/ft3, p = 2.1220E+02 cP, 91 11 9.89705E+04 2.73509E+05 4.45004E+05 6.15405E+05 8.69952E+05 l.O3921E+O6 I .20823E+06 k=-1.0, pb = 56.861 Ib/ft3 Q V 1.74057E+03 4.81014E+03 7.82617E+03 l.O823OE+04 1.52996E+04 1.82764E+04 2.12488E+04 Y 1.00000E+00 I .00000E+W 1.OOOOOE+00 1 .OOOOOE+00 I .00OOOE+00 I .00000E+W I .OOOOOE+00 ICD - -3 -3 -3 1-3 1-3 1-3 -3 T f = 176.00"F. 4= 14.696 psia, cd 6.18734E-01 6.07105E-01 6.04084E-01 I6.02653E-OlI6.01458E-01 I6.00951E-01 6.00570E-01 pf,p= 54.214 Ib/ft3, p = 1.749OE+OI cP, 41 11 8.49004E+04 2.499 16E+05 4.14454E+05 5.78862E+05 8.25305E+05 9.89532E+05 I. 15372E+06 k = -1.0, pb = 56.861 lb/ft3 Q,, 1.49312E+03 4.39522E+03 7.28890E+03 1.O 1803E+O4 1.45144E+04 1.74027E+04 2.02902E+04 Y 1.OOOOOE+00 1.00000E+W 1.00000E+00 1.OOOOOE+00 1.OOOOOE+00 1.OOOOOE+W 1.00000E+00 ICD -3 -2 2 2 2 2 2 TJ = 60.00"F, = 14.696 psia, Cd 6.00321E-01 5.98647E-01 5.98208E-01 5.97992E-01 5.97812E-01 5.97736E-01 5.97678E-O1 pf,p= 62.366 Ib/ft3, p = 1.1990 cP, 41 11 8.81607E+04 2.63747E+05 4.39256E+05 6.14737E+05 8.7793 lE+05 1.05338E+06 1.22883E+06 k = -1.0, p b = 62.366 lb/ft3 Q v 1.41360E+03 4.22903E+03 7.04320E+03 9.85693E+03 1.4077 1E+04 1.68903E+M 1.97035E+04 Y 1.00000E+00 1.OOOM)E+W 1.00000E+00 1.oooOOE+00 1.00000E+00 1.00000E+W 1.OoooOE+OO ICD - 2 2 2 (2 12 12 2 ?j 21O.OO0F, 4 = 14.696 psia, = cd 5.98357E-01 5.97725E-01 5.97558E-01 I 5.97476E-01 I 5.97407E-01 I 5.97378E-01 5.97355E-01 pfp= 58.792 Ib/ft3, j i = 2.8250E-01 cP, 41 11 8.55544Et04 2.56395E+05 1.19577E+06 k = -1.0, p b = 62.366 Ib/ft3 Q v 1.37181E+03 4.11113E+03 1.91734E+04 Y 1.OOOOOE+00 1.OOOOOE+W 1.OOOOOE+00 ICD 2 2 2 TJ = O.OO"F, 4= 14.696 psia, cd 5.98338E-01 5.97720E-01 5.97489E-01 5.97435E-01 5.97419E-01 5.974 14E-O1 pf,p= 0.13223 lb/ft3, p = 1.3070E-02 cP, 41 11 4.03460E+03 l,1925OE+04 2.58730E+04 3.34228E+04 3.64464E+04 3.74741E+04 k = 1.3198,pb=0.1161981b/ft3 Q v 3.472 17E+04 1.02626E+05 1.66225E+05 2.22663E+05 2.87637E+05 3.13657E+05 3.22502E+05 Y 9.98282E-01 9.84540E-01 9.15830EMl 8.28225E-01 7.52644E-01 6.63320E-01 ICD - 2 2 2 2 TJ = 50.00"F. p/ = 100.00 psia, c, 5.97924E-O1 5.97520E-O1 5.97361E-01 5.97318E-01 5.97300E-01 5.97286E-01 = 0.31 109 ib/ft3, p = 1.0670E-02 cP, 41 11 6.19898E+03 1.85482E+04 3.07869E+04 4.28433E+04 6.04277E+04 7.171 11E+04 8.25582E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 1.40217E+05 4.19547E+05 6.96378E+05 9.69087E+05 1.36683E+06 1.62206E+06 1.8674 1E+06 Y 9.99755E-0 1 9.97799E-O 1 9.93885E-01 9.88015E-01 9.75542E-01 9.64780E-01 9.52062E-01 ICD 2 - 2 2 2 2 2 TJ = O.OO"F, p/ = 1OOO.00 psia, Cd 5.97924E-01 5.97519Ero 1 5.97412E-01 5.97359E-01 5.97315E-01 5.97296E-01 5.97282E-01 pf,p= 65.072 lb/ft3, j i = 1.5430E-01 cP, 41 11 8.95938E+04 2.68602E+05 4.47590E+05 6.26571E+05 8.95034E+05 1.07401E+M 1.25298E+06 k=-1.0, jib = 0.1 16198 ib/ft3 Q 7.71045E+05 2.31159E+O6 Y v l.OOOOOE+OO l.OOOOOE+C€ ICD 2 - 2 I 3.85 1968t06 5.392278+06 7.70266E+06 9.24291E+O6 1.ooOo8++0 1.00000E+00 1 . 0 0 0 8 + 0 0 I .WOWE+Oa 1.0783 1E+07 1.00000E+00 2 TJ = O.ûO°F, p/ = 200.00 psia, c, 5.97631E-0 1 5.9738050 1 5.97314E-01 5.97281E-01 5.97254E-01 5.97242E-01 5.97233E-01 pf,p= 2.0466 lb/ft3, p = 1.3520E-02 cP, 41 11 1.58793E+04 4.75702E+04 7.91 144E+04 1.10418E+05 1.56710E+05 1.86991E+05 2.16695E+05 k = 1.3198,pb=0.1161981b/ft3 Qv 1.36657E+05 4.09389E+05 9.50254E+05 1.34865E+06 1.60925E+06 1.864888+06 Y 9.99874E-01 9.98864E-01 9.96844E-O1 9.93815E-01 9.87378E-01 9.81824E-01 9.75261E-01 ICD . i - + 2 -L IL 2 2 2 TJ = 50.00"F, 4= 500.00 psia, cd 5.97608501 I 5.97369EM1 5.97275E-01 5.97248E-01 5.97237E-01 5.97229E-O1 pf,p= 1.6623 ib/ft3, f l = 1.1310E-02 cP, 4L " 1.43248E+04 4.29407E+04 9.99830E+04 1.42469E+05 1.70590E+05 1.98509E+05 k = 1.3622, pb = 0.044210 ib/ft3 Q 3.24016E+05 9.71290E+05 v 2.26155E+06 3.22256E+06 3.85863E+06 4.49014E+06 Y 9.99951E-01 9.99560E-01 9.98777E-01 9.97603E-01 9.95108E-01 9.92956E-01 9.904 12E-0 1 ICD 2 - 2 2 TJ = 150.00"F, 4= 1OOO.00 psia, cd 5.97589E-01 5.97361E-01 5.97300E-O1 5.97270E-01 5.97245E-01 5.97234E-01 5.97226E-O1 pf,p= 2.7573 Ib/ft3, p = 1.3650E-02 cP, 4ni 1.84831E+04 5.54179E+04 9.23175E-cO4 1.29162E+05 1.84279E+05 2.20892E+05 2.57375E+05 k = 1.3622, pb = 0.044210 Ib/ft3 Q" 4.18075E+05 1.25351E+06 2.08816E+06 2.92156E+06 4.16826E+06 4.99643E+06 5.82165E+06 Y 9.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 9.96478E-01 9.95206E-01 ICD 2 - 2 2 2 2 2 2 TI = 140.00°F, p/ = 2000.00psia, Cd 5.97556E-01 5.97345E-01 5.97289E-01 5.97261E-01 5.97237E-01 5.97227E-01 5.97220E-O1 pf,p= 32.465 lb/ft3, p = 4.1710E-02 cP, 41 11 6.34084E+04 1.90160E+05 3.16903E+05 4.43644E+05 6.33752E+05 7.60490E+05 8.87227E+05 k=-1.0,p~=0.1161981b/ft3 Q 5.45693E+05 1.63652E+06 2.72727E+06 3.8 18OOE+06 5.45407E+06 6.54477E+06 v 7.63547E+06 Y l.OOOOOE+OO l.OOOOOE+ûC l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO I.OOOOOE+ûC 1.0OOOOE+00 ICD 2 - 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • __ A P I MPMS*L4.3.4 7 2 W 0732270 0506373 8 8 2 86 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( D = 1.93945 in, cc;! = 0.00000620 in/in-"F, d, = 0.78906 in, al = 0.00000925 in/in-OF) , Cell AP (inches H,O at 60°F) I Flow Conditions Value 2.2484 TJ-= O.W°F, PJ= 14.696 p i a , cd 9.91422E-01 P,,~ 58.199 lb/ft3, p = 1.8650E+03CP, = 41 11 1.40492E+O: k = -1.0. pb = 56.861 Ib/ft3 Qv 2.4708OE+O: Y 1.00000E+O( - -4 ICD I - l - I " I " I " ïj=68.0O0F,PJ= 14.696 p i a , Cd 7.06945E-03 6.51218E-01 I6.35725E-01 I6.27969E-O1 16.214WE-01 I6.18585E41 16.16449E-01 pl,p = 56.660 Ib/ft3,p = 2.1220E+02 cP, 411, 9.89705E+oL 2.73509E+05 4.45004E+05 6.15405E+05 8.69952E+05 1.03921E+06 1.20823E+06 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.74057E+O: 4.81014E+03 7.82617E+03 1.08230E+04 1.52996E+04 1.82764E+04 2.12488E+04 Y l.OOOOOE+o( 1.00000E+OO l.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 l . O ~ E + W ICD - -3 -3 -3 -3 -3 -3 ïj=176.iN°F,PJ= 14.696 psia, c d 6.18734E-03 6.07105E-01 6.04084E-01 6.02653E-01 6.01458E-01 6.00951E-01 6.00570E-01 pl,p = 54.214 Ib/ft3,p = 1.749OE+Ol cP, 41 11 8.49004E+oL 2.49916E+05 4.14454E+05 5.78862E+05 8.25305E+05 9.89532E+05 1.15372E+06 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.49312E+0: 4.39522E+03 7.28890E+03 1.01803E+04 1.45144E+04 1.74027E+04 2.02902E+04 Y 1.00000E+O( l.OOOOOE+00 1.00000E+00 l.OOOOOE+OC 1.00000E+00 1.OOOWE+00 1.00MX)E+00 - -3 ICD -2 2 2 2 2 2 TJ-= 60.W°F, PJ= 14.696 psia, Cd 6.00321E-03 5.98647E-01 5.98208E-01 5.97992E-01 5.97812E-01 5.97736E-01 5.97678E-01 P,,~ 62.366 Ib/ft3,p = 1.1990 cP, = 41 11 8.81607E+oL 2.63747E+05 4.39256E+05 6.14737E+05 8.77931E+05 1.05338E+06 1.22883E+06 k = -1.0, pb = 62.366 Ib/ft3 Qv 1.41360E+0: 4.22903Et03 7.04320E+03 9.85693E+03 1.40771E+04 1.68903E+04 1.97035E+04 Y l.OOOOOE+O( l.OOOOOE+OO 1.OoooOE+00 1.00000E+W l.OOOOOE+OO l.oM)0(1E+00 1.00000E+00 -2 ICD 2 2 2 2 Tf= 210.00F, PJ= 14.696 psia, cd 5.98357E-01 5.97725E-01 5.97558E-01 5.97476E-01 5.97407E-01 pl,p= 58.792 lb/ft3,p = 2.8250E-01 cP, Qi 8.55544E+oL 2.56395E+05 4.27205E+05 5.98004E+05 8.54193E+05 k = -1.0, pb = 62.366 lb/ft3 Q" 1.37181E+O: 4.1 1113E+03 6.84996E+03 9.58863E+03 1.36965E+04 Y 1.OOOOOE+O( l.OOOOOE+OO l.O00OOE+00 1.OOOOOE+00 l.OOOOOE+OC -2 ICD 2 2 2 2 TJ-= O.OO"F, PJ= 14.696psia, cd 5.98338E-01 5.97720E-01 5.97562E-01 5.97489E-01 5.97435E-01 P,,~ 0.13223 lb/ft3, p = 1.3070E-02 cP, = 4ni 4.0346OE+O? 1.19250E+04 1.93150E+04 2.58730E+04 3.34228E+04 k = 1.3198, pb = 0.116198 lb/ft3 Qv 3.47217E+OL 1.02626E+05 1.66225E+05 2.22663E+05 2.87637E+05 Y 9.98282E-01 9.84540E-01 9.57056E-01 9.15830E-01 8.28225E-01 ICD - ïj=50.00"F, PJ= 100.00 psia, cd 5.97924E-0 1 5.97520E-01 5.97414E-01 5.97361E-01 5.97318E-01 5.97300E-01 pbp= 0.31 109 Ib/ft3,p = 1.0670E-02 cP, 41 11 6.19898E+O? 1.85482E+04 3.07869E+04 4.28433E+04 6.04277E+04 7.17111E+04 k = 1.3622, pb = 0.044210 3b/ft3 Qv 1.40217E+O: 4,19547E+05 6.96378E+05 9.69087E+05 1.36683E+06 1.62206E+OC Y 9.99755E-01 9.97799E-01 9.93885E-01 9.88015E-01 9.75542E-01 9.64780E-01 ICD 2 2 2 2 2 2 Tf= O.OO"F, P f = 1ooO.00 psia, cd 5.97924501 5.97519E-01 5.97412E-01 5.97359E-01 5.97315E-01 5.97296E-01 P , , ~ 65.072 lb/f$, p = 1.5430E-01 cP, = 4ni 8.95938E+04 2.68602E+05 4.47590E+05 6.26571E+05 8.95034E+05 l.O7401E+M 1.25298E+06 k = -1 .O, pb = O. 116198 1b/ft3 Qv 7.71045E+05 2.31 159E+06 3.85196E+06 5.39227E+06 7.70266E+06 9.24291E+M Y 1.00000E+OC 1.00000E+00 1.00000E+00 1.OOOOOE+00 1.00000E+W 1.00000E+íX 1.00000E+00 -2 ICD 2 2 2 2 2 TJ-= 0.00F, PJ= 200.00 psia, cd 5.9763lE-01 5.97380E-01 5.97314E-01 5.97281E-01 5.97254-1 5.97242E-0 1 5.97233E-01 p,p = 2.0466 lb/ft3,p = 1.3520E-02 cP, 41 11 1.58793E+04 4.75702E+04 7.91 144E+04 1.10418E+05 1.56710E+05 1A699 1E+05 2.16695E+05 k; 1.3198, pb = 0.116198 lb/ft3 Qv 1.36657E+O5 4.09389E+05 6.80859E+05 9.50254E+05 1.34865E+06 1.60925E+Of 1.86488E+06 Y 9.99874E-01 9.98864E-01 9.96844E-01 9.93815E-01 9.87378E-01 9.8 1824E-01 9.75261E-01 n ?3 ?3 ?3 0 -2 ICD I I IL Tf=50.00"F, PJ= 500.00 psia, cd 5.97608E-01 5.97369E-01 I5.97306E-01 I5.97275E-01 I5.97248EolI5.97237E-01 I5.97229E-01 pl,p= 1.6623 lb/f$, = 1.131OE-02 cP, k = 1.3622,pb = 0.044210 lb/ft3 4m 1.43248E+04 Q" 3.24016E+05 Y ICD 9.99951E-01 I l I l 4.29407E+04 7.15042E+04 9.99830E+04 1.42469E+05 1.70590E+05 1.98509E+05 9.71290E+05 1.61738E+06 2.26155E+06 3.22256E+06 3.85863E+06 4.49014E+06 9.99560E-01 9.98777E-01 9.97603E-01 9.95108E-01 9.92956E-01 9.90412E-01 I l i TJ-= 150.00°F,P f = 1000.00psia, cd 5.97589E-01 5.97361E-01 5.97300E-01 5.97270E-01 5.97245E-01 5.97234E-01 5.97226E-01 pt,p= 2.7573 Ib/ft3,p = 1.3650E-02 cP, 41 11 1.84831E+04 5.54179E+W 9.23175E+W 1.29162E+05 1.84279E+05 2.20892E+05 k = 1.3622, pb = 0.044210 lb/ft3 Qv 4.18075E+05 1.25351E+M 2.08816E+06 2.92156E+06 4.16826E+06 4.99643E- Y 9.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 9.96478E-01 9.95206E-01 -2 ICD 2 2 2 2 Tf= 140.00F, Pf= 2000.00 psia, cd 5.97556E-01 5.97345E-01 5.97289E-01 5.97261E-01 5.97237E-01 5.97227E-01 P,,~= 32.465 lb/ft3, p = 4.1710E-02 cP, 41 11 6.34084E+04 1.90160E+05 3.16903E+05 4.43644E+05 6.33752E+05 7.60490E+05 k=-1.0, pb = 0.116198 Ib/ft3 13" 5.45693E+05 1.63652E+06 2.72727E+06 3.8 18OOE+06 5.45407E+06 6.54477E+06 Y l.OOOOOE+OC 1.OOooOE+00 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+00 1.OOOOOE+OO ICD -2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14.3.4 92 = 0732290 O506374 719 W SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND a7 Table 4-Cd-Selected Round Robin Test Results Matrix-US Units ( D, = 2.90039 in, = 0.00000620in/in-"F, d, = 1 .I7969in, al = 0.00000925idin-OF) - Cell A (inches H,O at 60°F) i Flow Conditions lalue - 2.2484 I I 20.2360 I I 56.2110 I I 110.1736 I l 224.8440 I I 323.7754 440.6943 ïj=0.00F, PJ= 14.696 psia, cd 1.98291E+001 1.39638E+Wl 1.20891E+00l 1.10788E+001 1.01726E+0019.76751E-0 1 ).45278E-01 p,,p = 58.199 Ib/ft3, p = 1.8650E+03cP, ?ill 7.66087E+04 k = -1 .O, pb = 56.861 ib/ft3 2, 1.3473OE+O3 Y I.OOOOOE+00 [CD - -5 4 TJ= 68.00"F, PJ= 14.696 psia, c d 1.05155E+00 8.41234E-01 7.77968E-01 7.45121E-01 7.16547E-01 7.04057E-01 5.94472E-0 1 p,,p= 56.660 Ib/ft3, p = 2.1220E+02 cP, b r 6.01380E+O3 1.44331E+04 2.22461E+04 2.98296E+04 4.09796E+04 4.83 183E+O4 !.56039E+04 k = -1.0, pb = 56.861 ib/ft3 Q" 1.05763E+02 2.53832E+02 3.91237E+O2 5.24606E+02 7.20697E+02 8.49762E+02 >.77892E+02 Y 1.OOOOOE+00 l.OOOOOE+00 1.OOOOOE+00 I .00000E+00 1.00000E+00 1.OOOOOE+00 I .00000E+00 [CD - -4 4 -4 -3 -3 -3 -3 T/= 176.oO0F,PJ= 14.696psia, cd 7.04770E-01 6.50983E-01 6.34050E-01 6.24074E-01 6.17209E-01 6.15228E-01 3.13737E-0 1 P,,~= 54.214 Ib/ft3,p = 1.7490E+01cP, 7111 3.95056E+03 I .09473E+04 1.77709E+O4 2.44878E+04 3.45977E+04 4.13840E+04 1.81644E+O4 k = -1.0, p b = 56.861 Ib/ft3 Qv 6.94776E+Ol 1.92527E+O2 3.12532E+02 4.30661E+02 6.08461E+02 7.27810E+02 3.47055E+02 Y 1.00000E+00 l.OOOOOE+OO I.OOOWE+ûû 1 .OOOOOE+00 1.00000E+00 1.00000E+00 I .OOOOOE+00 LCD - -3 -3 -3 -3 3 3 2 T/= 60.0û0F,PJ= 14.696 psia, cd 6.12758E-01 6.06179E-01 6.04415E-01 6.03532E-01 6.02779E-01 6.02454E-01 3.02206E-01 pt,p= 62.366 Ib/ft3, j i = 1.1990 cP, 711, 3.67602E+03 1.09098E+04 1.81300E+04 2.53450E+04 3.61619E+04 4.33709E+04 5.05785E+04 k = -1 .o, p b = 62.366 Ib/ft3 QV 5.89427E+01 1.74932E+02 2.90704E+02 4.06391E+02 5.79834E+02 6.95425E+02 3.10996E+O2 Y 1.00000E+00 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+00 1.OOOOOE+00 1.OOOOOE+00 1.00000E+00 iCD - 2 2 2 2 2 2 2 Tf= 210.00"F, PJ= 14.696 psia, cd 6.05019E-01 6.02409E-01 6.01682E-01 6.01311E-01 6.00989E-01 6.00848E-01 5.00740E-01 P,,~= 58.792 ib/ft3,p = 2.8250E-01 cP, %li 3.53394E+03 1.05562E+04 1.75724E+04 2.45862E+04 3.5 1043E+04 4.21 153E+04 1.91257E+04 k = -1.0, p b = 62.366 ib/ft3 Qv 5.66645E+01 1.69262E+02 2.81762E+02 3.94224E+02 5.62876E+02 6.75293E+02 7.87700E+02 Y 1.00000E+00 1.OOOOOE+00 1.OOO00E+00 1.00000E+00 1.00000E+00 1.00000E+00 1 .00OOOE+00 [CD - 2 2 2 2 2 2 2 TJ=O.ûO°F, PJ= 14.696 psia, cd 6.04938E-01 6.02388E-01 6.01699E-01 6.01370E-01 6.01 125E-01 6.01052E-01 5.01032E-O 1 P,,~= 0.13223 Ib/ft3,p = 1.3070E-02 cP, 4ni 1.66626E+02 4.90771E+02 7.93701E+02 1.06164E+03 1.36751E+O3 1.48709E+03 1.52293E+03 k = 1.3198, pb = 0.116198 ib/ft3 Q, 1.43398E+03 4.22358E+03 6.83059E+03 9.13643E+03 1.17688E+04 1.27979E+04 1.31064E+04 Y 9.98245E-O1 9.84201E-01 9.56114E-01 9.13983E-01 8.24454E-01 7.47214E-01 6.55931E-01 [CD - 2 12 12 12 12 12 2 T/= 50.00"F, P= 100.00 psia, cd 6.03248E-01 I6.01510E-01I 6.01020E-01 I 6.00768E-01 I 6.00552E-01 I 6.00459E-01 6.00388E-01 ptP = 0.31109 lb/ft3,p = 1.0670E-02cP, 4rri 2.55485E+02 7.62725E+02 1.26508E+03 1.75968E+O3 2.48050E+03 2.94256E+03 3.38631E+03 k 2 1.3622, ph = 0.044210 Ib/ft3 Qv 5.77889E+03 1.72523E+04 2.86152E+04 3.98028E+04 5.61071E+04 6.65587E+04 7.65959E+04 Y 9.99750E-01 9.97750E-01 9.93751E-01 9.87752E-01 9.75004E-01 9.64006E-01 9.5 1009E-0 1 ICD - 2 2 2 2 2 2 2 Tf=O.OOF, Pf= 1000.00 psia, c d 6.03246E-01 6.01506E-01 6.01012E-01 6.00758E-01 6.00536E-01 6.00438E-01 6.00363E-01 P,,~= 65.072 ib/ft3, , = 1.5430E-01 cP, ü B i 3.69250E+03 1.10457E+04 1.83943E+04 2.5741 1E+04 3.67594E+04 4.41041E+04 5.14483E+04 k=-1.0, pb = 0.116198 ib/ft3 Qv 3.17776E+04 9.50589E+04 1.58301E+05 2.21528E+05 3.16352E+05 3.79560E+05 4.42764E+05 Y l.OOOOOE+00 l.OOOOOE+OO 1.OOOOOE+OC 1.00000E+00 1.OOO00E+00 1.00000E+W 1.00OOOE+00 [CD - .I - I .I - 2 2 2 2 Tf= O.W°F, P f = 200.00 psia, cd 6.0053IE-01 6.00360E-01 6.0021OE-0 1 6.00 145E-O1 6.00095E-01 p,,+, = 2.0466 lb/ff3, p = 1.3520E-02 cP, 4nt 3.24902E+03 4.53320E+03 6.43153E+03 7.67262E+03 8.88947E+03 k = 1.3198, pb = 0.116198 Ib/ft3 Q" 2.79610E+04 3.90128E+04 5.53497E+04 6.60306E+04 7.65028E+04 Y 9.96775E-01 9.93679E-01 9.87 101E-01 9.8 1425E-O1 9.747 18E-0 1 ICD - 2 2 2 2 2 ïj=50.00"F,PJ= 500.00 psia, c d 6.00491E-01 6.00326E-01 6.00181E-01 6.00117E-01 6.00067E-01 pCp= 1.6623 ib/f?, j i = 1.1310E-02cP, 41 11 2.93647E+01 4.10500E+03 5.84788E+03 7.00120E+03 8.14601E+03 k = 1.3622, pb = 0.044210 ib/f? Qv 6.642 lOE+OI 9.28522E+04 1.32275E+05 1.58362E+05 1.84257E+05 Y 9.98750E-01 9.97550E-01 9.95001E-0 1 9.9280 1E-O 1 9.90202E-OI ICD - 2 Tf= 150.00"F,i 1000.00 psia, = c d 6.00049E-0 1 P,,~= 2.7573 ib/ft3, j i = 1.3650E-02 cP, 41 11 1.05627E+04 k = 1.3622, pb = 0.044210 lb/ft3 Q" 2.38920E+05 Y 9.95101E-01 ICD - 2 T/= 14O.ûO0F,PJ= 2000.00 psia, c d 6.00013E-01 p,,p = 32.465 ib/ft3, p = 4.1710E-02 cP, 41 11 3.64137E+04 k = -1.0, p6 = 0.1 16198 Ib/ft3 Q" Y ICD - I I I 2.24457E+04 6.72275E+04 I . 11992E+05 1.5675üE+05 2.238798+05 2.686298+05 3.13376E+05 1.00000E+00 I .OOOEt00 I .00000E+00 1.00000E+00 I .OOO0017+00 1.OoooOB+oC 1.00000E+00 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 88 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm= 4.02638 in, CS = 0.00000620 in/in-"F, ú = 1.64063 in, al = 0.00000925 in/in-"F) , Cell AF (inches H20 at 60°F) Flow Conditions Value - 2.2484 20.2360 56.2110 110.1736 224.8440- 323.7754 I 440.6943 I r f = O.OO°F, Pf= 14.696 p i a , Cd 1.77644E+00 1.27091E+OO 1.11027E+00 1.02406E+o( 9.47065E-03 9.12766E-O1 8.86185E-01 P,,~= 58.199 lb/f$, j i = 1.8650E+03cP, 41 11 1.98915E+04 4.26930E+04 6.21609E+04 8.02682E+04 l.O6047E+O: 1.22648E+05 1.38922E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 3.49826E+02 7.50831E+02 1.09321E+03 1.41166E+O? 1.86503E+O: 2.15698E+03 2.44319E+03 Y 1.00000E+00 1.00000E+00 1.00000E+00 l.OOOOOE+OC l.OOOOOE+CH 1.OOOOOE+00 l.O0000E+OO ICD -5 -5 -4 -4 -4 4 -4 Tf= 68,00"F;Pf= 14.696 psia, Cd 9.76159E-01 7.98803E-01 7.46110E-01 7.18886E-01 6.95240E-01 6.84893E-01 6.76934E-01 P,,~ 56.660 lb/ft3,j i = 2.1220E+02 cP, = %Il 1.07986E+04 2.65102E+04 4.12691E+04 5.56686E+W 7.69108E+oL 9.09194E+04 1.04840E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.89913E+02 4.66229E+02 7.25790E+02 9.79030E+02 1.35261E+O: 1.59898E+03 1.84379E+03 Y l.OOOOOE+OO 1.00000E+00 1.00000E+00 1.00000E+OC l.OOOOOE+O( l.OOOOOE+Oo 1.00000E+Oa ICD - -4 -4 -3 -3 -3 -3 Tf= 176.û0°F, Pf= 14.696 pia, Cd 6.85485E-01 6.40022E-01 6.24525E-01 6.17802E-01 6.14082E-01 6.12507E-01 6.11320E-01 P , , ~= 54.214 lb/ft3,/ 1.7490E+O1 cP, = i 4ni 7.43258E+03 2.08191E+04 3.38583E+04 4.68914E+04 6.65843E+oL 7.96961E+04 9.27987E+04 k = -1.0, pb = 56.861 lb/ft3 Qv 1.30715E+02 3.66140E+02 5.95457E+02 8.24666E+OL 1.17lOOE+O: 1.40160E+03 1.63203E+03 Y 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+OO l.OooOOE+OC 1.00000E+O[ l.OOOOOE+00 l.OOOOOE+Oa ICD -3 -3 -3 3 2 2 2 r f = 60.0O0~>f= 14.696 p i a , c d 6.10538E-01 6.05266ENl 6.03840E-O1 6.03122E-01 6.02508E-01 6.02242E-01 6.02039E-01 P,,~= 62.366 lb/ft3,j i = 1.1990 cP, 41" 7.08487E+03 2.107 13E+O4 3.50360E+04 4.89922E+W 6.99175E+oL 8.38640E+04 9.78083E+04 k = -1.0, pb = 62.366 lb/ft3 Qv 1.13602E+02 3.37865E+02 5.61781E+02 7.85559E+02 1.12108E+O: 1.34471E+03 1.56830E+03 Y l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OO l.OooOoE+OC 1.00000E+o( 1.00000E+00 1.00000E+00 10 I ICD - 2 2 2 2 2 I) L I Tf=210.00°F, Pf= 14.696 psia, c d 6.04330E-O 1 6.02206E-0 1 6.01609E-O1 6.0 1302E;O1 6.01035E-01 6.00918E-01 I 6.00828E-01 P , , ~= 58.792 Ib/ft3,j i = 2.8250E-01 cP, 41 11 6.82801E+03 2.04122E+04 3.39866E+04 4.75570E+04 6.79084E+W k = -1.0, pb = 62.366 lb/ft? Qv 1.09483E+02 3.27298E+02 5.44954E+02 7.62547E+02 1.08887E+OT Y 1.OOOOOE+00 l.OOOOOE+OO 1.OOOOOE+OO l.OOOOOE+OC l.OOOOOE+O( ICD - 2 2 2 2 2 T - O.OO°F, Pf= 14.696 psia, ,= c d 6.04263E-01 6.02188E-01 6.01622E-01 6.01350E-01 6.01147E-01 P , , ~= O. 13223 lb/ft3, , = 1.307OE-02 CP, ü 4 m 3.21949E+02 9.48994E+02 1.53507E+03 2.05345E+03 2.64521B+O? k = 1.3198, pb = 0.116198 lb/ft3 Q" 2.77069E+03 8.16704E+03 1.32108Et04 1.76720E+04 2.27647E+04 Y 9.98244501 9.84198E-01 9.56106E-01 9.13968E-01 8,24425501 ICD - 2 2 2 2 2 ïj=50.OO0F,P= 100.00 psia, c d 6.02891E-01 6.01466E-01 6.01060E-01 6.00851E-01 6.00670E-01 P , , ~= 0.31109 lb/ft3,j i = 1.0670E-02 cP, 41 11 4.93898E+02 1.47525E+03 2.44724E+03 3.40426E+03 4.79901E+O? 5.693108+03 6.55174E+03 k = 1.3622, pb = 0.044210 lb/f$ Qv 1.11716E+04 3.33692E+04 5.53548E+04 7.70021E+04 l.O855OE+O? 1.287748+05 1.481968+05 Y 9.75000E-01 9.64000E-01 9.5 1001E-01 ICD - 2 2 Tf= O.OO°F, Pf= 1OOO.00 pia, c d 6.00656E-01 6.00574E-01 6.0051 IE-01 P,,~ = 65.072 lb/f?, ji = 1.5430E-01 cP, 41 11 7.1119OE+W 8.5331IB+W 9.95425E+04 k=-i.0,p~=0.1161981b/ft3 Qv 6.12050E+05 7.343600+05 8.566630+05 Y 1.OOOOOE+OC 1.000008+00 1.00000E+00 ICD - L I I I 2 2 2 ïj=O.W°F, Pf= 200.00 p i a , c d 6.01871E-01 I6.00928E-01 I6.00652E-01 I6.00509E-01 6,003830-01 6.00327E-01 6.00285Eol P,,p = 2.0466 Ib/ft3,j i = 1.3520E-02 cP, 41 11 1.26364E+03 3.78 110E+03 6.28592E+03 8.77086E+03 1.24442E+04 1.484588+04 1.72005E+04 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1.08749E+û4 3.25401E+04 5.40966E+04 7.54820E+04 1.07095E+05 1.277638+05 1.48028E+05 Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93678E-01 9.87099E-01 9.81422Eol 9.74714E-01 ICD 2 - 2 2 2 2 2 2 ïj=50.00"F, Pf= 500.00 psia, cd 6.01788E-01 6.00883E-01 6.00619E-01 6.00480E-01 6.00358E-01 6.00304E-01 6.00262Eo1 = P , , ~ 1.6623 lb/ft3, j i = 1.1310E-02 cP, YllI 1.13983E+03 3.41302E+03 5.68131E+03 7.94244E+03 1.13150E+O4 1.35468E+04 1.57621E+04 k = 1,3622,pb = 0.044210 lb/ft3 Qv 2.57822E+04 7.72003E+04 1.28507E+05 1.79653E+05 2.55938E+05 3.06419E+05 3.56528E+05 Y 9.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95000E-01 9.92800E-01 9.90200E-01 ICD 2 - 2 12 12 2 i r/= 150.00°F,P f = 1000.00 pia, cd 6.017208-01 I 6.00849E-01 I 6.00593E-031 I 6.00459Eol 6.00340E-01 6.00287E-01 o,,~= 2.7573 Ib/ft3,j i = 1.3650E-02 cP, Yni 1.46363E+04 1.75426E+04 k = 1.3622, pb = 0.044210 lb/ft3 Qv 3.31063E+05 3.96803E+05 Y 9.97500E-01 9.96400E-01 [CD - 2 /1 l 2 r f = 140.00"F, Pf= 2000.00 psia, c d 6.01600E-01 6.00784E-01 6.00543E-01 6.00417E-01 6.00305E-01 6.00255E-01 1) o , , ~ 32.465 lb/ft3, j i = 4.1710E-02 cP, = Ym 5.04440E+03 1.51128E+04 2.51779E+04 3.52417E+04 5.03358E+04 6.03980E+04 G = -1.0, pb = 0.116198 Ib/ft3 Qv 4.34121E+04 1.30061E+05 2.16681E+05 3.03290E+05 4.33190E+05 5.19785E+05 Y 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+00 1.00000E+W 1.00000E+00 -2 [CD 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API M P f l S * 1 4 * 3 - 4 92 m 0732290 0506376 591 m SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART B BACKGROUND 89 Table 4-C-&Selected Round Robin Test Results Matrix-US Units ( D = 7.98146 in, % = 0.00000620 in/in-"F, d, = 3.25000 in, al = 0.00000925 in/in-OF) , Cell A (inches H,O at 60°F) i I Flow Conditions Value - 2.2484 I I 20.2360 I I I 110.1736 56.2110 I TJ= O.OO"F, P f = 14.696 psia, c d 1.43086E+OOl 1.06321E+00]9.48255E-01 I 8.87250E-01 7.91 133E-01 pf,p= 58.199 lb/ft3,p = 1.8650E+03 cP, 4nr k = -1 .o, pb = 56.86 1 Ib/ft3 Qu Y 1.OOOOOE+00 ICD - -5 Tf= 68.00"F. P f = 14.696 psia, c d 8.53630E-01 7.3 1434E-01 6.95889E-01 6.61455E-01 6.54288E-01 6.48679E-01 6.77545E-01 = P,,~ 56.660 Ib/ft3,p = 2.1220E+02 cP, 4n r 3.70550E+04 9.52528E+04 1.51040E+05 2.87132E+05 3.40825E+05 3.94220E+05 2.05882E+05 k = -1.0, pb = 56.861 Ib/ft3 Q U 6.5 1677E+02 1.67519E+03 2.65629E+03 5.0497 IE+03 5.99400E+03 6.93306E+03 3.62079E+03 Y l.OOOOOE+OO 1.00000E+00 l.OOOOOE+00 1.00000E+00 1. OOOOE+ûC I .00000E+00 1 .OOOOOE+00 O ICD d -? -2 -2 -3 1-3 1-3 - I - I < I d T/= 176.oO0F, P f = 14.696 psia, cd I I 6.54699E-01 6.20169E-01 I 6.14514E-01 6.11743E-01 6.09423E-01 I 6.08435E-01 I 6.07688E-01 pf.p= 54.214 Ib/ft3, p = 1.749OE+Ol cP, %Ir 2.78555E+04 7.91599E+04 I.30730E+05 1.82 1978+05 2.59294E+05 3.10648E+05 3.61979E+O5 k=-l.O,pb = 56.861 Ib/ft3 Qu 4.898888+02 1.39217ö+03 2.299128+03 3.204258+03 4.560 14E+03 5.46330E+03 6.36603E+03 Y I .00000E+00 I .00000E+00 1.00000E+00 I.OOOOOE+Oû 1.00000E+ûC 1.OOOOOE+OO 1.0OOOOE+00 ICD _. -3 -3 2 2 2 2 2 T/= 60.00"F, P f = 14.696 psia, c d 6.071948-01 6.03831E-01 6.02905E-01 6.02434E-01 6.02028E-01 6.0185 IE-01 6.017 15E-01 pf,p= 62.366 Ib/ft3,p = 1.1990 cP, 4irr 2.76487E+04 8.248778+04 1.37268Et05 I .92026E+05 2.74137E+05 3.28868E+05 3.83593E+05 k = -1.0, pb = 62.366 Ib/ft3 Q" 4.433308+02 1.322648+03 2.20101E+03 3.07901E+03 4.39562E+03 5.27320E+03 6.15067E+03 Y 1.000(X)E+00I.(KKH30E+00 1.00000E+00 l.OOüOOE+00 l.OOO00E+OC 1.OOO00E+00 1.OOOOOE+00 ICD - 2 2 . 2 2 2 2 2 Tf=210.0û0F, P f = 14.696 psia, c d 6.03226E-01 6.01 828E-01 6.01427E-O1 6.012 19E-01 6.01036E-01 6.00956E-0 1 6.00893E-O1 pf,p= 58.792 lb/ft?, /=i . 2.8250E-01 cP, %r 2.6744 IE+M 8.00473E+W I .33323E+05 I .86588E+05 2.66473E+05 3.19725E+05 3.72974E+05 k = -1.0, pb = 62.366 Ib/ft3 Qv 4.288268+02 1.28351E+03 2.137758+03 2.99182E+03 4.27273E+03 5.12659E+03 5.98040E+03 Y 1.00000E+00 1.00000E+00 1.00000E+00 1 .O(K")E+OC l.OOOOOE+OC l.OOOOOE+OO l.OOOOOE+OO ICD - 2 2 2 2 2 2 2 TI= 0.W0F, Pf= 14.696 psia, c d 6.03 I80E-01 6.018 14E-01 6.01434E-01 6.0 12508-01 6.01112E-01 6.0 1070E-O1 6.0 1059E-O1 pfp = 0.13223 Ib/ft3,p = 1.3070E-02cP, qr n 1.26106E+03 3.721548+03 6.02174B+03 8.056448+03 1.03793E+04 1.12874E+04 1.15594E+04 k 2 1.3198, pb = O. 116198lb/ft3 QP 1.08527B+04 3.202768+04 5.1823 1E+04 6.93337E+04 8.93243E+04 9.7 1391E+04 9.94802E+04 Y 9.98244E-O1 9.84199E-O1 9.56109E-01 9.13974E-01 8.24436E-O1 7.47 188E-0 1 6.55895E-01 ICD - . I L o I,& I n I n 2 12 12 Tf=50.0O0F, P f = 100.00 psia, cd 6.02281E-01 I 6.01329E-01 I6.01052E-01 I 6.00908E-01 6.00783E-01 I6.00728E-01 I 6.00687EMl prp= 0.31 109 lb/ft3, p = 1.0670E-02 cP, 9, 1l 1.93609E+03 5.78756E+03 9.60283E+03 1.33596E+04 1.88349E+04 k = 1.3622, pb = 0.044210 lb/ft3 Q" 4.3793IE+04 1.30911E+05 2.17209E+05 3.02185E+05 4.26032E+05 Y 9.99750E-01 9.97750E-01 9.93750E-01 9.87751E-01 9.75002E-01 ICD 2 2 2 2 2 Tf= 0.00F, PI= 1000.00 psia, c d 6.02279E-01 6.01326E-01 6.01048E-01 6.00902E-01 6.00773E-01 pf,p= 65.072 Ib/ft3, p = 1.5430E-01 cP, e 1 2.79822E+04 8.38147E+04 1.39626E+05 1.95429E+05 2.79125E+05 k=-1.0,& = 0.1161981b/ft3 Qv 2.40815E+05 7.21309E+05 1.20162E+06 1.68187E+06 2.40215E+06 Y 1.OOOOOE+00 1.00000E+00 l.OOOOOE+OO 1.OoooOE+oO 1.00000E+OC ICD - 2 2 2 2 .I - I I Tf=O.OO"F, P / = 200.00 psia, P,,~= 2.0466 ib/ft3, p = 1.3520-2 cP, c, 6.01601E-01 6.00961E-01 6.00770E-01 6.00670E-01 6.00581E-01 I6.00541E-01 I6.00511E-01 4.95629E+03 1.48378E+04 2.46708E+M 3.44261E+04 4.88472E+04 5.82758E+04 6.75203E+04 %n k = 1.3198, & = 0.116198 Ib/ft3 Q" 4.26538E+04 1.27695E+05 2.12317E+05 2.96271E+05 4.20379E+05 5.01522E+05 5.81080E+05 Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93679E-01 9.87100E-01 9.81423E-01 9.74715E-01 ICD - 2 2 2 2 2 2 2 TJ= 50.C0°F, PJ= 500.00 psia, cd 6.01546E-01 6.00931E-01 6.00747E-01 6.00650E-01 6.00564E-01 6.00525E-01 6.00495E-01 pf,p= 1.6623 lb/ft3, p = 1.1310E-02 cP, qm 4.47090E+03 1.33937E+04 2.22982E+04 3.11749E+04 4.44154E+04 5.31772E+04 6.18746E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qu 1.01129E+05 3.02957E+05 5.04370E+05 7.05156E+05 l.W65E+O6 1.20283E+06 1.39956E+06 Y 9.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95000E-01 9.92801E-01 9.90201E-01 ICD - 2 2 2 2 2 2 2 TJ= 150.0O0F,Pf= 1OOO.00psia, cd 6.01501E-01 6.00908E-01~ 6.00730E-01 6.00636E-01 6.00552E-01 6.00514E-01 6.00485E-01 pf,p= 2.7573 lb/ft3, p = 1.3650E-02 cP, %n 5.76861E+03 1.72855E+04 2.87890E+04 4.02741E+04 5.74530E+04 6.88633E+04 8.02318E+04 k = 1.3622, pb = 0.044210 lb/ft3 Q" 1.30482E+05 3.90985E+05 6.51188E+05 9.10974E+05 1.29955E+06 1.55764E+06 1.81479E+06 Y 9.99975EM1 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-01 9.96400E-01 9.95100E-01 ICD - 2 2 2 2 2 2 2 T/= 140.0O0F,P f = 2000.00 psia, c d 6.01420E-01 6.00863E-01 6.00695E-01 6.00606E-01 6.00526E-01 6.00491E-01 6.W63E-01 pf,p= 32.465 Ib/ft3,p = 4.1710E-02 cP, qm 1.97883E+04 5.93104E+04 9.88230E+04 L38332E+O5 197591E+05 2.37095E+05 2.76598E+05 k=-1.0, pb = 0.116198 lb/ft3 Qu 1.70298E+05 5.10425E+05 8.50471E+05 1.19048Em 1.70046E+06 2.04044E+06 2.38040E+06 Y 1.00000E+00 l.OOOOOE+OO l.OOOOOEt00 l.OOOOOE+OC l.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OO ICD - 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 90 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-%Selected Round Robin Test Results Matrix-US Units ( Dm= 14.31154 in, % = 0.00000620 in/in-"F, d,,, = 5.82811 in, al = 0.00000925 in/in-"F) Cell Valut Flow Conditions 2.2484 _. T,== 0,00"F,PJ= 14.696 psia, cd 1.21145E+O( P,,~= 58.199 Ib/ft3, = 1.8650E+03cP, 41 11 1.71175E+O! k = -1.0, /3b = 56.861 1b/ft3 Qv 3.01041E+O: Y l.OOOOOE+Oí _. ICD -5 I I I - I - I - T,==68.00"F, PJ= 14.696 psia, cd 7.79472E-03 6.9171OE-01 16.66211E-01 16.52776E-01 I6.40546E-01 I6.34848E-01 I6.30221F01 pl,p = 56.660 ib/f$, j i = 2.1220E+02 cP, 4n 1 1.08810E+O! 2.89680E+05 4.65001E+05 6.37873E+OS 8.94175E+05 1.06347E+06 1.23167E+06 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.91361E+O: 5.09452E+03 8.17785E+03 1.12181E+04 1.57256E+04 1.87029E+O4 2.166 lOE+04 Y l.OOOOOE+O( 1.00000E+00 l.OOOOOE+00 1.00000E+0(1 l.OOOOOE+OO 1.0OOOOE+00 l.OOOOOE+00 ICD - -4 -3 -3 -3 -3 -3 -3 TJ= 176.0O0F,PJ= 14.696psia, cd 6.35173E-03 6.14068E-01 6.10294E-01 6.08432E-01 6.06863E-01 6.06192E-01 6.05684E-01 = P , , ~ 54.214 Ib/ft3,j i = 1.749OE+Ol cP, 4ni 8.69066E+ol 2.52060E+05 4.17517E+05 5.82740E+05 8.30340E+05 9.95306E+05 1.16022E+06 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.52841E+O: 4.43291E+03 7.34276E+03 1.02485E+04 1.46030E+04 1.75042E+04 2.04044E+04 Y l.OOOOOE+O( l.OOOOOE+00 l.OOOOOE+ûO l.OOOOOE+OO l.OooOOE+00 1.OOOOOE+00 l.OOOOOE+OO ICD -3 II L, In In I* I n In 6.05345E-01 6.03025E-01 I 6.02375E-01 I 6.02042E-01 I 6.01753E-01 I 6.01626E-01 I 6.01528E-01 ~ T,== 60.00°F, Pf= 14.696 psia, cd I pl,p = 62.366 ib/f$, p = 1.1990 cP, 4ni 8.86425E+O( 2.64911E+05 4.41042E+05 6.17117E+05 8.81173E+05 1.05718E+06 1.23318E+06 k = -1.0, pb = 62.366 Ib/ft3 Qv 1.42133E+O: 4.24768E+03 7.07183E+03 9.89509E+03 1.41291E+04 1.69513E+04 1.97733E+04 Y l.OOOOOE+O( l.OOOOOE+OO 1 OOOOOE+00 1 O O O + O 1 O O O + O 100000E+00 1 OOOOOE+00 O O EO O O EO ICD - 2 2 I2 - I2 I - I -2 I I 2 , 12 I ï)= 210.00"F, P f = 14.696 psia, 6.02602E-01 6.01611E-01 6.01321E-01 6.01170E-01 6.01036E-01 6.00977E-01 6.00931E-01 4 p = 58.792 Ib/ft3,p = 2.8250E-01 cP, 4ni 8.59153E+O~ 2.57324E+05 4.28667E+05 5.99983E+05 8.56928E+05 1.02821E+06 1.19949E+06 k = -1.0, pb = 62.366 Ib/ft3 Qv 1.3776OE+O: Y l.OOOOOE+O( ICD - 2 R L I I I I I ïj-= 0.00"F, P f = 14.696 psia, cd 6.02569E-01 6.01599Fr01 16.01325E-01 I6.01191E-01 I6.01090E4l I6.01060E-01 I6.01051E-01 oIp = 0.13223 ib/f$, p = 1.3070E-02 cP, B 4.05 123E+O: 1.19635E+04 1.93613E+04 2.59055E+04 3.33767E+04 3.62973E+04 k2 1.3198, pb = 0.116198 ib/ft3 Qv 3.48649E+OL 1.02958E+05 1.66623E+05 2.22942E+05 2.87240E+05 3.12375E+05 Y 9.98244E-0 1 9.84199E-01 9.56109E-01 9.13973E-01 8.24435E-01 7.47186E-01 6.55892E-01 ICD - 2 2 2 2 2 2 Q = 50.00"F, P f = 100.00 psia, c d 6.01933E-01 6.01249E-01 6.01047E-01 6.00941E-01 6.00848E-01 6.00807E-01 oY = 0.31109 Ib/ft3, j i = 1.0670E-02 cP, 4ni 6.22253E+0: 1.86093E+04 3.08807E+04 4.29643E+04 6.05760E+04 7.18663E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 1.40749E+O! 4.20929E+05 6.98499E+05 9.71824E+05 1.37019E+M 1.62557E+OC Y 9.99750E-01 9.97750E-01 9.93750E-01 9.87751E-01 9.75002E-01 9.64002E-01 9.5 1OO3E-01 ICD - 2 2 12 12 12 rFO.OOF, PzÖOO.00 PST c d 6.01932E-01 6.01247E-01 I6.01043E-01 I6.00936l%O1I6.0084OE-0lI6.00797E-01 I6.00764F-01 r&p = 65.072 ib/f$, p = 1.5430E-01 cl? 4n 1 8.99337E+04 2.69497E+05 4.49009E+05 6.28500E+05 8.97714E+05 1.07718E+06 1.25664E+OC = -1.0, pb = 0.116198 Ib/ft3 Qv 7.73970E+01 2.31929E+06 3.86417E+06 5.40887E+06 7.72573E+06 9.27022E+M 1.O8147E+Oí Y l.OOOOOE+OC l.OOOOOE+00 1.OOOOOE+OO 1.OOOOOE+00 1.00000E+00 1.OOOOOE+OC l.OOOOOE+OC ICD - 2 2 2 2 2 2 ?)= O.OO"F, Pf=200.00 psia, c d 6.01446E-01 6.00979E-01 6.00838E-01 6.00763E-01 6.00696E-01 6.00666E-01 6.00643E-01 vIp = 2.0466 ib/ft3,p = 1.3520E-02 cP, 4ni 1.59344E+04 4.77172E+04 7.93456E+O4 1.10725E+05 1.57114E+05 1.87443E+05 2.17 181E+O5 k = 1.3198, pb = 0.116198 Ib/ft3 Qv 1.37131E+05 4.10655E+05 6.82849E+05 9.52900E+05 1.35212E+O6 1.61314E+06 1.86906E+OC Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93679E-01 9.87099E-01 9.81423E-01 9.74715E-01 ICD 2 2 2 2 2 2 2 rf= 50.00"F, PJ= 500.00 psia, c d 6.01407E-01 6.00957E-01 6.00821E-01 6.00748E-01 6.00683E-01 6.00654E-01 6.00632E-01 = 1.6623 lb/ft3,p = 1.1310E-02 cP, 4ni 1.43742E+04 4.30737E+04 7.17157E+04 1.00269E+05 1.42860E+05 1.71045E+05 1.99022E+05 ¿ = 1.3622, pb = 0.044210 ib/ft3 Qv 3.25 136E+05 9.74298E+05 1.62216E+06 2.26802E+06 3.23 140E+06 3.86892E+M 4.50175E+W Y 9.99950E-01 9.99550E-01 9.98750501 9.97550E-01 9.95OOOE-01 9.92800E-01 9.90201E-01 ~ ICD 2 2 2 2 2 2 2 rf= i50.OO0F, PJ= 1OOO.00 psia, 6.01375E-01 6.00809Eiol 6.00738E-01 6.00675E-01 6.00647E-01 6.00624E-O1 = 2.7573 ib/f$, p = 1.3650E-02 cP, c = 1.3622,pb = 0.044210 Ib/ft3 TJ= 140.0O0F,PJ= 2000.00 psia, = 32.465 ib/ft3, p = 4.1710E02 cP, ;=-1.o, pb = 0.116198 lb/ft3 4 Qv Y ICD c d 4ni 1.85469E+O4 4.19518E+05 6.01316E-01 2 Jj Ij 1.29536E+05 1.84796E+05 2.21500E+05 2.5807 1E+05 2.93002E+06 4.17996E+06 5.01019E+06 5.83738E+06 9.99975E-01 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-01 9.96400E-01 9.95 100Eo1 2 6.00716E-01 6.00656E-01 6.00629E-01 6.00608E-01 6.36245E+3+04 1.90746E+05 3.178438+05 4.44931B+05 6.355528+05 7.62628E+05 8.89701E+05 5.47552E+05 1.641568+06 2.735368+06 3.82907E+06 5.46956E+06 6.56318E+06 7.65677E+06 Qv Y 1.00000E+00 l,OOOOOE+00 1.ooo(x)E+00 1.00000E+00 1.00000E+00 1.00000E+00 1.OOOOOE+00 ICD 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPflS*L4m3-4 72 W 0732270 050b378 364 = SECTION &CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 91 Table 4-C-+Selected Round Robin Test Results Matrix-US Units (D, = 29.37598 in, c = 0.00000620 in/in-OF, d, = 11.96094 in, al = 0.00000925 in/in-OF) + - Cell AP (inches H,O at 60°F) I Flow Conditions Value 2.2484 20.2360 56.21 10 110.1736 224.8440 323.7754 440.6943 ïj=O.OO"F, Pf= 14.696 psia, Cd 1.01286E+ûC 8.19828E-01 7.62126E-01 7.32247E-01 7.06287E-01 6.94938501 pl,p= 58.199 Ib/ft3,j i = 1.8650E+03 cP, 4,111 6.02779E+05 1.4637I E+06 2.26782E+06 3.05047E+06 4.20332E+06 4.96293E+06 k=-1.0, pb = 56.861 lb/ft3 Qv 1.06009E+04 2.57419E+04 3.988358+04 5.36479E+04 7.39227E+04 8.72818E+04 Y 1 .M)OE+OC í.OOOOOE+00 1.00000E+00 l.ooOOOE+00 l.OOOOOE+00 1.00000E+OC 1 .OOOOOE+00 ICD _. 4 -4 -3 -3 -3 -3 ïj=68.00"F, Pf= 14.696 psia, c d 7.16018E-01 6.57743E-01 6.39850E-01 6.29603E-01 6.20103E-01 6.17910E-01 piep = 56.660 Ib/ft3,j i = 2.1220E+02 cP, 41 11 4.20982E+05 1.16017E+06 1.88101E+06 2.59125E+06 3.64592E+06 4.35963E+M k = -i .o, pb = 56.86 i ib/ft3 Qv Y ICD - I 7.40370E+03 2.04036E+04 1.OoooOE+00 1.00000E+00 -3 -3 I I 3.30809E+04 4.55716E+04 6.41 199E+04 1.oooOOE+00 1.OOO00E+00 l.OOOOOE+Cû -3 -3 -3 I I 7.66717E+04 8.921 17E+04 1.00000E+00 1.00000E+00 I Tf= 176.W°F, Pf= 14.696 psia, c d 6.18033E-01 6.09276E-01 6.06951E-01 6.05793E-01 6.048 1OE-01 pf,p= 54.214 ib/fG, p = 1.749OE+Ol cP, 41 11 3.56159E+05 l.O5335E+06 1.74888E+06 2.44376E+06 3.48542E+06 4.17958E+06 4.87358E+06 k = -1.0, pb = 56.861 lb/ft3 Qv 6.26367E+03 1.85250E+04 3.07571E+04 4.29778E+04 6.12972E+04 7.35052E+04 8.57 1O4E+04 Y I.OOOOOE+OC I.OOOOOE+00 1.00000E+00 l.OOOOOE+00 l.OOOOOE+Oll 1.OOO00E+00 1.OOOOOE+00 ICD - 3 2 2 2 2 2 2 ïj=60.00"F, Pf= 14.696psia, cd 6.03849E-01 6.02357E-01 6.01930E-0 1 6.01709E-O 1 6.0 1515E-0 16.01430E-OI 6.01364E-01 pf,p= 62.366 lb/ft3, j i = 1.1990 cP, 4ili 3.72425E+05 1.1 1452E+06 1.85622E+06 2.59776E+M 3.70989E+06 4.45123E+06 5.19254E+06 k =-1.0, pb = 62.366 ib/ft3 Qv 5.97 160E+OI 1.78707E+O4 2.97634E+04 4.16534E+04 5.94858E+04 7.13728E+04 8.32591E+04 Y l.oOoOOE+OC l.OOOOOE+00 1.00000E+00 1.00000E+00 l.OOOOOE+OC I.OOOOOE+OO l.oOoOOE+00 ICD - 2 2 T/= 210.00"F, Pf= 14.696 psia, cd 6.02081E-01 6.01421E-01 6.01224E-01 6.01120E-01 6.01028E-01 6.00986E-01 6.00954E-01 pf,p= 58.792 ib/ft3,j i = 2.8250E-01 cP, 4m 3.61548E+05 1.08347E+06 1.80518E+06 2.52682E+06 3.60919E+06 4.33073E+06 5.05224E+06 k = -1.0, pb = 62.366 1b/ft3 Qv 5.79720E+03 1.73727E+O4 2.89450E+04 4.05 160E+O4 5.787 1 1E+04 6.94405E+04 8.10096E+04 Y l.OOOOOE+OC 1.OOOOOE+00 1.OOOOOE+00 1.OOOOOE+00 1.00000E+0(3 1.00000E+00 1.00000E+00 ICD - 2 2 2 2 2 2 2 Tf= 0.OOoF,Pf= 14.696 psia, cd 6.02057E-01 6.0141lE-0 1 6.0 1225E-01 6.0 1133E-01 6.0 1064E-O1 6.01042E-0 1 6.0 1036E-01 = 0.13223 ib/ft3, j i = 1.3070E-02 cP, 41 11 1.70486E+04 5.03726E+M 8.15330E+04 1.09099E+05 1.40571E+05 1.52875E+05 1.56561E+05 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1.46720E+05 4.33507E+05 7.01673E+05 9.38907E+05 1.20976E+06 1.31564E+06 1.34736E+06 Y 9.98244E-01 9.84199E-01 9.56109E-01 9.13974E-01 8.24437E-01 7.47190E-01 6.55897E-01 ICD - 2 2 2 2 ïj=50.00"F, Pf= 100.00 psia, cd 6.01636E-01 6.01174E-01 6.01034E-01 6.00960E-01 6.00895E-01 6.00866E-01 pl,,, = 0.31109 ib/ft3,j i = 1.0670E-02 cP, 41,, 2.61953E+04 7.83692E+04 1.30061E+05 1.80964E+05 2.55 156E+05 3.02719E+05 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 5.92520E+05 1.77266E+06 2.94190E+06 4.09329E+06 5.77146E+06 6.84729E+06 Y 9.99750E-01 9.97750E-01 9.93751E-01 9.87751E-01 9.75002E-01 9.64003E-01 9.5 1OO4E-01 ICD - 2 12 (2 12 12 12 12 ïj=O.OO°F, Pf= 1ooO.00 psia, cd 6.01635E-01 I 6.01171E-01 I 6.01031E-01 I 6.00956E-01 I6.00889E-01 I6.00858E-01 I 6.00835E-01 = 65.072 ib/ft3, j i = 1.5430E-01 cP, 41 11 3.78599E+05 1.13493E+06 1.89111E+06 2.64723E+06 3.78133E+06 4.53737E+06 5.29339E+06 k = -1.0, pb = 0.1 16198 lb/ft3 Qv 3.25822E+06 9.76724E+06 1.62749E+07 2.27820E+07 3.25421E+07 3.90486E+07 4.55549E+07 Y I .00000E+OO 1.00000E+00 l.OOOOOE+OO 1.OOO00E+00 1.00000E+00 1.OOOOOE+00 1.OOOOOE+00 ICD - 2 2 2 2 2 2 2 I I I / ïj=0.00"F, Pf= 200.00 psia, c d 6.01308E-01 6.00986E-01 6.00887E-01 6.00834E-01 6.00786E-01 = 2.0466 lb/ft3, j i = 1.3520E-02 cP, 41 11 6.70976E+04 2.00979E+05 3.34218E+05 4.6641 lE+05 6.61837E+05 k = 1.3198, pb = 0.116198 Ib/ft3 Qv 5.77442E+05 1.72963E+06 2.87628E+06 4.01393E+06 5.69577E+06 Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93679E-01 9.87100E-01 ICD - 2 12 12 12 12 ïj= 50.00"F, Pf= 500.00 psia, c d 6.01281E-01 I 6.00972E-01 I 6.00876E-01~6.00824E-01~ 6.00778E-01 I 6.00757E-01~6.00740E-01 pf,p= 1.6623 lb/f?, j i = 1.1310E-02 cP, %Il 6.05293E+04 1.81424E+05 3.02082E+05 4.22371E+05 6.01798E+05 7.20536E+05 8.3840 1E+05 k = 1.3622, pb = 0.044210 ib/ft3 Qv 1.36913E+06 4.10368E+06 6.83289E+06 9.55374E+06 1.36123E+07 1.62980E+07 1.89641E+O7 Y 9.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95000E-01 9.92801E-0 1 9.9020 1E-0 1 ICD - 2 2 2 2 2 2 2 ïj=150.00"F, Pf= 1OOO.00 psia, c d 6.01261E-01 6.00961E-01 6.00868E-01 6.00818E-01 6.00772E-01 6.00752E-01 6.00736E-01 pf,p= 2.7573 lb/f?, /= 1.3650E-02 cP, i 4ni 7.81016E+04 2.34143E+05 3.90022E+05 5.45658E+05 7.78457E+05 9.33087E+05 1.08715E+06 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 1.76660E+06 5.29616E+06 8.82203E+06 1.23424E+07 1.76082E+Oí 2.11058E+07 2.45906E+07 Y 9.99975E-01 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-01 9.96400E-01 9.95 100E-01 ICD - 2 2 2 2 2 2 2 Tf=140.00"F,Pf=2000.00 psia, cd 6.01220E-01 6.00937E-01 6.00849E-01 6.00802E-01 6.00759E-01 6.00739E-0 1 6.00724E-O1 pl.p= 32.465 lb/ft3, j i = 4.1710E-W cP, 41 11 2.67933E+05 8.03429E+05 1.33885E+06 1.87424E+06 2.67730E+Ot 3.21265E+06 3.74800E+06 k=-1.0, pb = 0.116198 lb/ft3 Qv 2.30583E+06 6.9 1431E+06 1,15221E+07 1.61297E+07 2.30408E+Oí 2.76481E+07 3.22553E+07 Y I.o0000E+00 l.OOOOOE+OO 1.00000E+00 1.00000E+C€ 1.00000E+OC 1.OOOOOE+00 1.00000E+00 ICD 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 92 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-Cd-Selected Round Robin Test Results Matrix-US Units ( Dm = 1.93945 in, % = 0.00000620 in/in-"F, dm= 1.03126 in, al = 0.00000925 in/in-"F) - Cell A (inches H,O at 60°F) i Flow Conditions Value 2.2484 I 20.2360 I 56.2110 1 110.1736 224.8440 323.7754 440.6943 I TJ-= O.OO"F, Pf= 14.696 psia, cd 2.79017E+00 1.88676E+OO 1.4396lE+OC 1.59671E+ûC 1.29789E+O( 1.23417E+O( l118446E+û0 p r p= 58.199 lb/ft3,p = 1.8650E+03cP, 41 11 1.26903E+04 2.57445E+04 4.58341E+04 3.631 14E+04 5.90316E+O4 6.73598E+oL 7.54212E+04 k 2 -1.0, pb = 56.861 Ib/ft3 Qv 2.23 181E+02 4.5276 1E+02 8.06072E+02 6.38599E+02 1.O3817E+O? l.l8464E+O: 1.32641E+03 Y l.OOOOOE+OO l.OOOOOE+OO 1. O O E O O O O+ C l.OOOOOE+OC 1.00000E+O( l.OOOOOE+O( 1.OOOOOE+00 ICD -5 -5 4 -5 TJ-= 68.00"F, Pf= 14.696 psia, Cd 1.35172E+00 1.01838E+00 9.15216E-01 8.60579E-0 1 8.12116E-01 7.73776E-01 7.90545E-01 pf,p= 56.660 Ib/ft3, , = 2.1220E+02 cP, U 41 11 6.07397E+03 1.37284E+04 2.05628E+O4 2.70694E+04 3.64928E+O4 4.26282E+oL 4.86779E+04 k = -1.0, pb = 56.861 lb/ft3 Qv Y I I 1.06821E+02 2.41438E+02 3.61633Et02 4.76062Et02 i.OOOOOE+OO l.OOOOOE+W 1.000000+OO I .00000EtOC ICD -5 - -4 -4 -4 -4 6.41790E+02 l.OOOOOE+O( -d 7.4969lE+O: 8.56087E+02 1.OOOOOE+00 l.OOOOOE+O( -4 Tf= 176.OO0F,Pf= 14.696 psia, cd 7.91821E-01 6.93475E-01 6.58288E-01 6.37689E-01 6.30764E-01 6.27849E-03 6.25659E-01 P,,~ = 54.214 Ib/ft3, p = 1.749OE+Ol cP, e,, 3.48756E+03 9.16328E+03 1.44972E+04 1.9661OE+04 2.77821E+O4 3.31845E+oL 3.85802E+04 k = -1.0, ph = 56.861 Ib/f$ Qv 6.13349E+Ol 1.61152E+02 2.54959E+02 3.45773E+02 4.88597E+02 5.83607EtO: 6.78500E+02 Y 1.00OOOE+00 l.OOOOOE+OO l.OOOOOE+OO 1 . O O E O 1.OOOOOE+OC 1.00000E+O( 1.OOOOOE+00 O O O+ C - -4 ICD -3 -3 -3 3 3 3 ïj=60.00"F, Pf= 14.696 psia, C d 6.24217E-01 6.14514E-01 6.11855E-01 6.10500E-01 6.09323E-01 6.08806E-01 6.08408E-01 P,,~= 62.366 Ib/ft3, p = 1.1990 cP, 41 11 2.94232E+03 8.68984E+03 1.44204E+O4 2.01438E+04 2.87214E+04 3.44365E+oL 4.01496E+04 k = -1.0, = 62.366 lb/fG Qv 4.71783E+Ol 1.393368t02 2.31222EtO2 3.22994Et02 4.60530E+02 5.52168E+O: 6.43775E+02 Y I.OOOOOE+OO I.OOOOOE+W 1.00000Et00 1.00000Et00 l.OOOOOE+CK l.OOOOOE+O( 1.00000Et00 -3 ICD 2 2 2 2 2 2 Tf= 210.00"F, Pf= 14.696psia, cd 6.12772E-01 6.0873384 I 6.07550E-01 6.06928E-01 6.06374E-01 6.06127E-01 6.05935E-01 P,,~= 58.792 lb/ft3,p = 2.8250E-01 cP, 41 11 2.812408+03 8.38168E+03 1.39423E+04 1.94992E+04 2.78307E+04 3.33832E+oL 3.89347E+04 k = -1.0, pb = 62.366 lb/ft3 Qv 4.5095 1E+01 i .34395Et02 2.23556E+02 3.12658EtO2 4.46247E+02 5.35279E+O: 6.24294E+02 Y l.OOOOOEt00 I.O0000E+OO 1.000WEt00 1.00000EtûC l.OOOOOE+OC l.OOOOOE+O( 1.00000E+00 -2 ICD 2 2 2 2 2 2 r f = O.0OoF,Pf= 14.696 psia, cd 6.12650E-01 6.08703E-01 6.07587E-O1 6.07039E-01 6.06630E-01 6.06511E-01 6.06488E-01 pf,p= 0.13223 Ib/ft3, /i 1.3070E-02 cP, = Qi,i 1.32576Et02 3.893678+02 6.284458+02 8.385178+02 l.O7417E+Ol 1.16154E+O: 1.17968E+03 k = 1.3198, p h = 0.116198 lb/ft3 Qv 1,14095B+03 3.35089E+03 5.40839Et03 7.2 1628E+03 9.2443 1E+OI 9.99618E+O: 1.01523E+04 Y 9.98 168E-01 9,83509131 9.54 l91E-0 1 9.102l4E-0 1 8.16762-1 7.36138E-01 6.40854E-01 -2 ICD 2 2 2 2 TJ-= 50.00"F, P f = 100.00 psia, cd 6.10059E-01 6.07268E-01 6.06432E-O1 6.05991E-01 6.05601E-01 6.05430Ero1 6.05299-1 pf,p= 0.31109 Ib/ft3, /A = 1.0670Eo2 cP, 4nl 2.03002Et02 6.049598t02 1.00266E+03 1.39387Et03 1.96313E+Ol 2.32733E+O? 2.67637E+03 k = 1.3622, p,, = 0.044210 Ib/ft3 Qv 4.59176E+03 1.36838E+04 2.26796B+04 3. l5283E+W 4.44048Et04 5.26427EtO4 6.05376E+04 Y 9.99739E-01 9.976528-01 9.93477E-O1 9.872 15E-O1 9.73909E-01 9.62428E-01 9.48861E-01 -2 ICD 2 2 2 2 2 2 ïj=O.OO"F, Pf= 1000.00 psia, cd 6.10055E-01 6.07261E-01 6.06421E-01 6.05973E-01 6.05572E-01 6.05392E-01 6.05251E-01 pf,p= 65.072 ib/ft3, p = 1.5430E-01 cP, 4111 2.93394E+ü3 8.76159Et03 1.458248+04 2.04003E+W 2.9124OE+W 3.49384E+3+04 4.07520E+04 k=-l.O,pb= 0.1161981b/ft3 Qv 2.524958+04 7.540228+04 1.25496E+05 1.75565E+05 2.50641E+05 3.00680E+05 3.507 12E+05 Y 1.00000E+00 1.OOOOOE+üO i .00000Et00 I .00000E+Oû 1.OOOOOE+OC l.OOOOOE+OC 1.00000E+00 -2 ICD 2 2 2 2 2 Tf= O.OO°F, Pf=200.00 psia, cd 6.08078E-01 6.06155E-01 6.05563E-01 6.05246E-O1 6.04962E-01 6.04834E-01 6.04735E-01 pf,p= 2.0466 Ib/ft3, p = 1.3520E-02 cP, 4tn 5.18564E+02 1.549128+03 2.573778+03 3.58972Et03 5.09033E+03 6.07043E+03 7.03046E+03 k = 1,3198,p b = 0.116198 lb/ft3 Qv 4.462768+03 1.33317E+04 2.214998+04 3.0893 lE+W 4.38073E+04 5.22421E+04 6.05041E+04 Y 9.99865E-01 9.98788E-01 9.96634E-O1 9.93402E-01 9.86536E-01 9.80611E-01 9.73610E-01 ICD 2 2 2 2 2 2 2 ïj=50.00"F, Pf= 500.00 psia, cd 6.079 12E-01 6.06060E-0 1 6.05488Ero 1 6.05180E-O1 6.04902E-01 6.04777E-01 6.04679E-01 pf,p = 1.6623 lb/ft3,p = 1.1310E-02 cP, 9ni 4.677048+02 1.39827Et03 2.32630E+03 3.25 108Et03 4.62988E+03 5.54188E+Ol 6.44681E+03 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 1.05791E+W 3.162788+04 5.26192E+04 7.3537 IE+W 1.04725E+05 1.25354E+05 1.45822E+05 Y 9.99948E-01 9.99530E-01 9.98695501 9.97443E-01 9.94782E-01 9.92486E-01 9.89772-1 íCD 2 - 2 2 2 2 2 2 ïj=150.00°F, Pf= 1OOO.00 psia, cd 6.07775E-01 6.05982E-01 6.05427E-01 6.05128E-01 6.04857E-01 6.04735E-01 6.04639E-01 = 2.7573 Ib/ft3, p = 1.3650E-02 cP, 4"l 6.03389E+02 I .80447E+03 3.00344E+03 4.2OíJlOE+03 5.98947E+03 7.17764E+03 8.361 18E+03 rC= 1.3622, pb = 0.044210 Ib/ft3 Qv i .36482E+M 4.081598+04 6.793578+04 9.500348+04 1.35478E+05 1.62353E+05 1.89124E+05 Y 9.99974E-01 9.99765E-01 9.99348E-01 9.98721E-01 9.97391E-01 9.96243501 9.94886E-01 [CD 2 - 2 2 2 2 2 2 ï j = 140.00"F, Pf= 2000.00 psia, d 6.07534E-01 6.05843E-01 6.053 17FrOI 6.05033E-01 6.04776-1 6.04659E-01 6.04567E-01 = 32.465 lb/ft3,p = 4.1710E-02 cP, Bi 2.06928E+03 6.19064E+03 1.030888+04 1.44255E+W 2.05991E+O4 2.47141E+W 2.88288E+04 k = - l . O , pb = 0.116198 Ib/ft3 Q" 1.78083E+W 5.32766E+04 8.87172E+W 1.24146E+05 1.77276E+05 2.12690E+05 2.48100E+05 Y 1.00000E+00 l.OOOE+OO 1.000OOE+00 1.00000E+00 1.OOOOOE+OO l.OOOOOE+ûC l.OOOOOE+Oo [CD 2 - 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API M P M S * 1 q - 3 - 4 92 0732290 0506380 T L 2 SECTION &CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 93 Table 4-C-&Selected Round Robin Test Results Matrix-US Units ( D = 2.90039 in, a ! = 0.00000620 in/in-"F, d, = 1.54689 in, al = 0.00000925 in/in-OF) , ; Cell AP (inches H,O at 6OoF) Flow Conditions Value - 2.2484 20.2360 56.21 I O 110.1736 I 224.8440 I 323.7754 I 440.6943 TJ= 0.00"F, PJ= 14.696 psia, Cd 2.41409E+Oo 1.65683E+W 1.41467E+OC 1.2839IE+00 1.16631E+00 1.1 1358E+00 1.07252E+OC pISp 58.199 Ib/ft, p = 1.8650E+03 cP, = (ln 2.47 177E+04 5.08929E+04 7.24242E+04 9.20218E+04 I . 19419E+05 1.36823E+05 I .5374lE+05 k = -1 .o, pb = 56.861 Ib/ft Qv 4.34704E+02 8.95041E+02 1.27371E+03 1.61836E+03 2.10019E+03 2.40628E+03 2.70381E+03 Y 1.00000E+Oo I .OOOOOE+W I .OOOOOE+OC I.OOOOOE+00 I .oooOOE+00 I .00000E+00 1.00000E+OC ICD 4 - -5 -5 -5 4 4 -4 TJ=68.00"F. Pj= 14.696 psia, c, 1.21094E+00 9.35896E-01 8.5 1475E-01 8.06809E-01 7.67033E-01 7.49192E-01 7.35212E-01 pl,p= 56.660 Ib/ft, p = 2.1220E+02 cP, %li I .22496E+O4 2.8402 1E+04 4.30669E+04 5.71307E+04 7.75917E+04 9.09443E+04 1.04122E+05 k=-i.O,pb t56.861 Ib/ft" Qv 2.1543OE+U2 4.9950IE+02 7.57406E+02 1.00474E+03 1.36459E+03 1.59941E+03 1.83116E+03 Y 1.00000E+00 1.00000E+W 1.00000E+OC 1.OOOOOE+00 I.000OOE+00 I .OOOOOE+Oo 1.00000E+OC ICD -5 -4 4 -4 -3 -3 -3 Tj= 176.ûOoF,PJ= 14.696 psia, Cd 7.50248E-01 6.64836E-01 6.35508E-01 6.29207E-01 6.23979E-01 6.21766E-01 6.20098E-01 = 54.2 I4 Ib/ft, p = I .7490E+O 1 cP, qn1 7.43895E+03 1.97764E+04 3.15066E+04 4.36720E+04 6.18702E+04 7.39809E+04 8.60795E+04 k = -1.0. pb = 56.861 Ib/ft3 Q. Y L ICD - I I .30827E+O2 3.47803E+02 1.00000E+00 I.OOOE+OO I 5.540998+02 7.68048E+02 1.08809E+03 1.30108E+03 1.51386E+03 -3 I .oOOWE+OC 1.000OOE+OO I .000OOE+00 I .000OOE+OO 1.00000E+OC 3 13 13 13 Tj= 60.00°F, P j = 14.696 psia, Cd 6.09384E-01 6.08303E-01 I 6.07357E-01 I 6.06940E-01 I 6.06617E-01 pf,p= 62.366 Ib/ft3, p = I. 1990 cP, 41n 3.233 19E+O4 4.5 1844E+O4 6.44488E+04 7.72855E+04 9.01 184E+04 k = -i .o, & = 62.366 Ib/ft Q,. 5.18423E+02 7.24504E+02 I.O3340E+03 1.23922E+03 1.44499E+03 Y 1. OOOOE+OC l.OOOOOE+00 1.00000E+00 1.000OOE+00 1. OOOOE+OC O O ICD - 2 2 2 2 2 TJ= 210.00"F. PJ= 14.696psia, c;t 6.05921E-OI 6.0541OE-01 6.04954E-01 6.04749E-01 6.04589E-01 pf,p= 58.792 Ib/ft3, p = 2.8250E-01 cP, Ba 3.13026E+04 4.37868E+04 6.25054E+04 7.498 11E+04 8.74548E+û4 k=-1.0, pb = 62.366 Ib/ft3 Qv 5.01918E+02 7.02094E+02 1.00223E+03 1.20227E+03 1.40228E+03 Y l.OOOOOE+OC l.OOOOOE+00 1.0OOOOE+00 1.00000E+00 1.00000E+OC ICD - 2 2 2 2 2 12 12 TJ= 0.00F. PJ= 14.696 psia, cd 6.10013E-01 6.06855E-01 6.05947E-01 6.05498E-01 6.05161E-01 I6.05063E-01 I6.05044E-01 pf,p= O. 13223 Ib/ft3, p = 1.3070E-02 cP, Llrn 2.97169E+02 8.73866E+02 1.41088E+03 1.88272E+O? 2.41 189E+03 2.60787E+03 2.64820E+03 k = 1.3198, ph = 0.1 16198 Ib/ft3 Q? , 2.55744E+03 7.52049E+03 1.21420E+3+04 1.62027E+W 2.07567E+04 2.24433E+04 2.27904E+04 Y 9.98166E-01 9.83496E-01 9.54155E-01 9.10144E-01 8.16620E-01 7.35933E-01 6.40575E-01 ICD - 2 2 2 2 2 2 2 TJ= 50.W°F, P j = 100.00 psia, C d 6.07949E-01 6.05686E-01 6.04998E-01 6.04633E-01 6.04308E-01 6.04165E-01 6.04055E-01 pf,p= 0.31 109 Ib/ft3,p = 1.0670E-02 cP, Qnr 4.554 15E+02 1.35833E+03 2.25 184E+03 3.13079E+O? 4.40986E+03 5.22816E+03 6.01238E+03 k = 1.3622, pb = 0.044210 lb/ft3 Q" 1.03012E+04 3.07245E+04 5.09350E+04 7.08164E+04 9.97480E+04 1.18257E+05 1.35996E+05 Y 9.99739E-01 9.97650E-01 9.93472E-01 9.87205E-01 9.73888E-01 9.62399E-01 9.48821E-01 ICD - 2 2 12 12 TJ= O.MIOF, PJ= 1000.00 psia, Cd 6.07945E-01 6.05680E-01 6.04988E-01 6.046 17E-0 1 6.04283E-01 I 6.04132E-01 I 6.04014E-01 pf.p= 65.072 Ib/ft3, p = 1.5430E-01 cP, %Il 6.58201E+03 1.96726E+04 3.27502E+04 4.58222E+W 6.54241E+04 7.84893E+04 9.15530E+04 k=-1.0, pb = 0.116198 ib/ft3 QV 5.66448E+04 1.69303E+05 2.81849E+05 3.94346E+05 5.63040E+05 6.75479E+05 7.87905E+05 Y 1.OoooOE+00 l.OOOOOE+ûû I.OOOOOE+OO 1.00000E+OC 1.00000E+00 I.OOOOOE+OO l.O0000E+OC ICD - 2 2 2 2 2 2 2 TJ=O.ûO°F, PJ= 200.00 psia, c d 6.06348E-01 6.04768E-01 6.04275E-01 6.04010E-01 6.03770E-01 6.03663E-01 6.03580E-01 pf,+= 2.0466 lb/ft3, p = 1.3520E-02 cP, GÍn 1.16406E+03 3.47937E+03 5.78171E+03 8.06459E+07 1.14366E+04 1.36390E+04 1.57963E+04 k = 1.3198,ph = 0.116198 Ib/€t3 Q" I.00179E+04 2.99435E+04 4.97574E+04 6.94038E+3+04 9.84234E+04 1.17377E+05 1.35943E+05 Y 9.99865E-01 9.98787E-01 9.96631E-01 9.93397E-01 9.86525E-O 1 9.80596E-O 1 9.73589E-0 1 ICD - 2 2 2 2 TJ=50.00"F,PJ= 500.Ix) psia, cd 6.06213E-01 6.04690E-01 6.04213E-01 6.03955501 6.03721E-01 6.03615E-01 6.03533E-01 pf,p= 1.6623 Ib/ft3, p = 1.1310E-02 cP, 41 11 1.04995E+03 3.14065E+03 5.22591E+03 7.30397E+O? 1.04023E+04 1.24518E+04 1.44854E+04 k = 1.3622, &, = 0.044210 Ib/ft3 Q" 2.37491E+04 7.10393E+04 1.18206E+05 1.65211E+O5 2.35294E+05 2.81651E+05 3.27649E+05 Y 9.99948E-01 9.9953OE-O1 9.98694E-01 9.97441E-01 9.94778E-01 9.92480E-01 9.89764E-01 ICD - 2 2 2 2 2 2 2 î j = 150.00°F, PJ= lON& psia, c d 6.06103E-01 6.04627E-01 6.04164E-01 6.03913E-0 1 6.03685E-01 6.03581E-01 6.03500E-01 pI,p= 2.7573 Ib/ft3, /i = 1.3650E-02 cP, BI1 1.35461E+03 4.05312E+03 6.74720E+03 9.43624E+0+01 1.34573E+04 1.61274E+04 1.87871E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Q" 3.06403E+04 9.16789E+04 1.52617E+05 2.13441E+05 3.04395E+05 3.64790E+05 4.24951E+05 Y 9.99974E-01 9.99765E-01 .9.99347E-01 9.98720E-01 9.97389E-01 9.96240E-01 9.94882E-01 ICD - 2 2 2 2 2 2 2 TJ=140.00"F,Pj= 2000.00 psia, cd 6.05906E-01~ 6.04512S01 6.04072E-01 6.03833E-01 6.03616E-01 6.03517E-01 6.03439E-01 pl+ = 32.465 Ib/ft3, p = 4.1710E-02 cP, 4ni 4.64587E+03 1.39057E+04 2.31592E+04 3.24101E+3+04 4.62835E+04 5.55311E+04 6.47780E+04 k=-1.0,Pb=0.1161981b/ft3 QV 3.99824E+04 1.19672E+05 1.99308E+05 2.78922E+05 3.98316E+05 4.77901E+05 5.57479E+05 Y 1.00000E+00 1.00000E+00 1.ooOOOE+Oû I.OOOOOE+OC l.OOOOOE+OO I.000OOE+OO 1.OoooOE+OC ICD - 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - . ~ I __- - A P I MPMS*14.3m4 92 m 0732290 0506341 959 m 94 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-(2-5-Selected Round Robin Test Results Matrix-US Units ( D, = 4.02638 in, % = 0.00000620 in/in-"F, d, = 2.14843 in, al= 0.00000925 in/in-"F) Cell iches H,O at 60°F) I Value 110.1736 224.8440 323.7754 440.6943 Flow Conditions Tf= O.OO°F, Pf= 14.696 psia, cd 1.17639E+00 1.07584E+00 1.03086E+00 9.95885E-01 p,+ = 58.199 Ib/ft3, p = 1.8650E+03cP, 4111 1.62656E+05 2.12503E+05 2.44341E+05 2.75394E+05 k = -1.0, pb = 56.861 lb/ft3 Q" 2.86058E+03 3.73723E+03 4.29717E+03 4.84329E+03 Y l.OOOOOE+OO l.OOOOOE+OO 1.OOO00E+00 l.OOOOOE+00 ICD - I - I - -4 -4 -4 -4 Tf= 68.00"F, Pf= 14.696 psia, cd I 1.11396E+OOl 8.79898E-01 8.08397E-01 7.70446E-01 7.36338E-01 7.20837-1 7.08548E-01 = 56.660 Ib/ft3, = 2.1220E+02 cP, q1 n 1.05245E+05 1.43694E+05 1.68803E+05 1.93579E+05 k = -1.0, pb = 56.861 Ib/ft3 Q" 1.85091E+03 2.52711E+03 2.96869E+03 3.40442E+03 Y l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+00 - -4 ICD -3 -3 -3 -3 Tf= 176.Q0°F,Pf= 14.696 psia, cd 7.21751E-01 6.42738E-01 6.29512E-01 6.24502E-01 6.20321E-01 6.18542E-01 6.17197E-01 pbp= 54,214 ib/ft3, p = 1.749OE+Ol cP, q1 n 1.38056E+04 3.68830E+04 6.02067E+04 8.36185E+04 1.18655E+05 1.41978E+05 1.65281E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 2.42795E+02 6.48652E+02 1.05884E+03 1.47058E+03 2.08676E+03 2.49693E+03 2.90675E+03 Y 1.OOOOOE+ûO l.OOOOOE+OO l.ooOOOE+OC 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO 1.00000E+00 ICD - -3 -3 3 3 13 13 12 Tf= 60.00"F, P f = 14.696 psia, cd 6.16303E-01 6.1017 1 E a l 6.08430E-01 6.07527501 16.06732E-01 I6.06380E-01 I6.06107E-01 pf,p= 62.366 lb/f?, p = 1.1990 cP, 41 11 1.26160E+04 3.74717E+04 6.22746E+04 8.70550E+04 1.24202E+05 1.48955E+05 1.73703E+05 k = -1.0, pb = 62.366 Ib/ft3 Qv 2.02289E+02 6.00835E+02 9.98534E+02 1.39587E+03 1.99150E+03 2.38841E+03 2.78522E+03 Y l.OOOOOE+OO l.OOOOOE+W l.OOOOOE+OC 1.OOOOOE+00 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+00 - ICD 2 2 2 2 2 2 2 Tf= 210.00"F, Pf= 14.696 psia, cd 6.09037E-01 6.06333E-01 6.05516E-01 6.05081E-01 6.04690E-01 6.04514501 6.04377E-01 pf,p= 58.792 ib/f?, p = 2.8250E-01 cP, 4nt 1.21393E+04 3.62566E+O4 6.03463E+04 8.44241E+04 1.20528E+05 1.44591E+05 1.68652E+05 k = -1.0, pb = 62.366 ib/fe Qv 1.94647E+02 5.81352E+02 9.67615E+02 1.35369E+03 1.93259E+03 2.31843E+03 2.70422E+03 Y 1.00000E+00 1.00000E+OC l.OOOOOE+OC l.OOOOOE+ûO l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OO - 2 ICD 2 2 2 2 2 2 Tf= O.OO°F, P f = 14.696 psia, cd 6.08953E-01 6.06309E-01 6.05539E-01 6.05156E-01 6.04868E-01 6.04784E-01 6.04768E-01 pf,p= 0.13223 Ib/ft3, p = 1.3070E-02 cP, 4ni 5.72279E+02 1.68427E+03 2.7 1990E+03 3.62991E+03 4.65044E+03 5.02836E+03 5.10602E+03 k = 1.3198, pb = 0.116198 lb/ft3 Q" 4.92503E+03 1.44948E+04 2.34075E+04 3.12390E+04 4.00217E+04 4.32740E+04 4.39424E+04 Y 9.98166Eo1 9,83494-1 9.54149E-01 9.10133E-01 8.16598E-01 7.35901E-01 6.40532E-01 ICD - 2 2 2 2 Tf= 50.00"F, P f = 100.00psia, cd 6.07230E-01 6.05317E-01 6.04729E-01 6.04415E-01 6 . 0 4 i 3 5 m i 6.04011~-0i 6.03916~-01 P , , ~ 0.31 109 Ib/ft3, p = 1.0670E-02 cP, = 91 n 8.7751IE+02 2.61878E+03 4.34213E+03 8.50468E+03 1.00831E+04 1.15959E+04 & =1.3622, pb = 0.044210 Ib/ft3 Qv 1.98487E+04 5.92350E+04 9.82159E+04 1.92370E+05 2.28074E+05 2.62290E+05 Y 9.99739E-01 9.97650E-01 9.93471Eol 9.87204E-01 9.73885E-01 9.62395Ml 9.48815E-01 ICD 2 2 2 2 2 2 Tf= O.OO°F, P f = 1OOO.00 psia, cd 6.07227E-01 6.0531 1E-01 6.04720E-01 6.041 13E-01 6.03982E-01 6.03880E-01 pf,p= 65.072 ib/f$, p = 1.5430E-01 cP, 41 11 1.26825E+04 3.79278E+04 6.3151 1E+04 1.26176E+05 1.51378E+05 1.76578E+05 k = -1.0, pb = 0.1 16198 Ib/ft3 Qv 1.09145E+05 3.26407E+05 5.43479E+05 1.08587E+06 1.30276E+06 1.51963E+06 Y 1.00000E+00 1.00000E+00 1.00000E+W I.OOOOOE+OO l.OOOOOE+OO I.OOOOOE+00 ICD 2 - 2 2 2 2 2 Tf= O.0OoF, P f = 200.00 psia, cd 6.05879E-01 6.0453lE-01 6.04 107E-01 6.03669E-01 6.03576E-01 6.03503E-01 pl,p= 2.0466 lb/f?, p = 1.3520E-02 cP, 4ni 2.24388E+03 6.70949E+03 1.11505E+M 2.20588E+04 2.63074E+04 3.04690E+04 k = 1.3198,pb=0.1161981b/ft3 Qv 1.93108E+û4 5.77419E+04 9.59612E+M 1.89838E+05 2.26402E+05 2.62216E+05 Y 9.99865E-01 9.98787E-01 9.96631501 9.86524E-01 9.80594501 9.73586E-01 ICD 2 - 2 2 L Io 0 I Io Tf= 50.0O0F,Pf= 500.00 psia, cd 6.05765E-01 6.û4464E-01 6.04053E-01 6.03829E-01 I 6.03626E-01 I 6.03534E-O1 I 6.03462E-01 P , , ~ 1.6623 ib/ft3, p = 1.1310E-02 cP, = 4ni 2.02398E+03 6.05642E+03 1.00787E+M 2.40178E+04 2.79407E+04 k = 1.3622, pb = 0.044210 lb/ft3 Qv 4.57810E+04 1.36992E+05 2.27974E+05 5.43266E+05 6.32000E+05 Y 9.99948E-01 9.99530E-01 9.98694E-01 9.92479E-01 9.89763E-01 ICD - 2 2 2 Tf= i50.0O0F, Pf= 1ooO.00 psia, cd 6.05671E-01 6.04410E-01 6.04010E-01 6.03793E-01 6.03594E-01 6.03505E-01 6.03434E-01 pf,p= 2.7573 Ib/ft3, p = 1.3650E-02 cP, 4i 2.6 1134E+03 7.8 1615E+03 1.30129E+CM 1.82000E+04 2.59568E+04 3.11077E+04 3.62386E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 5.90668E+04 1.76796E+05 2.94342E+05 4. I 1672E+05 5.87 126E+05 7.03634E+05 8.19692E+05 Y 9.99974501 9.99765E-01 9.99347E-01 9.98720E-01 9.97388E-01 9.96239E-01 9.94881E-01 -2 ICD 2 2 2 2 2 2 Tf= 140.00"F, Pf= 2000.00 psia, cd 6.05504E-01 6.04310E-01 6.03931E-01 6.03723E-01 6.03534E-01 6.03448E-01 6.03381E-01 pf,p= 32.465 lb/f?, p = 4.1710E-02 cP, 4ni 8.95650E+03 2.68168E+M 4.46665E+04 6.25117E+O4 8.92745E+04 1.071 14E+05 1.24952E+05 k=-1.0, pb = 0.116198 Ib/ft3 Qv 7.70796E+04 2.30785E+05 3.84400E+05 5.37976E+05 7.68296E+05 9.2 1824E+05 l.O7534E+OG Y 1.00000E+00 l.OOOOOE+00 1.00000E+00 1.00000E+OC l.OOOOOE+OC l.OOOOOE+OO 1.00000E+00 ICD - 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API M P M S * 1 4 - 3 . 4 92 m 0732290 050b382 895 m SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &-BACKGROUND 95 Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 7.98146 in, GC;! = 0,00000620 in/in-OF, d, = 4.25000 in, ai = 0.00000925 in/in-OF) - :ell alue 2.2484 20.2360 56.2110 110.1736 224.8440 323.7754 440.6943 :low Conditions - /= O.OO"F, P= 14.696 psia, r. -d .70699E+00 1.22893E+OO 1.07845E+00 9.98074E-0 I 9.26480E-O1 8.94613E-0 1 8.69902E-O1 %p - 58.199 lb/ft3,p = 1.8650E+03cP, .31893E+O5 2.84869E+05 4.16645E+05 5.39829E+05 7.15865E+05 8.29491E+05 9.41009E+05 : = -1.0, pb = 56.861 ib/ft3 7. lnr ..31957E+O3 5.00991E+03 7.32743E+03 9.49384E+03 1.25897E+04 1.45880E+04 I .65493E+04 .00000E+00 1.OOOOOE+00 1.00000E+00 I .OOOOOE+OO 1.OM")E+00 1.00000E+00 1.00000E+00 - -5 CD 1-5 14 d l-d I-d I d I /= 68.ûû°F, P f =14.696 psia, ,. -d i.53571E-01 I7.88144E-0I 17.37224E-01 = 2.1220E+02 cP, >f,p = 56.660 lb/ft3,p !in := -1.0, pb = 56.861 lb/ft3 2 , Y CD - d " rf= i76.00°F,Pf= 14.696 psia, >,,p = 54.214 Ib/ft3, p = 1.749OE+Ol cP, := -1.0, pb = 56.861 lb/ft3 -d 611 I I i.71 I65E-01 6.26888E-01 6.20488E-01 i.O2196E+04 1.40721E+05 2.32141E+05 I 2" ;.83 199E+02 2.474838+03 4.082608+03 5.686578+03 8.088558+03 9.688 l4E+03 I . 12867E+M Y .00000E+W 1.00000E+00 I .oooOOE+00 I .00000E+W I .00000E+00 1.OOOOO1:+00 I .00000E+00 - -3 [CD 3 3 2 2 2 2 rf= 60.0O0F, Pf= 14.696 psia, cd i.12058E-01 6.07974E-01 6.06780FAl 6.06152E4I 6.05594E-01 6.053458-01 6.05151E-O1 = 62.366 Iblft? 1 1.1990 cP, = Li 1.90113E+04 1.46054E+05 2.429458+05 3.397728+05 4.8494 i E+05 5.8 1690E+05 6.7842 I E+05 i = -1 .o, pb = 62.366 lb/ft3 9, !.85866E+02 2.34189E+03 3.895488+03 5.44803E+03 7.775738+03 9.327048+03 1.0878IE+04 Y I .000008+00 1 .OOOO0E+00 I .000008+00 1.OOOOOE+00 I .00000E+00 1.000(K)E+00 I .O(XH)OE+OO ICD ! - 2 2 2 2 2 2 r/= 210.û0°F, PE= 14.696 psia, cd i07200841 6.0531 1 1 6.04728E-01 6.04414E-01 6.04130E-01 6.04001E-01 6.03901E-01 W 7,,p = 58.792 ib/f?, p = 2.8250E-01 cP, 8 1 1.734348+04 1.41590E+05 2.35756E+05 3.29886E+05 4.7 10458+05 5.65 I34E+05 6.592 12E+05 i; = -1.0, pb = 62.366 ib/f? Qv 1.59122E+02 2.27031E+03 3.78019E+03 5.289528+03 7.552918+03 9.061578+03 l.O57OlE+OM Y I.OOOOOE+00 1.00000E+00 1.000WE+OO 1.00000E+00 I .00000E+W I .OOOOOE+Oíl I .000000+00 iCD l - 2 2 2 2 2 2 r/= O.W°F, P f = 14.696 psia, cd 5.07141E-O1 6.05294E-01 6.04744E-01 6.04468B-01 6.042598-01 6.04198E-01 6.041 86E-01 s ~= 0.13223 ib/ft3,p = 1.3070E-02 cP, , ~ 9m k = 1.3198, pb = 0.116198 lb/ft3 Q v Y ICD - Tj= 50.W°F, i 100.00 psia, = cd = 0.31 109 lb/ft3,p = 1.0670E-02 cP, 41 11 k = 1.3622, pb = 0.044210Ib/ft3 QV Y ICD - Tf= O.0OoF, PJ= 1000.00 psia, cd 5.05942E-01 6.04580E-01 6.04151E-01 6.03918E-01 6.03706E-01 6.03610E-01 6.03534E-01 pf,p = 65.072 Ib/ft3, /i 1.5430E-01 cP, = 4 $.95064E+04 1.48187E+05 2.46803E+05 3.45391E+05 4.93242E+05 5.91796E+05 6.90342E+05 1 k=-1.0, Pb = 0,116198 lb/ft3 Qv 4.26052E+05 1.27530E+06 2.12399E+06 2.97243E+06 4.24484E+06 5.09300E+06 5.94108E+06 Y 1.00000E+00 1.00000E+00 l.OOOOOE+00 1,00000E+00 1.00000E+00 l.OOOOOE+OO 1.00000E+00 ICD 2 - 2 2 2 2 2 2 q=O.W°F, Pf= 200.00 psia, cd 6.04988E-01 6.04013E-01 6.03702E-01 6.03531E-01 6.03377E-01 6.03307E-01 6.03253E-01 pfp = 2.0466 ib/ft3, = 1 . 3 5 2 0 m cP, 4ni 8.76472E+03 2.62238E+04 4.35895E+04 6.08102E+04 8.62488E+04 1.02865E+05 1.19141E+05 kk 1.3198,PI, = 0.116198 lb/@ Q" 7.54292E+04 2.25682E+05 3.75131E+05 5.233328+05 7.42258E+05 8.85256E+05 1.02533E+06 Y 9.99865E-01 9.98788E-01 9.96633E-01 9.93400E-01 9.86531E-01 9.80604E-01 9.73600E-01 ICD - 2 2 2 2 Tf=50.Gû°F, Pf= 500.00 psia, cd 6.04906E-01 6.03964E-01 6.03662E-01 6.03496E-01 6.03345E-01 6.03276E-01 6.03222E-01 pf,p= 1.6623 lb/ft3,p = 1.1310E-02 cP, qlll 7.90619E+03 2.36720E+04 3.94005E+04 5.50764E+04 7.84510E+04 9.39131E+04 1.09256E+05 k = 1.3622, pb = 0.044210 lb/ft3 Y ICD " - L - Ir, I P . I - Q" 1.78833E+05 5.35444E+05 8.91213E+05 1.24579E+06 1.77451E+06 2.12425E+06 2.47129E+06 9.99948E-01 9.99530E-01 9.98695E-01 9.97442E-01 9.94780E-0 1 9.92483E-O 1 9.89768E-O1 I I 0 I Tf=15O.0O0F,P f = 1000.00psia, cd 6.048390-01 I6.03925841 I6.0363OE-01~6.03469WlI6.0332iE-01 16.03254E41 I6.032011~-01 pf,p= 2.7513 lb/ft3,p = 1.3650E-02 cP, k = 1.3622, pb = 0.044210 lb/ft3 4 r Q Y ICE - I l I l l I 1.02010E+04 3.05507E+04 5.08718E+04 7.1 1568E+04 1.01492E+05 1.21637E+05 1.41704E+05 v 2.30740E+05 6.91037E+05 1.15068E+06 1.60952E+06 2.29568E+06 2.75134E+06 3.20524E+06 9.99974E-01 9.99765E-01 9.99347E-01 9.98721E-01 9.97390E-01 9.96241E-01 9.94884E-01 l Tf= 140.W°F,i= 2000.00 psia, / c d 6.04719E-01 6.03852E-01 6.03571E-01 6.03417E-01 6.03276E-01 6.03212E-01 6.03161E-01 pf,p= 32.465 Ib/ft3, p = 4.1710E-02 cP, qln 3.49907E+04 1.04822E+05 1.74623E+05 2.44410E+05 3.49075E+05 4.18845E+05 4.8861 1E+05 k=-i.O,pb= 0.1161981b/ft3 Qv 3.01 130E+05 9.02102E+05 1.50280E+06 2.10339E+06 3.00414E+06 3.60458E+06 4.20499E+06 Y l.OOOOOE+OO 1.00000E+00 1.00000E+00 l.OOOOOE+oO 1.00000E+00 1.OOOOOE+00 l.OM")E+OO - 2 ICE 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4.3-4 92 W 0732290 0506383 721 W 96 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units (Dm = 14.31154 in, CS = 0.00000620 in/in-"F, dm = 7.62500 in, al = 0.00000925 in/in-"F) - Cell A (inches H,O at 60°F) t Flow Conditions Valut - 2.2484 20.2360 56.2110 110.1736 224.8440 I 323.7754 1 440.6943 1 T p O.OO°F, PJ= 14.696 psia, c d 1.42469E+OO 1.06100E+00 9.47960E-01 8.87985E-0 8.34766E-01 8.11098E-01 7.92724E-01 pf,p= 58.199 Ib/ft3,/.i = 1.8650E+03cP, 91 n 3.54371E+05 7.91731E+05 1.17896E+06 1.54612E+Oi 2.07637E+06 2.42100E+06 2.76052E+06 k = -1.0, pb = 56.861 Ib/ft3 Qv 6.23223~+03i .39240~+042.07341~+042.7 19i 3 ~ + a3.65166E+04 4.25775E+04 4.85485E+04 Y 1.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OO I.OOOOOE+Oi l.OOOOOE+OO 1.00000E+00 I.OOOOOE+00 ICD - -5 -4 -4 -4 -4 4 -4 Tf= 68.00°F, PJ= 14.696 psia, cd 8.54888E-01 7.3124OE-O1 6.91137E-01 6.67583E-0 6.43391E-01 6.36079E-O1 6.32963E-O1 PLI>= 56.660 Ib/ft3,/.i = 2.1220E+02 cP, 41 11 2.10082E+05 5.39094E+05 8.49215E+05 1.14838E+Oi 1.58109E+06 1.87575E+06 2.17766E+O6 k = -1.0, pb = 56.861 Ib/ft3 Qv 3.69466E+03 9.48091E+03 1.49349E+04 2.01963E+D 2.78063E+04 3.29884E+04 3.82979E+04 Y l.O0000E+00 1.00000E+00 1.00000E+00 1.00000E+O( l.OOOOOE+OO I.OOOOOE+00 1.OOOOOE+00 ICD -4 -? -2 -2 -3 -3 3 - I - I - I - T/= 176.00°F,PJ= 14.696 psia, cd 6.36316E-01~6.19881B01~6.15544E-01~6.13373E-0 6.11517E-01 6.10712E-01 6.10096E-01 pl,(>= 54.214 Ib/ft3,/.i = 1.7490E+01cP, 41,l 1.53272E+05 4.47943E+05 7.41347E+05 1.03423E+0( 1.47300E+06 1.76527E+06 2.05740E+06 k = -1.0, Pb = 56.861 Ib/ft3 Qv 2.69555E+03 7.87786E+03 1.30379E+04 1.81887E+D 2.59052E+04 3.10453E+04 3.61830E+04 Y 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+CH I.OOOOOE+OO 1.00000E+00 1.OOOOOE+00 ICD - -3 3 2 2 2 2 2 ïj= 60.OO0F,PJ= 14.696 psia, Cd 6.09680E-01 6.06737E-01 6.05855E-01 6.05387E-0. 6.04967E-01 6.04779E-01 6.04631E-01 pf,, = 62.366 Ib/ft3,/.i = 1.1990 cP, 1.57163E+05 4.69218E+05 7.80893E+05 l.O9240E+Oi 1.55950E+06 1.87081E+06 2.18208E+06 k = -1.0, pb = 62.366 Ib/ft3 2.52001E+03 7.52362E+03 1.25211E+04 1.7516OE+O 2.50055E+04 2.99973E+04 3.49883E+04 1.00000E+00 l.OOOOOE+OO l.OOOOOE+00 l.OOOOOE+O( 1.OOOOOE+OO l.OooOOE+00 l.OOOOOE+OO ICD - 2 2 2 2 2 2 2 r f = 210.00°F, PJ= 14.696 psia, c d 6.06167E-01 6.04754E-01 6.04309E-01 6.04068E-01 6.03848&01 6.03749E-01 6.03670E-01 = 58.792 Ib/ft3,/.i = 2.8250E-01 cP, 4111 1.52148E+05 4.55383E+05 7.58414E+05 1.06136E+O( 1.51567E+06 1.81850E+06 2.12131E+06 k = -1.0, pb = 62.366 Ib/ft3 Q" 2.43959E+03 7.30 179E+03 1.21607E+04 1.70182E+D 2.43028E+04 2.91586E+04 3.40139E+04 Y 1.000OOE+00 1.00000E+00 1.00000E+00 l.OOOOOE+Ci 1.OOOOOE+00 l.OOOOOE+OO 1.OOOOOE+00 [CD - 2 2 2 2 r f = 0.0û0F,PJ= 14.696 psia, c d 6.06122E-0 1 6.04740E-O 1 6.0432 1E-01 6.04 109E-0 1 6.03948E-0 1 6.0390 1E-0 1 6.03892E-01 = 0.13223 lb/f$, p = 1.3WOE-02cP, 8,1 7.17310E+03 2.1 1550E+04 3.41829E+04 4.56334E+ol 5.84781E+04 6.32374E+04 6.42199E+W k = 1.3198,pb = 0.116198 Ib/ft3 Q" 6.17317E+04 1.82060E+05 2.94178E+05 3.92721E+O! 5.03262E+05 5.44221E+05 5.52677E+02 Y 9.98167E-01 9.83500E-01 9.54167&01 9.10168E-01 8.16669E-01 7.36003E-01 6.40671E-01 r m - 2 2 2 r f = 50.00°F, PJ= 100.00psia, cd 6.05231E-01 6.04198E-01 6.03870E-01 6.Ö3691Ero1 6.03531E-01 6.03459E-01 6.03404E-01 gl,p = 0.31 109 lb/ft3,/.i = 1.0670E-02 cP, 7111 1.10139E+04 3.29169E+04 5.46020E+04 7.59383E+O~ 1.06992E+05 1.26861E+05 1.45904E+05 = 1.3622, pb = 0.044210 Ib/ft3 Qv 2.49128E+05 7.44557E+05 1.23506E+06 1.71767E+(x 2.42008E+06 2.86951E+06 3.30024E+OE Y 9.99739E-01 9.97651E-01 9.93474E-O1 9.87209E-01 9.73895E-01 9.62409E-01 9.48835E-01 iCD - 2 2 2 2 2 2 2 rf= O.OO°F, PJ= 1000.00 psia, G 6.05229E-01 6.04195E-01 6.03865E-01 6.03684E-03 6.03518&01 6.03443E-01 6.03383Wl = 65.072 Ib/ft3,p = 1.543OE-O1 cP, bn 1.59182E+05 4.76737E+05 7.94126E+05 1.11144E+OC 1.58734E+06 1.90457E+06 2.22178E+06 c=-1.0,pb=0.1161981b/ft3 2, 1.36992E+06 4.10280E+06 6.83424E+06 9.56508E+OC 1.36606E+07 1.63907E+07 1.91206E+07 Y l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OO 1.00000E+O( l.OOOOOE+OO l.OOOOOE+NI 1.00000E+G€ [CD - 2 2 2 2 2 2 2 rf= O.OO"F, PJ= 200.00 psia, n -d 6.04507E-01 6.03758E-01 6.03515E-01 6.03381E-01 6.03260E-01 6.03205E-01 6.03162E-01 = 2.0466 Ib/ft3,p = 1.3520E-02 cP, Ini 2.8 1928E+O4 8.43833E+04 1.40279E+05 1.95710E+O2 2.77596E+05 3.31083E+05 3.83477E+05 := 1.3198, pb = 0,116198 lb/ft3 2, 2.42627E+05 7.26203E+05 1.20724E+06 1.68428E+OC 2.38899E+M 2.84930E+06 3.30021E+M Y 9.99865E-01 9.98788E-01 9.96632E-01 9.93399E-01 9.86529E-01 9.80602E-01 9.73597E-01 ?= 50.00"F, PJ= 500.00 psia, - CD - <d 2 2 2 2 5.04445E-01 6.03720E-01 6.03483501 6.03354E-01 %p - 1.6623 Ib/ft3,/.i = 1.1310E-02 cP, 7111 2.54320E+04 7.61734E+04 1.26800E+05 1.77259E+05 := 1.3622, pb = 0.044210 lb/ft3 2, 5.75255E+05 1.72299E+06 2.86813E+06 4.00948E+Of r J.99948E-01 9.99530E-01 9.98695E-01 9.97442E-01 CD - 2 2 2 2 f= 150.00°F,PJ= 1OOO.00 psia, r7 -d 5.04394E-01 6.03689501 6.03459E-01 6.03332E-01 = 2.7573 Ib/ft3,/.i = 1.3650E-02 cP, Li1 3.28148E+04 9.83099E+04 1.63719E+05 2.29015E+05 : = 1.3622,pb = 0.044210 Ib/ft3 2, 7.42248E+05 2.22370E+06 3.70321E+06 5.18015E+M >.99974E-01 9.99765E-01 9.99347E-01 9.98721E-01 CD - 1 2 2 2 i= 140.00"F, PJ= 2000.00 psia, ?i 5.04302E-01 6.03632501 6.03413E-01 6.03292E-01 = 32.465 Ib/ft3,/.i = 4.1710E-02 cP, ni L.I2564E+05 3.37319E+05 5.61994E+05 7.86634E+05 Z-1.0, pb = 0.116198 ib/ft3 2, ).68722E+05 2.90297E+06 4.83652E+06 6.76978E+06 LO O O + O 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 . O O EO CD - ! 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3-4 92 m 0732290 0506384 668 m SECTION &CONCENTRIC. SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 97 Table 4-C-&Selected Round Robin Test Results Matrix-US Units ( Dm = 29.37598 in, CS = 0.00000620 idin-OF, d, = 15.65626 in, al = 0.00000925 idin-OF) A (inches H,O at 60°F) í I i Cell Value Flow Conditions 224.8440 323.7754 440.6943 r/=0.00OF, Pf= 14.696 psia, Cd 7.52977E-01 7.36253E-01 7.23090E-01 pf,p= 58.199 lb/ft3,j i = 1.8650E+03cP, 41 11 7.89665E+06 9.26553E+06 I .O6 165E+Oï k = -1.0, pb = 56.86 I Ib/ft3 QI. I .38876E+05 1.62950E+05 1.867 IOE+05 Y i .OOOOOE+00 1.00000E+00 I .ooOOOE+OC ICD - r/= 68.00"F. Pf= 14.696psia, c d 7.67058E-01 6.76588E-01 6.41762E-0 1 6.3265 1E-0 I 5.26734E-01 6.24236E-01 6.22355E-01 P,,~ = 56.660 lb/ft3,j i = 2.1220E+02 cP, 4ni 7.94747E+05 2.10305E+06 3.32467E+06 4.58846E+06 5.49363E+06 7.76 I30E+06 9.027568+06 k = -1.0, pb = 56.861 Ib/ft3 Q,. 1.39770E+04 3.69859E+04 5.8470 1E+O4 8.O696 I E+04 1.14202E+05 1.36496E+05 1.58765E+05 Y 1.OOOOOE+00 I .00000E+W I.OOOOOE+OC i .OOOOOE+00 I .00000E+00 l.OOOOOE+ûO I .00000E+OO ICD -3 - -3 3 3 3 3 r/= 176.00F, Pf= 14.696 psia, C d 6.2438 1E-0 1 6.143 1OE-01 6.11559E-01 6.1O 158E-O1 5.08942E-01 6.084lOE-01 6.07999E-01 pf,p= 54.214 ib/ft3, j i = 1.7490E+01 cP, 41 11 6.34103E+05 1.87165E+06 3.10543E+06 4.33765E+06 5.18430E+O6 7.4 l466E+06 8.6446 lE+06 k=-1.0, pb = 56.861 Ib/ft3 Qv Y -3 ICD l I 1.1 1518E+04 3.29162E+W 5.461458+04 7.62851E+04 1.08762E+05 1.30400E+05 1.52030E+05 I .000WE+00 I .0000013+00 I .00000E+W I .OOOOOE+W 1.OOOOOE+00 1.00000E+00 1.00000E+00 2 ïj=60.00°F, P f = 14.696 psia. c,, 6.07720E-01 6.057 13E-0 1 5.04464E-01 6.04328E-01 6.04222E-01 pf,p= 62.366 lb/ft3,p = 1.1990 cP, %ia 6.60501E+05 1.97498E+O6 5.56968E+06 7.88185E+06 9.19387E+06 k =-1.o, pb = 62.366 Ib/ft3 Q, 1.05907E+04 3.16675E+O4 1.05341E+05 1.26381E+05 1.47418E+05 Y 1.OOOOOE+W 1.00000E+OC l.OOOOOE+OO I.ooOOOE+00 1.00000E+00 ICD -2 2 2 2 2 Tf= 210.OOQF,Pf= 14.696 psia, P,,~ 58.792 Ib/ft3,j i = 2.825OE-O1 cP, = ci 6.05316E-01 6.0431IE-01 6.40584E+05 1.91858E+O6 6.03651E-01 6.03577E-01 6.03519E-01 6.38829E+06 7.66501E+06 8.94165E+06 4 1 k = -1 .O, pb = 62.366 Ib/ft3 QI. Y -2 ICD 2 I 1.027 14E+ü4 3.076338+04 5.124478+04 7.172178+04 1.02432E+05 1.22904E+05 1.43374E+05 I .00000E+00 I .00000E+00 1.000WE+Oü 1.OO(MX)E+OO 1.00000E+00 1.OoooOE+OO l.OOOOOE+OO 2 2 2 2 2 Tf= O.OOF,Pf= 14.696 psia, cd 6.05283E-01 6.04300E-01 6.03996E-01 6.03842E-01 6.03724E-01 6.03689E-01 6.03682E-01 pf,p= 0.13223 Ib/ft3,p = 1.3070E-02 cP, 41 81 3.020 14E+O4 8.91285E+04 1.44044E+05 1.92313E+05 2.46459E+05 2.66520E+05 2.70657E+05 k = 1.3198,pb=0.1161981b/ft3 Qv 2.59913E+05 7.67040E+05 1.23964E+06 1.65504E+06 2.12103E+06 2.29367E+06 2.32928E+06 Y 9.98167E-01 9.83499E-01 9.54163E-01 9.10160E-01 8.16654E-O1 7.3598 IE-01 6.40641E-0 1 -2 ICD 2 2 2 2 2 2 TJ=50.00F, Pf= 100.00 psia, C d 6.04652E-01 6.03907E-01 6.03666E-01 6.03535E-01 6.03415E-01 6.03362E-01 6.03321E-01 pf,p= 0.3 1109 Ib/ft3,p = 1.0670E-02 cP, 41 11 4.63926E+O4 1.38717E+05 2.30135E+05 3.20088E+05 4.51012E+05 5.34783E+05 6.15071E+05 k = 1.3622,pb = 0.044210 lb/ft3 QI. 1.04937E+06 3.13769E+06 5.20551E+06 7.24017E+06 i.O2016E+07 1.20964E+07 1.39125E+07 Y 9.99739501 9.97650E-01 9.93473E-01 9.87208E-01 9.73893E-01 9.62406E-01 9.48830E-01 ICD - 2 2 2 Tf= O.OOF, Pf= 1ooO.00 psia, Cd 6.04651E-01 6.03905E-01 6.03662E-01 6.03529E-01 6.03406E-01 6.03349E-01 6.03305E-01 = 65.072 lb/ft3, j i = 1.5430E-01 cP, 91 11 6.70504E+05 2.00905E+06 3.34707E+06 4.68486E+05 6.69130E+06 8.02881E+06 9.36625E+06 k = -1.0, pb = 0.1 16198 Ib/ft3 Q, 5.77036E+06 1.72899E+07 2.88049E+07 4.03179E+07 5.75853E+07 6.90959E+07 8.06060E+07 Y l.OOOOOE+00 l.OOOOOE+oO l.OOOOOE+oO 1.00000E+W 1.00000E+00 1.00000E+00 l.OOOOOE+00 -2 ICD 2 2 2 2 2 2 TJ= O.OO"F, Pf= 200.00 psia, cd 6.04132E-01 6.03583E-01 6.03403E-01 6.03303E-01 6.03212E-01 6.03171E-01 6.03139E-01 p,,,, = 2.0466 lb/ft3, j i = 1.3520E-02 cP, 41 11 1.18793E+05 3.55674E+05 5.91334E+05 8.25045E+05 1.17031E+06 1.39583E+06 1.61675E+06 k = 1.3198,pb=O.l161981b/f~ Qv l.O2233E+O6 3.06093E+06 5.08902E+06 7.10034E+06 1.O07 17E+07 1.20125E+07 1.39138E+07 Y 9.99865E-01 9.98787E-01 9.96632E-01 9.93399E-01 9.86528E-01 9.80600E-01 9.73594E-01 -2 ICD 2 2 2 2 2 2 T/= 50.û0°F, P f = 500.00 psia, c d 6.04087E-01 6.03555E-01 6.03380E-01 6.03283E-01 6.03 194E-01 6.03153E-01 6.03120E-01 pf.p= 1.6623 IblfG, j i = 1.131OE-02 cP, 4111 1.07163E+05 3.21075E+05 5.34522E+05 7.47272E+05 1.06452E+06 1.27439E+06 1.48264E+06 k 1.3622, pb = 0.044210 ib/ft3 Q" 2.42395E+06 7.26250E+06 1.20905E+07 1.69028E-cO7 2.40788E+07 2.88259E+07 3.35364E+07 Y 9.99948E-01 9.99530E-01 9.98695E-01 9.97442E-01 9.94779E-01 9.92481E-01 9.89766E-01 -2 ICD 2 2 2 2 2 2 ïj=150.00°F,Pf= 1OOO.00 psia, cd 6.04050E-01 6.03533E-01 6.03362E-01 6.03267501 6.03180E-01 6.03 140E-01 6.03108E-01 p,,, = 2.7573 ib/f$, p = 1.3650E-02 cP, qn1 1.38275E+05 4.14387E+05 6.90161E+05 9.65467E+05 1.37720E+06 1.65063E+06 1.92301E+06 k 11.3622, pb = 0.044210 lb/ft3 Q" 3.12769E+06 9.37316E+06 1.56110E+07 2.18382E+07 3.1 1513E+07 3.73361E+07 4.34971E+07 Y 9.98721E-01 9.97389E-01 9.96240E-01 9.94883E-01 ICD - 2 2 2 2 Tf= 140.00"F. Pf= 2000.00 psia, cd 6.03237E-01 6.03153E-01 6.031 15E-01 6.03084E-01 pGp 32.465 ib/ft3, j i = 4.1710E-02 cP, = 4n 1 3.31631E+Ot 4.73692E+06 5.68394E+06 6.63093Ert.06 k=-1.0, pb = 0.116198 Ib/ft3 Qv 2.85401E+07 4.07660E+07 4.89160E+07 5.70658E+07 Y l.~OOE+OC 1.000OOE+00 l.OOOOOE+OO 1.OOOOOE+00 -ICD 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 98 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 1.93945 in, CS = 0.00000620 in/in-OF, d, = 1.28126 in, al = 0.00000925 in/in-"F) Cell A (inches H?O at 60°F) í Value 440.6943 Flow Conditions - ïj=0.00"F, P f = 14.696 psia, cd 1.40605E+3+00 prP= 58.199 Ib/ft3, /i = 1.8650E+03cP, 41 11 1.47326E+05 k = -1.0, pi>= 56.861 Ib/ft3 Q" 2.59098E+03 Y l.OOOOOE+OO ICD - I - I - l - -5 ïj=68,00"F, P f = 14.696 psia, cd 1.62622E+OOI 1.18494E+OOI l.O4463E+OoI 9.6836 1E-01 8.40876E-01 pf,p= 56.660 Ib/ft3, /.i = 2.1220E+02 cP, 4nr 8.70522E+04 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.53097E+03 Y I.OOOOOE+OO ICD - -5 -4 T,== 176.00°F, P f = 14.696 psia, c d 8.68359E-01 7.04472E-01 6.41117E-01 6.37613E-01 6.34968E-01 P,,~ 54.214 Ib/ft3, /.i = 1.749OE+Ol cP, = 41 11 6.29459E+03 1.53199E+04 4.64739E+04 5.54639E+oL 6.44395E+04 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.10701E+02 2.69428E+02 8.17325E+02 9.75429E+O: 1.13328E+03 Y l.OOOOOE+OO l.OOOOOE+oO l.OOOOOE+OO l.OOOOOE+O( 1.00000E+00 ICD - 3 3 3 ïj=60.0O0F, P f = 14.696 psia, cd 6.33221E-O1 6.21185E-01 6.14300E-01 6.13578E-01 6.13014E-01 pIP = 62.366 Ib/ft3, /i = 1.1990 cP, 4ni 4.91 177E+03 1.44554E+04 4.76504E+04 5.71133E+oL 6.65710E+04 k 2 -1.0, pb = 62.366 ib/ft3 Qv 7.87572E+01 2.31783E+02 7.64045E+02 9.15776E+O; ï.O6742E+O3 Y 1.00000E+00 1.00000E+W 1.00000E+00 l.OOOOOE+O( 1.00000E+00 ICD 2 2 2 r f = 210.00"F, Pf= 14.696 psia, cd 6.18927E-01 6.13466501 6.1 1766E-01 6.10844E-01 6.10005E-01 6.09623E-01 6.09322E-01 pf,P= 58.792 lb/ft3, /.i = 2.8250E-01 cP, 4rn 4.67525E+03 1.39021E+04 2.31060E+04 3.22997E+04 4.60790E+04 5.52602E+@ 6.44384E+04 k = -1.0, pb = 62.366 Ib/ft3 Qv 7.49648E+01 2.22912E+02 3.70490E+02 5.17905E+02 7.38848E+02 8.86062E+O: 1.03323E+03 Y 1.00000E+00 1.00000E+00 1.00000E+0(1 1.00000E+OC l.OOOOOE+00 l.OOOOOE+O( 1.00000E+00 ICD 2 - 2 2 2 2 2 2 T,== O.OO°F, P f = 14.696 psia, Cd 6.18777E-01 6.13441E-01 6.1 1845E-01 6.1 1047E-01 6.10456E-01 6.10301E-01 6.10308E-01 Ei pbp = 0.13223 ib/ft3, /.i = 1.3070E-02 cP, 41 11 2.20304E+02 6.44744E+02 1.03696E+03 1.37682E+01 1.74350E+03 1.86243E+O: 1.85679E+03 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1.89593E+03 5.54866E+03 8.92405E+03 1.18489E+04 1.5W6E+04 1.60281E+W 1.59795E+04 Y 9.98006E-01 9.82053E-01 9.50147E-01 9.02289E-01 8.00589E-01 7.12849E-01 6.09155E-01 ICD 2 2 2 2 2 2 ïj=50.00"F, P/= 100.00 psia, cd 6.15314E-01 6.11361E-01 6.10105E-01 6.09423E-01 6.08535E-01 6.08325E-01 = 0.31109 Ib/ft3, /.i = 1.0670E-02 CP, 9"l 3.36929E+02 1.00202E+03 1.65901E+03 2.30410E+03 3.83623E+O: 4.40517E+03 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 7.621 11E+03 2.26650E+04 3.75257E+04 5.21171E+04 8.67729E+04 9.96420E+04 Y 9.99716E-01 9.97444E-01 9.92901E-01 9.86086E-01 9.59110E-01 9.44345E-01 ICD 2 2 2 2 2 2 T = O.OO"F, P f = 1000.00psia, ,= cd 6.15312E-01 6.11354E-01 6.10090E-01 6.09397E-01 6.08471E-01 6.08242E-01 pf,P= 65.072 Ib/ft3, p = 1.5430501 cP, 41 11 4.86947Et03 1.45146Et04 2.41409E+04 3.37589Et04 4.8 1767E+O4 5.77845Et04 6.73899E+04 k=-1.0,/3b = 0.1161981b/ft3 Qv 4.190668+04 1.24912B+05 2.077578+05 2.905298+05 5.79957Et05 Y 1.00000E+00 1.OOoOOE+00 1. O O o 0 1.wooE+oo O O O+0 1.0OOOOEi00 -2 ICD 2 2 2 2 r f = O.OO"F, P f = 200.00 psia, cd 6.12545E-O1 6.09680501 6.08748501 6.08236I3-O1 6.07767E-01 6.07555E-01 6.07389E-01 pf,p = 2,0466 Ib/ft3, /i 1.352ûE-02 cP, = 41 11 8.595678+02 2.56366E+03 4.2562 lE+03 5.93266E+03 8.40496E+03 1.00165E+04 1.15917EtO4 k = 1.3198, pb = 0.116198 lb/ft3 Q" 7.39743E+03 2.20628Et04 3.662898+04 5.10565Et04 7.23331E+04 8.62017EtCv 9;97586Et04 Y 9.99853E-01 9.98681E-01 9.96337E-01 9.92820E-01 9.85347E-01 9.78900E-01 9.71281E-01 ICD 2 - 2 2 2 2 2 2 Tj= 50.00"F, Pf= 500.00 psia, cd 6.12302E-01 6.09529501 6.08623501 6.08123501 6.07663E-01 6.07453E-01 6.07288E-01 pfp = 1.6623 Ib/ft3, p = 1.1310E-02 cP, 41n 7.75208E+02 2.3 1406E+03 3.84753E+03 5.37477E+03 7.65015E+03 9.15395E+01 1.06449E+04 k 1,3622,pb = 0.044210 Ib/ft3 Qv 1.753478+04 5.234248+04 8.702858+04 1.215748+05 1.73041E+05 2.07056E+05 2.40780E+05 Y 9.99943E-01 9.99489E-01 9.98580EOl 9.97217E-01 9.94321E-01 9.9 1822E-01 9.88869E-01 [CD 2 - 2 2 2 2 2 2 Tj= 150.00"F, Pf= 1000.00 psia, cd 6.12098E-01 6.09401E-01 6.085 1 8 M 1 6.08030E-01 6.07580E-01 6.07374E-01 6.0721 1E-01 = 2.7573 lb/ft3, /.i = 1.3650E-02 cP, 4111 1.00009E+03 2.98639E+03 4.967858+03 6.944678+03 9.899240+03 1.18602B+04 1.38126E+W k = 1.3622, pb = 0.044210 Ib/ft3 Qv 2.26213E+04 6.75502B+04 1.123698+05 1.57084E+05 2.239 14E+05 2.68269B+05 3.12433E+05 Y 9.99972E-01 9.99744E-01 9.9929OE-O1 9.98608E-01 9.97 1608-01 9.959 10E-01 9.94434E-01 [CD 2 - 2 2 2 2 2 2 r f = 140.00"F, Pf=2000.00 psia, cd 6.1 1747501 6.09183E-01 6.08341LFol 6.07874E-01 k5.07443B-01 6.07245E-0 1 6.07089E-01 = 32.465 Ib/ft3, /.i = 4.1710E-02 cP, Ym 3.42910B+03 1.024438+04 1.70502E+04 2.38520E+04 3.40501E+04 4.08468E+04 4.76423E+04 G=-1.0,pb=0.1161981b/ft3 Qv 2.95 l09E+04 8.816248+04 1.46734E+05 2.052708+05 2.93035E+05 3.515288+05 4.100 10E+05 Y 1.00000E+00 l . r n E + 0 0 1 . r n E + 0 0 1.00000E+00 i .00000E+00 1.00000E+W l.OOOOOE+00 [CD 2 - 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14-3e4 9 2 W 0732290 0506386 430 W SECTION 3-CONCENTRIC. SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 99 Table 4-C-&Selected Round Robin Test Results Matrix-US Units ( Dm = 2.90039 in, CS = 0.00000620 in/in-OF, d,,, = 1.92189 in, al = 0.00000925 in/in-"F) - Cell AP (inches H,O at 60°F) ?ow Conditions falue 2.2484 20.2360 56.2110 110.1736 224.8440 323.7754 440.6943 - rf= O.OO"F, P/= 14.696 psia, P -d I.O2096E+00 2.031 17E+OO 1.71348E+00 1.54120E+00 1.38544E+00 1.31519E+00 I .26025E+00 = 58.199 Ib/ft3, p = 1.8650E+03 cP, 1ni i.O9444E+04 l.O276OE+05 l.U79E+05 1.8 1933E+05 2.33638E+05 2.66 l49E+05 !.97536E+05 C = -1.0, pb = 56.861 Ib/ft3 2, 1.95946E+02 1.80721E+03 2.54091E+03 3.19962E+03 4.10892E+03 4.68070E+03 !.23269E+03 Y 1 .OOOOOE+00 1.00000E+00 1.OOOOOE+00 1.00000E+00 1.ooOOOE+00 I .OOOOOE+00 I . O O E O O O O+ O [CD - -6 -5 -5 -5 -5 -5 -5 rf= 68.00"F. Pf= 14.696 psia, Cd 1.4447 1E+OO I.O7496E+OO 9.56713E-01 8.91648E-01 8.30968E-01 8.02446E-O 1 1.79316E-01 yf,p = 56.660 Ib/ft3, /i = 2.1220E+02 cP, 7111 407 14E+O4 5.37328E+04 7.97034E+04 I.O3996E+05 1.38455E+05 1.60443E+05 1.81789E+O5 ¿=-I.(), pb = 56.861 lb/ft3 Qv 1.23338E+02 9.44985E+02 1.40172E+03 1.82895E+03 2.43498E+03 2.82168E+03 3.19707E+03 Y I .00000E+00 1.00000E+00 1.OOOOOE+00 1 .OOOOOE+00 1.OOOOOE+00 1.00000E+00 I.00000E+00 ~ iCD - -5 -4 -4 -4 4 -4 -4 r f = 176.00"F, P i = 14.696 psia, cd 1.04108E-01 6.62435E-01 6.46722E-01 6.39093E-01 6.32713E-01 6.29989E-01 5.27923E-01 gf,p = 54.214 Ib/ft3, /i = 1.7490E+01 cP, 8 1 1.31338E+04 3.24596E+04 5.28161E+04 7.30703E+04 1.03344E+05 1.23479E+05 I .43586E+05 k = -1 .o, pb = 56.86 1 Ib/ft3 Qv !.30980E+02 5.70859E+02 9.28863E+02 1.28507E+03 1.81748E+03 2.17 159E+03 2.525218+03 Y I.ooO00E+00 1 .OOOOOE+00 1.OOOOOE+00 1.OOOOOE+00 1.00000E+00 1.OOOOOE+OO I .OOOOOE+OO [CD - 4 3 3 3 3 3 3 r f = 60.00"F, P f = 14.696 psia, c d 5.26553E-01 6.16940E-01 6. I41 1OE-01 6.12608E-01 6.1 1263E-01 6.10657E-O 1 5.10183E-01 = 62.366 lb/ft3, /i = 1.1990 cP, 4,n I.09508E+3+043.23486E+04 5.36670E+04 7.49501 E+04 1.06836E+05 1.28077E+05 1.49307E+05 k = -1.0, Pb = 62.366 lb/ft3 Q, 1.75589E+02 5.18690E+02 8.60517E+02 1.20178E+03 1.71306E+03 2.05363E+03 2.39404E+03 Y I .OOOOOE+00 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+00 1.0OOOOE+00 1.OOOOOE+00 1.00000E+00 ICD - 3 2 2 2 2 2 2 r/= 210.0OoF, Pf= 14.696 psia, c d 5.15093E-01 6.10561E-01 6.09127E-01 6.08345E-01 6.07630E-01 6.07304E-01 6.07046E-01 pf,p = 58.792 ib/ft3, /i = 2.8250501 cP, 4ni 1.04692E+04 3.11764E+O4 5.18387E+04 7.24810E+04 1.03423E+05 1.24040E+05 1.44652E+05 k = -1.0, pb = 62.366 ib/ft3 Qv 1.67867E+02 4.99895E+02 8.31201E+02 1.16219E+03 1.65832E+03 1.98891E+03 2.3 1941E+03 Y l.OOOOOE+00 l.O0000E+00 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO l.OOOOOE+00 ICD - 2 2 2 2 2 2 2 r/= 0.OOoF, P f = 14.696 psia, cd 5.14973E-01 6.10543E-01 6.09199E-01 6.08522E-01 6.08019E-01 6.07888E-O1 6.07895E-01 pbp = 0.13223 lb/ft3, /i = 1.3070E-02 cP, 41 11 4.93340E+02 1.44585E+03 2.32618E+03 3.08889E+03 3.91 1 16E+03 4.17702E+03 4.16268E+03 k = 1.3198, pb = 0,116198 lb/ft3 Qv 4.24569E+03 1.24430E+04 2.00191E+04 2.65830E+04 3.36594E+04 3.59475E+04 3.58240E+04 Y 9.98003E-01 9.82022E-0í 9.50063E-01 9.02123E-01 8.00250E-01 7.12360E-01 6.08491E-01 ICD - 2 2 2 2 2 2 2 Tf= 50.00"F, Pf= 100.00 psia, c d 6.121 lOE-01 6.08787E-01 6.07719E-01 6.07136E-01 6.06609E-01 6.06374E-01 6.06193E-01 pf,p= 0.31 109 Ib/ft3, /i = 1.0670E-02 cP, 41 11 7.55224E+02 2.24827E+03 3.72346E+03 5.17205E+03 7.27362E+03 8.61257E+03 9.89008E+03 k = 1.3622, pb = 0.044210 lb/ft3 Qv 1.70826E+04 5.08543E+04 8.42222E+04 1.16988E+05 1.64524E+05 1.9481 1E+05 2.23707E+05 Y 9.99716E-01 9.97440E-01 9.92889E-01 9.86062E-01 9.71556E-01 9.59041E-01 9.44250E-O1 ICD - 2 2 2 2 2 2 2 TI= O.W°F, P f = looO.00 psia, cd 6.12109E-01 6.08782E-01 6.07706E-01 6.071 14E-01 6.06570E-01 6.06320E-01 6.06123E-O1 pf,p= 65.072 lb/ft3, p = 1.5430E-01 cP, q,n 1.09149E+04 3.25670E+04 5.41824E+04 7.57815E+04 1.08162E+05 1.29741E+O: 1.51315E+05 k = -1.0, pb = 0.116198 lb/ft3 QV 9.39335E+04 2.80272E+05 4.66294E+05 6.52175E+05 9.30843E+05 1.1l655E+M 1.30222E+06 Y l.OOOOOE+OO 1.OOOOOE+00 1.00000E+00 1.0OOOOE+00 1.00000E+00 1.00000E+OC 1.00000E+00 ICD - 2 2 2 2 2 2 2 q= P/= O.OOOF, 200.00 psia, cd 6.09789E-01 6.07357E-01 6.06558E-01 6.061 17E-01 6.057 13E-01 6.05530E-01 6.05387E-01 P , , ~ 2.0466 lb/ft3, /i = 1.3520E-02 cP, = 4lli 1.92808E+03 5.75447E+03 9.55564E+03 1.33209E+04 1.88738E+04 2.24933E+W 2.60314E+04 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1.65931E+04 4.95230E+04 8.22358E+04 1.14640E+05 1.62428E+05 1.93577E+O( 2.24026E+05 Y 9.99853E-01 9.98679E-01 9.96331E-01 9.92808E-01 9.85322E-01 9.78864E-01 9.71232E-O1 ICE - 2 2 2 2 2 2 2 ïj=50.00"F, Pf= 500.00 psia, c d 6.09584E-01 6.07226E-01 6.06449E-01 6.06019E-01 6.05623E-01 6.05441E-01 6.05298E-01 pf,p= 1.6623 ib/ft3, /i = 1.1310E-02 cP, 4ni 1.73896E+03 5.19440E+03 8.63837E+03 1.20686E+04 1.71795E+04 2.05573E+@ 2.39064E+04 k 1.3622, pb = 0.044210 Ib/ft3 Q" 3.93342E+04 1.17494E+05 1.95394E+05 2.72984E+05 3.88588E+05 4.64992E+O: 5.40745E+05 Y 9.99943501 9.99488E-01 9.98578E-01 9.97212E-01 9.9431 1E-01 9.91808E-01 9.88850E-01 ICE - 2 2 2 2 2 2 2 Tf= 150.0O0F, Pf= 1ooO.00 psia, cd 6.09409E-01 6.07114E-01 6.06357E-01 6.05937E-01 6.05549E-01 6.05371E-03 6.05230E-01 prp = 2.7573 lb/ft3, p = 1.3650E-02 cP, %i 2.24353E+03 6.70379E+03 1.11539E+04 1.55940E+04 2.22306E+04 2.66354E+@ 3.102 13E+04 k A 1.3622, pb = 0.044210 lb/ft3 Q" 5.07471E+04 1.51635E+05 2.52295Er-O5 3.52727E+05 5.02841E+05 6.02474E+O: 7.01680E+05 Y 9.99972E-01 9.99744E-01 9.99289E-01 9.98606E-01 9.97155E-01 9.95903E-01 9.94424E-01 ICI - 2 2 2 2 2 2 2 ïj=140.0O0F, P f = 2000.00 psia, d 6.09113E-01 6.06928E-01 6.06205E-01 6.05803E-01 6.0543 1E-01 6.0526OE-01 6.05 124E-01 pf,p= 32.465 ib/ft3, /i = 4.1710E-02 cP, qn 1 7.69329E+03 2.29973E+04 3.82832E+04 5.35609E+04 7.64686E+04 9.17363E+O~ 1.07002E+05 k=-l.O, pb = 0.116198 lb/ft3 Qv 6.62085E+04 1.97915E+05 3.29465E+05 4.60945E+05 6.58089E+05 7.89483E+01 9.20857E+05 Y l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 l.OOOOOE+O( l.OOO00E+00 ICI - 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - - __ = .___I_~ .~ -. A P I MPMS*L4.3.Y 72 H 0732270 0506387 377 1O0 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm= 4.02638 in, a;! = 0.00000620 in/in-OF, dm= 2.66406 in, al = 0.00000925 idin-OF) Cell A (inches H,O at 60°F) í Flow Conditions Valui 56.2110 110.1736 224.8440 323.1754 440.6943 - ~ T/= O.OO"F, Pf= 14.696 psia, Cd 1.54695E+00 1.39839E+OO 1.26419E+OO 1.20368E+00 1.15635E+OO pf,p= 58.199 Ib/ft3, /.i = 1.8650E+03cP, 41 1, 2.50453E+05 3.16963E+05 4.09347E+05 4.67705E+05 5.24201E+05 k = -1.0, p,, = 56.861 Ib/ft3 Qv 4.40466E+03 5.57434E+03 7.19909E+03 8.22542E+03 9.21898E+03 Y 1.00000E+OO 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO 1.00000E+00 ICD - -5 -5 -5 -5 -4 T - 68.00"F, Pl= 14.696 psia, ,= Cd 8.93370E-01 8.35705E-01 7.80664E-01 7.54158E-01 7.32280E-01 pl,p= 56.660 lb/ft3, /.i = 2.1220E+02 cP, 41 11 1.42906E+05 1.87155E+05 2.49755E+05 2.89530E+05 3.27986E+05 k = -1.0, pb = 56.861 Ib/ft3 Q" 2.51326E+03 3.29145E+03 4.39238E+03 5.09189E+03 5.76821E+03 Y 1.00000E+00 1.00000E+OO 1.OOOOOE+OO 1.0OOOOE+00 l.OOOOOE+íM ICD - -4 -4 -4 -3 -3 î j = 176.00°F, Pf= 14.696 psia, Cd 7.55677E-01 6.51377E-O 6.38819E-01 6.32665E-01 6.27474E-01 6.25242E-O1 6.23542E-01 pfp = 54.214 Iblft, /.i = 1.749OE+Ol cP, 41 1, 2.36993E+04 6.12854E+D 1.00173E+05 1.38891E+05 1.96788E+05 2.35306E+05 2.73777E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 1.16793E+02 1.O7781E+O: 1.76172E+03 2.44264E+03 3.46086E+03 4.13826E+03 4.81484E+03 Y l.OOOOOE+W 1.00000E+O( l.OOOOOE+OO 1.00000E+00 1.OoooOE+00 l.OOOOOE+OO l.OOOOOE+OO ICD - -3 3 3 3 3 3 3 Tj= 60.00"F, Pf= 14.696 psia, cd 6.22413E-O1 6.14376E-0 6.11969Eol 6.10683E-01 6.09525E-01 6.09003E-OI 6.08593E-01 pIp = 62.366 Ib/ft3, p = 1.1990 cP, 41 11 2.08877E+04 6.18547E+D 1.02687E+05 1.43460E+05 2.04554E+05 2.45255E+05 2.85938E+05 k = -1.0, p,, = 62.366 Ib/ft3 Qv Y ICD I 3.34022t?+02 9.9 1802B+O: 1.O(JOOOE+00 1.O(K)Oí)E+O( 1.64652E+03 2.30029E+03 3.27990E+03 3.93250E+03 4.58483E+03 1.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+00 2 2 2 2 2 - TJ= 210.00°F, Pf= 14.696pcia, Cd 5.12804&01 6.08915C-0i 6.07673Eo1 6.06992501 6.06369E-01 6.06083E-01 6.05858E-01 P , , ~= 58.792 lb/ft3, p = 2.8250E-01 CP, 4in 2.00271E+04 5.97006E+& 9.92979E+04 1.38861E+05 1.98170E+05 2.37692E+05 2.77204E+05 k = -1.0, pb = 62.366 lb/ft3 Q v 3.21 122E+02 9.57262E+ü: 1.59218E+03 2.22656E+03 3,17753E+03 3.81124E+03 4.44479E+03 Y 1.00000E+00 l.OOOOOE+O( 1.OoooOE+00 1.OoooOE+OO l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OO ICD 2 - 2 2 2 2 2 2 ï j = O.OO°F, Pf= 14.696psia, cd 5.12707E-01 6.08906E-01 6.07740E-01 6.07152E-01 6.06714E-01 6.06599E-01 6.06605E-01 pf,p = 0.13223 Ib/ft3, /.i = 1.3070502 cP, 41 11 ).437778+02 2.76877EtO: 4.45602E+03 5.91818E+03 7.49528E+03 8.00602E+03 7.98010E+03 k = 1.3198,p,, = 0.116198 ib/ft3 Q v 3.12214B+03 2.38281E+W 3.83485E+04 5.09319E+04 6.45044E+04 6.88998E+04 6.86767E+W Y 9.98004E-01 9.82037E-01 9.50104E-01 9.02204E-01 8.00417E-01 7.12600E-01 6.08817E-01 ICD 2. - 2 ï)=50.00"F. Pf= 100.00psia, Cd 5.10255E-O1 6.07381E-01 6.06450E-01 6.05941E-01 6.05480E-01 = 0.31 109 Ib/ft3, /= 1.0670E-02 cP, i 9ni 1.44572E+03 4.30695E+ü: 7.13457E+03 9.91145E+03 1.39405E+04 1.65076E+04 1.89572E+04 k = 1.3622, pb = 0.044210 lb/ft3 Qv 3.2701 1E+04 9.74203E+oL 1.61379E+05 2.24 190E+05 3,15324E+05 3.73391E+05 4.28798E+05 Y 1.997 I6E-01 9.97442E-01 9.92895E-01 9.86074E-01 9.71580E-01 9.59075E-0 1 9.44296E-O 1 ICD 1 - 2 2 2 2 ï)= O.OO°F, Pf= 1000.00psia, cd 5.10255E431 6.073788431 6.06441E-01 6.05923E-01 6.05447E-01 6.05228E-01 6.05055E-01 r ~ =~65.072 lb/ft3, /.i = 1.5430E-01 ci, , ~ 91 11 1.08943E+04 6.23879E+oL 1.03819E+05 1.45223E+05 2.07298E+05 2.48668E+05 2.9OO30E+05 t=-l.O,p~=O.l16198Ib/f? Q" 1.79816E+05 5.3691 IC+O 8.93469E+05 1.24979E+06 1.78401E+06 2.14004E+06 2.49600E+06 Y I.OOí)OoE+oO 1.00000E+O( 1.00000E+00 l.OOOOOE+OO 1.00000E+00 1.00000E+OO l.OOOOOE+OO [CD - r f = O.OO"F, P f = 200.00 psia, cd j.08253E-01 6.06136E-01 6.05436E-01 6.05050E-01 6.04695E-01 6.04534E-01 6.04408E-01 = 2.0466 ib/ft3, p = 1.3520E-02 cP, %Il 3.69280E+03 1.1027OE+W 1.83140E+04 2.55327E+04 3.61792E+04 4.31 193E+O4 4.99035E+04 E.= 1.3198,p~=0.1161981b/ft3 Q v 3.17802E+04 9.48983E+Oi 1.57610E+05 2.19734E+05 3.11358E+05 3.71084E+05 4.29469E+05 Y j.99853E-01 9.98680E-01 9.96334E-01 9.92814E-01 9.85335E-01 9.78882501 9.71256E-01 n [CD - I 2 2 2 2 2 r f = 50.00"F, Pf= 500.00 psia, C d i.08073E-01 I 6.06020E-01 6.05340E-01 6.04962E-01 6.04614E-01 6.04454E-01 6.04328E-01 = 1.6623 lb/f?, /.i = 1.1310E-02 cP, ?Il, 9.95399E+O? 1.65563E+M 2.31327E+04 3.29316E+04 3.94082E+04 4.58296E+04 ¿ =1.3622, pi, = 0.044210 ib/ft3 2, 2.25152E+05 3.74491E+05 5.23245E+05 7.44891E+05 8.91386E+05 l.O3663E+O6 Y 9.99488E-01 9.98579501 9.97215E-01 9.94316E-01 9.91815E-01 9.88859501 iCD - 2 2 2 2 2 rf= 150.0O0F, Pf= 1000.00psia, cd i.07919E-01 6.05920E-01 6.05256E-01 6.04887E-01 6.04546E-01 6.04390E-01 6.04266E-01 = 2.7573 lb/ft3, /.i = 1.3650E-02 cP, Ill, L29728E+03 1.28466E+04 2.98904E+04 4.26145E+W 5.10600E+04 5.94694E+04 ¿ = 1.3622,p b = 0.044210 Ib/ft3 2, 1.72015E+04 2.90582E+05 6.761OOE+05 9.63911E+05 1.15494E+06 1.34516E+06 Y 1.99972E-01 9.99744E-01 9.99289E-01 9.98607E-01 9.97157E-01 9.95907E-01 9.94429E-01 :CD - 2 2 2 2 rf= 140.00°F, P f = 2000.00 psia, P -d 6.04770E-01 6.04443E-01 6.04292E-01 6.04173E-01 = 32.465 lb/ft3, /.i = 4.1710E-02 cP, ?ni .47367E+04 4.40720E+04 1.02667E+05 1.46588E+05 1.75862E+05 2.05132E+05 ;=-l.O,pb = 0.1161981b/ft3 2" .26824E+05 3.79284E+05 8.83553E+05 1.26154E+06 1.51347E+06 1.76536E+06 Y .OOOOOE+OO l.OOOOOE+OO 1.OOOOOE+OO 1.00000E+OO l.OOO00E+00 I.OOOOOE+OO 1.00000E+00 CD -COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I flPflS*L4-3.4 92 0732290 0506388 2 0 3 SECTION 3-CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 1o1 Table 4-C-5-Selected Round Robin Test Results Matrix-US Units (Dm= 7.98146 in, q = 0.00000620 in/in-"F, d, = 5.28906 in, al = 0.00000925 in/in-"F) , Cell AP (inches H,O at 60°F) I Value Flow Conditions 2.2484 20.2360 56.21 10 110.1736 T/= 0.00"F. PJ= 14.696 psia, = 58.199 Ib/ft3, p = 1.8650E+03cP, 2.69562E+05 5.65561E+05 8.13372E+05 I.O4086E+06 k = -1.0, PI, = 56.861 Ib/ft3 4.7407 1E+03 9.94638E+03 1.43046E+04 1.83053E+04 I .00000E+00 1.00000E+00 1.00000E+00 I .OOOOOE+OO -5 -5 -5 4 ïj=68.WoF, PJ= 14.696 psia, I . 10290E+00 8.64632E-01 7.82848E-01 7.33853E-01 6.83450E-01 = 56.660 Ib/ft3, p = 2.1220E+02 cP, (ln1 I .39 177E+05 3.27333E+05 4.9395 IE+05 6.48252E+05 8.62469E+05 k =-1.O, PI, = 56.861 Ib/ft QI. 2.44767E+03 5.75672E+03 8.68699E+03 I. 14006E+04 1.51680E+04 Y l.W00E+00 1.00000E+00 I .OOOOOE+00 1.OOOOOE+00 I .OOO00E+OC -d Lt d -? -3 T/= 176.00°F, PJ= 14.696 psia, 6.65546E-01 6.34768E-01 6.26700E-01 6.22658E-Ö 6.19 I86E-01 pf,p= 54.2 14 lb/ft3, p = I .7490E+O 1 cP, 8.233 I lE+04 2.35574E+05 3.87632E+05 5.39184E+05 7.65968E+05 k = -1 .o, pb = 56.861 Ib/ft 1.44794E+03 4.14297E+03 6.8 17 19E+03 9.48250E+03 1.34709E+04 1.00000E+00 I .OOOOOE+00 I .00000E+00 1.OOOOOE+OO 1.oOoOOE+W -3 3 3 3 3 T/= 60.00"F, PJ= 14.696 psia, 6.15735E-01 6.10062E-01 6.08307E-01 6.07358E-01 p,.p = 62.366 Ib/ft3, p = I. 1990 cP, 8.15067E+04 2.42269E+05 4.0262 1E+05 5.62790E+05 k=-1.0, pl, = 62.366 Ib/ft" 1.3069 1E+03 3.88464E+03 6.45577E+03 9.02398E+03 1.00000E+00 l.OOOOOE+ûO 1.OOOOOE+OO I .00000E+Cû ;OCWOE+00I ;OOOOOE+COI ;.OOOE+001 T/= 210.00"F, PJ= 14.696p i a , 6.08913E-01 6.06031E-01 6.05094E-01 6.04577E-01 6.04100E-01 6.03882E-01 6.03709E-01 pf.p= 58.792 lb/ft, p = 2.8250E-01 cP, 7.84944E+04 2.3437 1E+05 3.90014E+05 5.45553E+05 7.78747E+05 9.34158E+05 1.08954E+06 k = -1 .o, p h = 62.366 Ib/ft3 1.25861E+03 3.75800E+03 6.25363E+03 8.74760E+03 1.24867E+04 I .49786E+04 1.74701E+04 1.OOO00E+00 l.O0000E+00 I .OOOOOE+OO 1.OOOO0E+OO I . O O E O I .00000E+00 1.00000E+00 O O O+ C ICD - 2 2 2 2 2 2 2 Tf= O.OOF, P i = 14.696 psia, cd 6.08852E-01 6.06035E-01 6.05155E-01 6.04709E-01 6.04375E-01 6.04287E-01 6.04292E-01 p,.r = 0.13223 lb/ft, p = 1.3070E-02 cP, %Il 3.69924E+03 1.08696E+04 1.75010E+04 2.32478E+04 2.94444E+04 3.14480E+04 3.13396E+04 k = 1.3198,p~=0.1161981b/ft3 Q,. 3.18357E+04 9.35439E+04 1.50613E+05 2.00071E+05 2.53398E+05 2.70641E+05 2.69709E+05 Y 9.98002E-01 9.82022E-01 9.50061E-01 9.02120E-01 8.00244E-01 7.12351E-01 6.08478E-01 ICD - 2 2 2 2 2 2 2 TJ=50.00"F, PJ= 100.00 psia, cd 6.07041E-O 1 6.0488 1E-01 6.04171E-01 6.03780E-01 6.03425E-0 1 6.03266E-01 6.03144E-01 pf,p= 0.3 I 109 Ib/ft3, p = 1.0670E-02 cP, 4,ll 5.67252E+03 1.69186E+04 2.80360E+04 3.89553E+04 5.47995E+04 6.4895 1E+04 7.45282E+04 k = 1.3622, PI, = 0.044210 Ib/ft3 Qv 1.28308E+05 3.82686E+05 6.34154E+05 8.81142E+05 1.23953E+M 1.46788E+06 1.68578E+06 Y 9.99716E-01 9.97440E-01 9.92889E-01 9.86062E-01 9.71555E-01 9.59039E-01 9.44248E-01 ICD _. 2 12 12 12 2 2 2 T/= 0.00"F. PJ= 1ooO.00 psia, c d I 6.07044E-01 6.04881E-01 I 6.04166E-01 I 6.03769E-01 6.03402E-O 1 6.03233E-01 6.03 1OOE-01 = 65.072 ib/fe, p = 1.5430E-01 cP, QI 8.19826E+W 2.450748+05 4.07974E+05 5.707888+05 8.14916E+05 9.77625E+05 1.14031E+06 k=-l.O, pb = 0.1161981b/ft3 Q" 7.05542Et05 2.1091 IE+06 3.51 102E+06 4.912208+06 7.0 1316E+O6 8.41344E+06 9.81351E+06 Y I .00(XK)E+W I .00000E+00 1.00000E+W I .OOOOOli+OC 1.OOOOOE+OC 1.0CWOE+00 1.OooOOE+00 ICD - 2 2 2 2 2 2 2 T/= 0.00"F, PJ= 200.00 psia, Cd 6.05543E-01 6.03932E-01 6.03394E-01 6.03096E-0 I 6.02821E-0 1 6.02696E-01 6.02598E-01 = pf = 2.0466 Ib/ft3, /i 1.3520E-02 cP, 4 1 I .45012E+04 4.33372B+M 7. 19946E+M 1 .üü386E+05 1.42263E+05 1.69561E+05 1.96247E+05 k = I.3l98,pb=0.116198 Ib/ft3 Q, I .24797E+05 3.729608+05 6.195858+05 8.63925E+05 1.22431E+Of 1.45925E+06 1.68890E+06 Y 9.99853E-01 9.98679E-O1 9.96330E41 9.92808E-01 9.85322E-01 9.78864E-01 9.71231E-01 ICD _. 2 2 2 2 2 12 2 Ti= 50.00"F, PJ= 500.00 psia, c d 6.054058-01 6.03841E01 6.033178-01 6.03026E-01 pf,p= 1.6623 Ib/ft3, p = 1.131OE-02 cP, %I 1.30802E+04 3.912188+04 6.50871E+04 9.09533E+04 1.29497E+05 k = 1.3622, p,, = 0.044210 Ib/ft3 Q V 2.958658+05 8.84908B+05 1.47222E+06 2.057308+06 2.929 14E+Of Y 9.999438-01 9.99488E-01 9.98578E-01 9.97212E-01 9.94311E-01 n ICD - 2 2 2 2 L Tf= 150.00"F,PJ= 1OOO.00 psia, c d 6.05283E-01 6.03759E-01 6.03248E-O1 6.02963E-01 6.02698E-OI 6.02577E-O 1 6.02480E-O1 = 2.7573 lb/ft3, /i 1.3650E-02 cP, = 4 1 1.68769E+ü4 5.04922E+04 8.40441E+W 1.17526E+05 1.67577E+05 2.00799E+05 2.33880E+05 k = 1.3622,PI, = 0.044210 lb/fe Q" 3.817448+05 1.14210E+06 1.90102E+06 2.65835E+06 3.79047E+06 4.54194E+06 5.29021E+06 Y 9.999728-01 9.99744E-01 9.99289E-OI 9.986068-01 9.97155E-01 9.95903E-01 9.94424E-01 ICD - 2 2 2 2 -3 L I 3 , IL -3 T/= 140.0û0F, PI= 2000.00 psia, cd 6.05089E-01 6.036348-01 6.031451i-01 6.02872E-01 6.02618E-01 I 6.02501E-01 I 6.02408E-O1 = 32.465 Ib/ft3, p = 4.1710E-02 cP, 41 11 5.78822E+04 1.7323I E+05 2.88484E+05 4.036958+05 k=-1.0, pb = 0.116198 lb/ft3 Q" 4.981358+05 1.490838+06 2.482698+06 3.47420E+06 Y 1.00000E+00 I .00000E+00 I .(XXXX)E+OO 1.00000E+ûC ?I e n ICD - ?ICOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - m __ ----_ A P I MPMS*L4.3.4 92 0732290 0506389 L 4 T m 102 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 14.31154 in, c = 0.00000620 in/in-"F, d, = 9.47657 in, al = 0.00000925 in/in-OF) + Cell AP (inches H20 at 60°F) Flow Conditions Value 2.2484 1 20.2360 I 56.2110 I 110.1736 I 224.8440 I 323.7754 I 440.6943 T/= O.OO"F, P f = 14.696 psia, cd 1.73701E+00 1.24988E+00 1.09486E+00 1.01075E+W 9.34104E-01 8.99056E-01 8.71263E-01 pip = 58.199 lb/ft3, p = 1.8650E+03 ci, 4m 7.11957E+05 1.53689E+06 2.24378E+06 2.89998E+06 3.82868E+06 4.42204E+06 4.99956E+Of k = -1.0, p1, = 56.861 lb/ft3 Qv 1.25210E+04 2.70289E+04 3.94609E+04 5.10013E+04 6.73340E+04 7.77692E+04 8.79259E+OL Y l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OC l.OOOOOE+OC 1.00000E+00 l.OOOOOE+O( - -5 ICD -5 4 4 -4 -4 -4 Tf= 68.0û0F, P f = 14.696psia, cd 9.63376E-01 7.72226E-01 6.99061E-01 6.63303E-01 6.50969E-01 6.45788E-01 6.41900E-01 pi,p = 56.660 lb/ft3, p = 2.1220E+02 cP, 4"l 3.90136E+05 9.38 188E+05 1.41550E+06 1.88033E+M 2.63624E+06 3.13830E+06 3.63931E+Of k = -1.0, pb = 56.861 lb/ft3 Qv 6.86122E+03 1.64997E+04 2.48940E+04 3.30689E+04 4.63628E+04 5.51925E+04 6.40037E+oL Y l.OOOOOE+OO 1.00000E+00 1.00000E+ûO l.OOOOOE+OO l.OOOOOE+OC 1.00000E+00 l.OOOOOE+O( -4 ICD I d -? I - -? I - ? l- 3 3 T/= 176.0O0F, P f = 14.696 psia, cd 6.46078E-01 6.25380E-01 6.19757E-01 6.16885E-O1 6.14382E-01 6.13279E-01 6.12425E-01 pt,p = 54.214 lb/ft3, p = 1.749OE+OlcP, 4,li 2.56482E+05 7.44804E+05 1.23018E+06 1.7 1427E+06 2.43902E+M 2.92157E+06 3.40375E+Of k = -1.0, pb = 56.861 Ib/ft3 Q" 5.13809E+û4 5.98609E+oL Y l.OOMH)E+OO 1.OOO00E+O( ICD - 2 2 T/= 60.00"F, P f = 14.696 psia, cd 6.O454 1E-0 1 6.04300E-0 1 pf,p = 62.366 Ib/ft3, p = 1.1990 cP, 41 11 3.08175E+06 3,59394E+N k = -1.0, pb = 62.366 lb/ft3 Q V 4.94140E+04 5.76266E+OL Y l.OOOOOE+OO l.OOOOOE+O( ICD - 2 r/= 210.OO0F, P f = 14.696 psia, cd 6.06716E-01 6.04479E-01 6.03742E-01 6.03333E-01 6.02955E-01 6.02781E-01 6.02644E-01 pi,p = 58.792 lb/ft3, p = 2.8250E-01 cP, 41 11 2.50990E+05 7.50201E+05 1.24881E+06 1.74715E+06 2.49436E+06 2.99237E+M 3.49030E+Of k = -1.0, PI, = 62.366 lb/ft3 Qv 4.02447E+03 1.20290E+04 2.00239E+04 2.80144E+04 3.99955E+04 4.79808E+04 5.59648E+3+04 Y l.O0000E+00 1.OOOOOE+OO 1.OOOOOE+OO l.OOOOOE+OO 1.OOOOOE+OC l.OOOOOE+OC 1.OOOOOE+O( -2 ICD 2 2 2 2 2 2 T/= O.OO"F, P f = 14.696 psia, cd 6.06676E-01 6.04488E-01 6.03797E-01 6.03444E-01 6.03180E-01 6.03110E-01 6.03114E-01 pf,p = 0,13223 lb/ft3, p = 1.3070E-02 cP, 41. 1.18289E+04 3.47933E+04 5.60381E+04 7.44528E+04 9.43142E+04 l.O0742E+O5 l.O0405E+O~ k = 1.3198,p,=o.1161981b/ft3 Qv 1.01800E+05 2.99431E+05 4.82264E+05 6.40741E+05 8.11668E+05 8.66982E+05 8.64082E+05 Y 9.98003E-01 9.82030E-01 9.50083E-01 9.02162E-01 8.00330E-01 7.12475E-01 6.08647E-01 ICD - ïj=50.00"F, Pj= 100.00psia, cd 6.05273E-01 6.03578E-01 6.03016E-01 6.02706E-01 6.02423E-01 6.02296E-01 6.02198E-01 = 0.31 109 lb/ft3, p = 1.0670E-02 cP, 4tli 1.81508E+04 5.41770E+04 8.97994E+04 1.24791E+05 1.75569E+05 2.07926E+05 2.38802E+05 k = 1.3622, = 0.044210 lb/ft3 Q, 4.10559E+05 1.22545E+06 2.03120E+06 2.82269E+06 3.97124E+06 4.70314E+06 5.40 153E+Ot Y 9.99716E-01 9.97441E-01 9.92892E-01 9.86068E-01 9.71567E-01 9.59057E-01 9.44272E-01 -2 ICD 2 2 2 2 2 2 TJ-= 0.00OF, P f = 1OOO.00 psia, c d 6.05277E-01 6.03580E-01 6.03014E-01 6.02698E-01 6.02406E-01 6.02271E-01 6.02 164E-0 1 o , , ~ 65.072 lb/ft3, p = 1.5430E-01 cP, = 4111 2.62327E+05 7.84784E+05 1.30674E+06 1.82849E+06 2.61085E+06 3.13232E+06 3.65373E+M k=-i.û,pb=0.1161981b/ft3 Q" 2.25759E+06 6.75385E+06 1.12458E+07 1.57359E+07 2.24690E+07 2.69568E+07 3.14440E+05 Y 1.OOOOOE+00 1.00000E+00 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+W l.OOOOOE+OC ICD - TJ-= 0.00F, P f = 200.00 psia, cd 6.02828501 6.02161E-01 6.01941E-01 6.01841E-01 6.01762E-01 = 2.0466 Ib/ft3, p = 1.3520E-02 cP, 4111 3.21655E+05 4.55877E+05 5.43378E+05 6.28917E+05 k = 1.3198,pb= 0.1161981b/ft3 Qv 2.76816E+06 3.92328E+06 4.67631E+06 5.41246E+Of Y 9.98680E-01 9.96332E-01 9.9281lE-01 9.85328E-01 9.78873E-01 9.71243E-01 ICD - 2 2 2 2 Tj= 50.Cû°F, P f = 500.00 psia, cd 6.02336E-01 6.02103E-01 6.01887E-01 6.01787E-01 6.01709E-01 gf,p = 1.6623 lb/f$, p = 1.1310E-02 cP, 411, 4.1878 1E+04 2.91435E+05 4.14976E+05 4.96636E+05 5.77605E+05 k = 1.3622,pb = 0.044210 lb/ft3 Qv 6.59206E+06 9.38647E+06 1.12336E+07 1.30650E+07 Y 9.99943E-01 9.99488E-01 9.98578E-01 9.97214E-01 9.94313E-01 9.9181 1E-01 9.88854E-01 ICD - rf= 150.0O0F, P f = 1000.00 psia, cd 6.02049E-01 6.01838E-01 6.01740E-01 6.01663E-01 = 2.7573 lb/ft3, p = 1.3650E-02 cP, 41 11 3.76585E+05 5.37008E+05 6.43496E+05 7.49535E+05 i = 1.3622, pb = 0.044210 lb/ft3 Qv 8.5 1809E+06 1.21467E+07 1.45554E+07 1.69540E+07 Y 9.98607501 9.97156E-01 9.95905E-01 9.94426E-01 -2 ICD 2 2 2 2 r/= 140.00°F, Pj= 2000.00 psia, cd 6.03740E-01 I 6.02586E-01 I 6.02196E-01 6.01977E-01 6.01774E-01 6.01680E-01 6.01605E-01 = 32.465 lb/ft3, p = 4.1710E-02 cP, 91 11 1.853378+05 5.549558+05 9.243268+05 1.29359E+06 1.84736E+06 2.21648E+06 2.58557E+06 c = -1.0, pb = 0.1 16198 lb/ft3 Qv 1.59501E+06 4.77595B+06 7.95475E+06 1.11326E+07 1.58983E+07 1.90750E+07 2.22514E+07 Y 1.00000E+00 l.OOOOOE+OO 1.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+ûO 1.00000E+00 1.00000E+00 ICD -2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • SECTION %CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 103 Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 29.37598 in, g = 0.00000620 in/in-"F, d, = 19.46094 in, al = 0.00000925 idin-OF) Cell A (inches H20 at 60°F) í :low Conditions lalue - 2.2484 20.2360 56.21 10 110.1736 224.8440 323.7754 1 440.6943 rf= O.ûO"F, PJ= 14.696 psia, " .39324E+00 1.04244E+OO 9.29760E-01 8.67347E-01 8.08611E-01 .80737E-01 7.57973E-01 -d J ~ = 58.199 lb/ft3, , ~ p = 1.8650E+03cP, Li !.40880E+ffi 5.40693E+06 8.03745E+06 1.O497 I E+07 1.39803E+07 .6 1981E+07 1.83468E+07 := -i .o, pr>= 56.861 Ib/ft3 2, L23629E+04 9.50903E+04 1.4 1353E+05 1.84610E+05 2.45868E+05 !.84872E+05 3.22660E+05 Y . O O E O 1. O O E O 1.OOOOOE+00 I.00000E+OO 1.00000E+00 O O O+ O O O O+ O 1.OOOOOE+00 [CD -5 - 4 -4 -4 -4 -3 rf= 68.00°F, Pf= 14.696psia, c, 1.31308E-01 6.69662E-O1 6.50267E-O1 6.4 1314E-0 1 6.33857E-O1 6.28288E-01 J,,p= 56.660 Ib/ft3, g = 2.1220E+02 cP, b I .42OO6E+06 3.43 182E+ffi 5.55405E+06 7.66861E+06 1.08278E+07 .29283E+O7 1.50257E+07 i = -1.0, pr>= 56.861 Ib/ft3 2, !.49742E+04 6.03546E+04 9.76776E+04 1.34866E+05 1.90425E+05 !.27367E+05 2.64253E+05 Y I . O O E O l.OM)OOE+OO 1.OOMH)E+00 1.OOOOOE+OO 1.OOOOOE+OO O O O+ O 1.00000E+00 [CD 4 - -3 3 3 3 1 3 7 = 176.OOoF, Pf= 14.696 pia, j Cd i.30862E-0 1 6.17816E-0 1 6.14102E-0 1 6.12 163E-O1 6.1 O445E-01 i.09679E-O 1 6.09082E-0 1 3,,p= 54.2141b/ft3, / = i1.749OE+O1 cP, 7tii i.O5641E+ffi 3.10371E+06 5.14176E+06 7.17573E+06 1.02223E+07 1.22513E+07 I .42792E+07 C=-l.O, ph = 56.861 Ib/ft3 Qv I.85788E+M 5.45842E+M 9.04268E+O4 1.26198E+05 1.79777E+05 3.15461E+05 2.51 125E+05 Y I. OOOOE+OO 1.OOOOOE+00 1.OOOOOE+OO 1. OOOOE+OO 1.00000E+00 O O I .00000E+00 1.00000E+OO [CD % - 3 2 2 2 3 2 =)i = 60.00°F, PI= 14.696 psia, L + ~ 62.366 Ib/ft3,p = 1.1990 cP, c, 3.08688E-01 6.05638E-01 6.04651E-01 6.04107E-01 6.03607E-01 1.09070E+06 3.25573E+06 5.41737E+ffi 7.57750E+06 1.08160E+07 j.03378E-01 6.03197E-01 I.29743E+07 1.51322E+07 B k = -1.0. pb = 62.366 ib/ft3 Qv 1.74887E+04 5.22037E+04 8.68642E+04 1.21501E+05 1.73428E+05 !.08035E+05 2.42635E+05 Y I.OOOOOE+00 1.OOOOOE+00 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 I.00000E+00 1.00000E+00 [CD 1 - 2 2 2 2 ! 2 r/= 210.00"F, Pf= 14.696 psia, Cd 3.04985E-01 6.03326E-01 6.02772E-01 6.02463E-01 6.02177E-01 3.02045E-01 6.01940E-01 = o , , ~ 58.792 Ib/ft3, p = 2.8250E-01 cP, "Is1 I.O5570E+(M 3.15844E+06 5.25922E+06 7.35914E+06 1.O508 1E+07 I.26069E+07 1.47055E+07 k = -1 .O, p,, = 62.366 Ib/ft3 Qv 1.69274E+04 5.06436E+04 8.43284E+04 1.17999E+05 1.68490E+05 Z.O2144E+05 2.35793E+05 Y 1.00000E+00 l.O0000E+OO 1.OoooOE+00 l.OOOOOE+OO I.OOOOOE+OO I .00000E+00 1.00000E+00 ICD i - 2 2 2 2 r f = 0.00"F, P 14.696 psia, = cd 5.04963E-01 6.03340E-01~ 6.02821E-01 6.02555E-01 6.02354E-01 = o , , ~ 0.13223 Ib/ft3, p = 1.3070E-02 cP, %li 3.97556E+04 1.46484E+05 2.35993E+05 3.13582E+05 3.97262E+05 1.243298+05 4.228828+05 k = 1.3198, pr>= 0.116198 ib/ft3 Qv $.28196E+05 1.26065E+06 2.03095E+ffi 2.69869E+06 3.41884E+06 3.65 1788+06 3.639328+06 Y 3.98003E-01 9.82025E-01 9.5OO69E-O1 9.02 135E-0 1 8.OO276E-O1 7.123988431 6.085428-01 ICD L - 2 2 2 2 2 2 r/= 50.00°F, Pf= 100.00 psia, cd 5.03924E-01 6.02654E-01 6.02229E-01 6.01993E-Ql 6.01777E-01 5.0168OE-O1 6.OI605E-01 = 0.31109 lb/ft3, = 1.0670E-02 cP, e,, 7.63926E+04 2.28178E+05 3.78294E+05 5.25764E+05 7.39778E+05 3.76159E+05 1.006308+06 k = 1.3622, pr>= 0.044210 Ib/ft3 Q" 1.72795E+06 5.16123E+06 8.55674E+06 1.18924E+07 1.67333E+07 1.98I8 I8+07 2.276 I8E+07 Y 9.99716E-01 9.97440E-01 9.92890E-01 9.86064E-01 9.71560E-01 J.59046E-ü I 9.442578-0 I ICD 2 - 2 2 2 2 2 2 Tf= O.OO"F, Pf= 1000.00 psia, c, 5.03929E-01 6.02657E-01 6.02229E-01 6.0 1989E-01 6.01766E-01 5.016638-01 6.0 I58 IE 4 1 = 65.072 lb/ft3, p = 1.5430E-01 cP, e,, 1.10408E+06 3.30529E+06 5.50489E+06 7.70377E+06 1.10013E+07 1.31993E+07 1.5397 I E+07 k=-1.0, pr>= 0.116198 Ib/ft3 Qv 9SOI67E+06 2.84453E+07 4.73751E+07 6.62987E+07 9.46773E+07 I . 13593~+08I .3250w+oa Y l.OOOOOE+00 1.OOOOOE+00 1.00000E+00 1.OOOOOE+00 l.OOOOOE+OO 1.00000E+00 I .OoooOD+OC ICD 2 - 2 2 2 2 2 2 Tf= O.OO"F, Pf= 200.00 psia, c, 6.03051E-0 1 6.01761E-01 6.01578E-01 6.01410E-01 pt,p = 2.0466 lb/ft3, p = 1.3520E-02 cP, e n 9.7 1928E+05 1.35548E+O6 1.92126E+ffi k = i.3i98,p6 = 0.116198 Ib/ft3 Qv 8.36441E+06 1.16652E+07 1.65344E+07 Y 9.96331E-01 9.92809E-01 9.85324E-01 ICD - 2 2 2 Tf=50.00"F, Pf= 500.00 psia, cd 6.01711E-01 6.01533E-01 6.01367E-01 6.01291E-01 6.01230E-01 pr,p= 1.6623 lb/f$, p = 1.1310E-02cP, 9tli 8.78715E+05 1.22816E+06 1.74892E+06 2.093 16E+06 2.43449E+Of k = 1.3622, p,, = 0.044210 lb/f$ Q, 1.98759E+O7 2.77800E+07 3.95594E+07 5.50665E+O; Y 9.98578E-01 9.97213501 9.94312E-01 9.91809E-01 9.8885 1E-01 ICD - 2 2 2 2 ïj=15O.OO0F, Pf= 1000.00 psia, cd 6.0 1663E-O1 6.0 1488E-O1 6.0 1326E-01 6.01191E-01 pCp= 2.7573 lb/f?, p = 1.3650E-02 cP, %,i 1.13469E+06 1.58702E+06 2.26326E+06 2.7 1217E+06 3.159 18E+OI k = 1.3622, pr>= 0.044210 lb/ft3 Qv 2.56658E+07 3.58972E+07 5.1 1934E+07 7.145 85E+O; Y 9.99972E-01 9.99289E-01 9.98606E-01 9.97155E-01 9.95904E-01 9.94425E-01 ICD - ïj=140.WQF,PJ= 2000.00 psia, c d P,,~= 32.465 lb/ft3, /= 4.1710E-02 cP, i 4rri k=-1.0, pr>= 0.116198 ib/ft3 Qv Y ICD -COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 104 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units (Dm = 1.93945 in, g = 0.00000620 in/in-"F, d, = 1.45311 in, al = 0.00000925 in/in-"F) - Cell AP (inches H,O at 60°F) Flow Conditions Value 2.2484 I 20.2360 I 56.2110 110.1736 224.8440 - 323.7754 I 440.6943 I Tf= 0.00F, Pf= 14.696 psia, c d 4.00107E+00 2.63642E+00 2.19651E+oC 1.95699E+0( 1.73948E+0( 1.64096E+00 1.56365E+00 = P , , ~ 58.199 lb/ft3, /.i = 1.8650E+03cP, 41 11 4.1871 lE+04 8.27710E+04 1.14933E+O: 1.4336OE+O 1.82038E+O: 2.06072E+05 2.29092E+05 k = -1.0, pb = 56.861 lb/ft3 Qv 7.36376E+02 1.45567E+03 2.02130E+O? 2.52124E+O? 3-20145E+O: 3.62414E+03 4.02898E+03 Y 1.00000E+00 1.00000E+00 l.OOOOOE+OC l.OOOOOE+O( 1.OOOOOE+O( l.OOOOOE+IH) l.OOOOOE+OC ICD - -6 4 4 -5 -5 -5 -5 Tf= 68.OO0F, Pf= 14.696psia, cd 1.82233E+OO 1.30067E+00 1.13011E+O( 1.03488E+O( 9.45054E-O I 9.02520E-01 8.67927E-01 P , = 56.660 lb/ft3, p = 2.1220E+02 cP, ~ %Il 1.88441E+04 4.03498E+04 5.84306E+04 7.49101E+oL 9.77256E+& 1.1 1993E+05 1.25650E+05 k k -1.0, pb = 56.861 lb/ft3 Qv 3.31406E+02 7.09622E+02 1.02760E+02 1.31743E+O: 1.71867E+O: 1.96959E+03 2.20978E+03 Y 1.00000E+00 1.00000E+OO l.OOOOOE+OC l.OOOOOE+OC l.OOOOOE+o( 1.00000E+00 1.00000E+OC ICD - -5 -5 -4 4 4 -4 -4 r f = 176.0OoF, Pf= 14.696psia, c d 9.04948E-01 6.89114E-01 6.66239E-01 6.55156501 6.45902E-01 6.41953E-01 6.38957E-01 P,,~= 54.214 ib/ft3, /.i = 1.7490E+01cP, 41 11 9.17462E+03 2.09595E+04 3.37729E+04 4.64955E+oL; 6.54839E+& 7.81003E+04 9.06917E+04 k = -1.0, pb = 56.861 lb/ft3 Q" 1.61352E+02 3.68609E+02 5.93955E+02 8.17705E+Oi 1.15165E+O: 1.37353E+03 1.59497E+03 Y l.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OC l.OOOOOE+O( I.OOOOOE+O( l.OoooOE+OO 1.OOOOOE+OO ICD - -4 4 3 3 3 3 3 Tf= 60.00F, Pf= 14.696psia, c d 6.36984E-01 6.22975E-O1 6.18795E-01 6.16557E-01 6.14534E-01 6.13618E-01 6.12898E-01 = P , , ~ 62.366 lb/ft3, / = 1.1990 cP, .i 9,n 6.90936E+03 2.02724E+04 3.35606E+04 4.68 149E+04 6.66591E+oL 7.98716E+04 9.30743E+04 k = -1.0, p1, = 62.366 lb/ft3 Qv 1.10787E+02 3.25056E+02 5.38123E+02 7.50648E+Ol I.O6884E+O: 1.28069E+03 1.49239E+03 Y I.OOOOOE+ûû 1.OOOOOE+OO 1.00000E+OC 1.OOOOOE+O( l.OOOOOE+O( l.OOOOOE+OO 1.00000E+00 ICD - 3 13 (2 2 2 2 . 2 7 j = 210.0OoF, Pf= 14.696 p i a , cd G.20235E-01 ~6.134548-01~6.11266E41 6.10059E-01 6.08947E-01 6.08437E-01 6.08033E-01 P , = 58.792 Ib/ft3, /.i = 2.8250E-01 cP, ~ 4n1 4.51186E+04 6.43377E+3+04 7.71405E+04 8.99375E+04 k k -1.0, p1, = 62.366 lb/ft3 Q" 7.23449E+02 1.O3161E+OT 1.23690E+03 1.44209E+03 Y 1. O O E O 1.OOOOOE+O( l.OOOOOE+OO l.OOOM)E+OO O O O+ C ICD - 2 2 2 2 Tf= 0.00F, Pf= 14.696 p i a , c d 6.20084E-01 6.13460E-01 6.11418E-01 6.10391E-01 6.09649E-01 6.09487E-01 6.09568E-01 P , , ~= 0.13223 lb/ft3, /.i = 1.3070E-02 cP, %i 3.08638E+02 9.00047E+02 1.44198E+03 1.90405E+01 2.3792OE+O: 2.50490E+03 2.44098E+03 k = 1,3198,pb = 0.116198 Ib/ft3 Qv 2.656 14E+03 7.7458 1E+03 1.24097E+O4 1.63862E+M 2.04754E+Of 2.15571E+04 2.10070E+04 Y 9.97824E-01 9.80412E-01 9.45588E-01 8.93352E-01 7.82351E-01 6.86586E-01 5.73409E-01 ICD - 3 2 2 2 2 2 2 Tf=50.00F, Pf= 100.00 pia, c d 6.15810E-01 6.10761E-01 6.09106E-01 6.08196E-01 6.07369E-01 6.06999E-01 6.06714E-01 = P , , ~ 0.31109 ib/ft3, /.i = 1.0670E-02 cP, 41 11 4.71518E+02 1.39949E+03 2.31459E+03 3.21133E+03 4.50784E+O? 5.33003E+03 6.1 1060E+03 k = 1.3622, pb = 0.044210 lb/ft3 Qv 1.06654E+04 3.16555E+04 5.23545E+04 7.26381E+04 1.01964E+O! 1.20562E+05 1.38218E+05 Y 3.99690E-01 9.97211E-01 9.92251E-01 9.848 13E-01 9.69006E-01 9.55369E-01 9.39252E-01 ICD - 2 2 2 2 2 2 2 Tf= O.OO°F, Pf= 1000.00psia, c d 5.15815E-01 6.10758E-01 6.09091E-01 6.08164E-01 6.07306E-01 6.06910E-01 6.06597E-01 P , , ~= 65.072 Ib/ft3, /.i = 1.5430E-01 cP, 4 1 5.81439E+03 2.02755E+04 3.37002E+04 4.71085E+3+04 6.72029E+04 8.059 1OE+04 9.39743E+04 k = - l . O , p b = 0.1161981b/ft3 Qv 5.86447E+04 1.74491E+05 2.90024E+05 4.05416E+05 5.78349E+O! 6.93567E+05 8.08743E+05 Y l.OOOOOE+OO 1.00000E+00 l.O0000E+Oa l.OOOOOE+OC 1.OOOOOE+OC 1.OOOOOE+00 1.00000E+00 ICD - L I .l I.l 2 2 2 2 lj= O.OO°F, Pf= 200.00 psia, cd 5.12304E-01 I6.085458-01 I 6.072888-01 6.06589E-01 6.05946E-01 6.05653E-01 6.05423501 pbp = 2.0466 lb/ft3, /.i = 1.3520E-02 cP, %Il 1.20142E+03 3.57758E+03 5.93506E+03 8.26754E+03 1.17013E+3+04 1.39343E+04 1.61123E+04 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1.03394E+04 3.07886E+04 5.10771E+04 7.11504E+3+04 1.OO701E+05 1.19919E+05 1.38662E+05 Y 3.99840E-01 9.98561E-01 9.96002E-01 9.92164E-01 9.84007E-01 9.76970E-Ol 9.68654E-01 ICD - 2 2 2 2 2 2 2 r f = 50.00F, P f = 500.00 psia, d 5.11984E-01 6.08334E-01 6.071 1OE-01 6.06426E-01 6.05793E-01 6.05502E-01 6.05273E-01 P,,~ = 1.6623 lb/ft3, /.i = 1.1310E-02 cP, %Il 1.08345E+03 3.22941E+03 5.36618E+03 7.49301E+03 1.06592E+04 1.27498E+04 1.48208E+04 k = 1,3622,p1, = 0.044210 lb/ft3 Qv 1.45070E+04 7.30470E+04 1.21379E+05 1.69487E+05 2.41104E+05 2.88392E+05 3.35236E+05 Y 3.99938E-01 9.99442E-01 9.98450E-01 9.96963E-01 9.93801E-01 9.91074E-01 9.87850E-01 ICD - 1 2 2 2 2 2 2 r f = 150.00"F, P f = 1000.00 psia, c d 5.1 1705E-01 6.08147E-01 6.06952E-01 6.06283E-01 6.05663E-01 6.05377E-01 6.05151E-01 P,,~= 2.7573 lb/ft3, p = 1.3650E-02 cP, 41 11 1.39778E+03 4.16795E+03 6.92949E+03 9.68339E+03 1.37974E+04 1.65264E+04 1.92424E+04 k = 1.3622,pb = 0.044210 Ib/ft3 Qv 3.16 168E+04 9.42763E+04 1.56740E+05 2.19032E+05 3.12087E+05 3.73816E+05 4.35249E+05 Y 3.99969E-01 9.99721E-01 9.99225E-01 9.98481E-01 9.96900E-01 9.95536E-01 9.93924E-01 íCD - 1 2 2 2 2 2 2 ïj=140.00°F, Pj= 2000.00 psia, cd 5.11251E-01 6.07855E-01 6.06711E-01 6.06071E-01 6.05475E-0 1 = 32.465 lb/ft3, /.i = 4.1710E-02 cP, B $.79185E+03 1.42958E+04 2.37815E+04 3.32589E+04 4.74660E+O4 k = -1.0, pb = 0.116198 lb/ft3 Qv $.12386E+M 1.23030E+05 2.04664E+05 2.86226E+05 4.08493E+05 Y l.OOOOOE+00 l.OOOOOE+OO 1.00000E+OO l.OOOOOE+OO 1.00000E+OC [CD 1 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • API MPMS*14-3-4 92 W 0732290 0506392 734 W SECTION %CONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 105 Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 2.90039 in, Q = 0.00000620 in/in-"F, d, = 2.1 7 89 in, al = 0.00000925 in/in-"F) 1 Cell A (inches H,O at 60°F) ? 323.7754 I 440.6943 I Flow Conditions Value 2.2484 20.2360 56.21 10 110.1736 224.8440 - T/= 0.00"F, Pf= 14.696 psia, cd 3.44032E+00 2.29 147E+00 1.92130E+00 1.71974E+OC 1.53657E+oC pi,p= 58.199 Ib/ft3, j i = 1.8650E+03cP, 91 11 8.03890E+04 1.60634E+05 2.24475E+05 2.81295E+05 3.59049E+05 k = -1.0, pb 56.861 Ib/ft3 Q, 1.41378E+03 2.82503E+03 3.94778E+03 4.94706E++63 6.3 1450E+OI Y 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+OC i .OOOOOE+oC ICD - 4 -6 -5 -5 -5 T/= 68.00"F, P= 14.696psia, Cd 1.60637E+00 1.16515E+00 1.01822E+OO 9.34395E-01 8.53219E-01 = 56.660 Ib/ft3, p = 2.1220E+02 cP, 41 11 3.70896E+04 8.07079E+04 1. 17550E+05 1.5 1022E+05 1.97002E+05 k=-l.O,Pb = 56.861 Ib/ft3 QV 6.52285E+02 I .41939E+03 2.06732E+03 2.65598E+03 3.46463E+01 Y 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+W I .OOOOOE+oC ~~ ICD - -5 1-4 1-4 1-4 -4 T/= i76.Oo0F, Pf= 14.696 psia, cd 8.16003E-01 I6.68533E-01 16.50958E-01 16.42337E-01 6.35054E-01 6.3 I9 I7E-01 6.29522E-01 pf,,,= 54.214 Iblft, p = 1.749OE+Ol cP, 41 11 1.43760E+05 1.7l660E+05 1.9951 1E+05 k=-1.0, pb = 56.861 Ib/ft3 QV 2.52827E+01 3.01893E+03 3.50874E+03 Y 1.OOO00E+oC 1.00000E+00 1 .OOOOOE+00 ICD - 3 T/= 60.00"F, P/= 14.696 psia, cd 6.27946E-01 6.16496E-01 6.13002E-01 6.11115E-01 6 . 0 9 4 0 0 m pf,p= 62.366 Ib/ft3, p = 1.199OcP, 41 11 1.52087E+04 4.47945E+04 7.42343E+04 1.03608E+05 1.47596E+05 1.76889E+05 2.06162E+05 k = -1.0, pb = 62.366 Ib/ft3 QV 2.43861E+02 7.18252E+02 1.19030E+03 1.66129E+03 2.36661E+03 2.83631E+03 3.30569E+03 Y l.OOOOOE+OO 1.00000E+00 1.00000E+00 1.OOO00E+00 1.00000E+OC 1.00000E+00 1.00000E+00 ICD _. 3 3 2 2 2 2 2 T/= 210.00"F, Pf= 14.696 psia, c d 6.14197E-01 6.08468E-01 6.06599E-01 6.05564E-01 6.04609E-01 6.04170E-01 6.03822E-01 p f p= 58.792 Ib/ft3, p = 2.8250E-01 cP, %,I 1.44843E+04 4.30630E+04 7.15511E+04 1.00001E+05 1.42633E+05 1.71035E+05 1.99426E+05 k L -1.0, pb = 62.366 Ib/ft3 Qv 2.32328E+02 6.90488E+02 1.14728E+03 1.60345E+03 2.28703E+03 2.74244E+03 3.19767E+03 Y 1.00000E+00 1.OOO00E+00 1.00000E+00 1.00000E+00 1.00000E+OC l.OOOOOE+OO I.OOOOOE+00 ICD - 2 2 2 2 2 2 2 T/=0.00"F, P/= 14.696 psia, Cd 6.14089E-01 6.08492E-01 6.06748E-01 6.05868E-01 6.0523 1E-01 6.05091E-01 6.05 161E-01 = O. 13223 Ib/ft3, p = 1.3070E-02 cP, 41 11 6.82480E+02 1.99341E+03 3.19522E+03 4.22019E+03 5.27458E+03 5.55390Et.03 5.41280E+03 k = 1.3198,~b=0.1161981b/ft3 Qv 5.87342E+03 1.71553E+04 2.74980E+04 3.63189E+04 4.53930E+04 4.77969E+04 4.65825E+04 Y 9.97825E-01 9.80421E-01 9.45613E-01 8.93402E-01 7.82452E-01 6.86732E-01 5.73607E-01 ICD - 2 2 2 2 2 2 2 TJ= 50.00"F.. Pf= 100.00 psia, cd 6.10484E-01 6.06181E-01 6.04760E-01 6.03976E-01 6.03264E-01 6.02944E-01 6.02699E-O1 pf,p= 0.31 IO9 lb/ft3, p = 1.0670E-02 cP, 91 11 1.04372E+03 3.10142E+03 5.13128E+03 7.12072E+03 9.99745E+03 1.18219E+M 1.35542E+O4 k = 1.3622, pb = 0.044210 Ib/ft3 Q" 2.36083E+04 7.01520E+04 1.16066E+05 1.61066E+05 2.26136E+05 2.67404E+05 3.06586E+05 Y 9.99690E-01 9.97212E-01 9.92255E-01 9.84820E-01 9.69020E-01 9.55389E-01 9.39280E-01 ICD - 2 2 2 2 2 T/=0.00"F, P / = 1000.00 psia, Cd 6.10492E-01 6.06183E-01 6.04751E-01 6.03954E-01 6.03214E-01 P,,~= 65.072 Ib/ft3, p = 1.5430E-01 cP, 41 11 1.50840E+04 4.4933 IE+04 7.471 15E+04 1.O4458E+05 1.49043E+05 1.78751E+O5 2.08449E+05 k=-í.û,pb = 0.i161981b/ft3 Qv 1.29813E+05 3.86694E+05 6.42967E+05 8.98967E+05 1.28267E+06 1.53833E+M 1.79391E+06 Y 1.00000E+OO IO O O + O 1.00000E+00 1.00000E+00 l.OOOOOE+OC 1.OOOooEioC I.OOOOOE+OO . O O EO ICD - 2 2 2 2 2 2 T/=O.OO"F, P/= 200.00 psia, cd 6.0428 1E-01 6.03199E-01 6.02595E-01 6.02040E-01 6.0 1787E-01 6.01588E-01 pf,+ 2.0466 Iblft, j i = 1.3520E-02 cP, = 4ili 7.93224E+03 1.31629E+04 1.83387E+04 2.59589E+04 3.0915 1E+O4 3.57489E+04 k = I.3198,pb= 0.1161981b/ft3 Qv 6.82649E+04 1.13280E+05 1.57823E+05 2.23403E+05 2.66055E+02 3.07655E+05 Y 9.99840E-01 9.98561E-01 9.96004E-01 9.92167E-01 9.84015E-01 9.76981E-01 9.68669E-01 - ICD 2 2 2 2 2 2 Tf=50.00"F, P= 500.00 psia, cd 6.04096E-01 6.03040E-01 6.02451E-01 6.01904E-01 6.01652E-01 6.0 1453E-O1 pf,p= 1.6623 ib/ft3, p = 1.1310E-02 cP, 4m 7.16055E+03 1.19016E+04 1.66211E+04 2.36477E+04 2.82876E+O4 3.28840E+04 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 1.61967E+05 2.69205E+05 3.75958E+05 5.34895E+05 6.39845E+05 7.43814E+05 Y 9.99938E-01 9.99442E-01 9.98451E-01 9.96964E-01 9.93804E-01 9.91078E-01 9.87856E-01 ICD - 2 12 12 12 2 2 T/= 150.000F,Pf= 1000,00psia, cd I 6.06980E-01 6.03926E-01~6.02895E-01 6.02318E-01 I 6.01782E-01 6.01535E-01 6.01339E-01 pf,p= 2.7573 ib/ft3, p = 1.3650E-02 cP, k = 1.3622, pb = 0.044210 lb/ft3 4ltl Qv Y I I 3.096928+03 9.2418 l8+03 I .53691E+04 2.14801E+04 3.0610 lE+W 3.66668E+04 4.26948E+04 7.00502E+04 2.090438+05 3.476388+05 4.8586617+05 6.92379E+05 8.29378E+05 9.65726E+05 9.99721E-01 9.99225E-01 9.95538E-01 9.93926E-01 0 ICD - 2 I2 , I l 2 1 /i ïj= 140.00"F, Pf= 2000.00 psia, cd 6.03675E-01 6.02688E-01 6.02135E-01 6.01620E-01 pf,p= 32.465 lb/ft3, p = 4.1710E-02 cP, 4m 3.17009E+04 5.27484E+04 7.37800E+04 1.05310E+05 k=-í.O,pb= 0.116198 ib/ft3 Qv 2.72818E+05 4.53953E+05 6.34950E+05 9.06295E+05 Y 1.00000E+00 l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO ICD - 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • _-- - - ~ . _ _ _ _ API M P M S * 1 4 * 3 - 4 72 W 0732270 0506373 670 W 106 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Q = 4.02638 in, a!= 0.00000620 in/in-"F, ú = 3.02343 in, al = 0.00000925 in/in-"F) , ; , Cell AP (inches H20 at 60°F) Value 20.2360 56.2110 110.1736 224.8440 323.7754 440.6943 Flow Conditions 2.2484 - Tf= 0.OOoF, P f = 14.696 psia, cd 3.06062E+OC 2.05802E+OC1.73497E+00 1.55891E+OO 1.39866E+00 1.32581E+00 1.26848E+OC pf,p= 58.199 Ib/ft3, p = 1.8650E+03cP, 91 11 1.38945E+05 3.93820E+05 4.95401E+05 6.34963E+05 7.22273E+05 8.06210E+05 2.80291E+05 k = -1.0, pb = 56.861 Ib/ft3 Qv 2.44359E+03 4.92941E+OI 6.92602E+03 8.71249E+03 1.11669E+04 1.27024E+04 1.41786E+04 Y 1.OOOOOE+OC 1.00000E+OCl.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+OC ICD -5 -5 -5 -5 -5 -5 Tf= 68.00°F, P f = 14.696psia, cd 1.45976E+OC 9.37930E-01 8.60053E-01 7.82520E-01 7.43996E-01 7.11684E-01 1.07087E+OC pbp= 56.660 Ib/ft3, p = 2.1220E+02 cP, 9m 6.54827E+W 2.10373E+05 2.70067E+05 3.51030E+05 4.00498E+05 4.46955E+05 1.44115E+OI k = -1.0, pb = 56.861 lb/ft3 Qv 1,15163E+OI 3.69977E+03 4.74960E+03 6.17347E+03 7.04345E+03 7.86048E+03 2.53451E+0? Y l.OOOOOE+OC l.OOOOOE+OC1.00OOOE+00 1.00000E+00 1.00000E+00 1.OOOOOE+OO l.OOOOOE+OC - -5 ICD 4 -4 1-4 1-4 1-4 1-3 Tf= 176.0O0F, P f = 14.696 psia, cd 7.46086E-01 6.55357E-01 6.41001E-01 I 6.33877E-01 I 6.27798E-0116.25158E-01 I 6.23134E-01 pbp= 54.214 lb/ft3, p = 1.7490E+01CP, 9ni 3.28134E+W 8.64702E+W k = -1.0, pb = 56.861 Ib/ft3 Qv 5.77081E+O2 1.52073E+O? Y l.OOOOOE+OC 1.00000E+OC ICD 3 Tf= 60.û0°F, P f = 14.696psia, cd 6.2 1807E-01 6.11965E-01 6.08910E-01 6.07251E-01 6.05738E-01 6.05048E-01 6.04504E-01 pf,p= 62.366 lb/ft3, p = 1.1990 cP, 41 11 2.92592E+W 8.63889E+04 1.43263E+05 2.00021E+05 2.85033E+05 3.41650E+05 3.98233E+05 k = -1.0, pb = 62.366 lb/ft3 Qv 4.69 153E+02 1.38519E+01 2.29713E+03 3.20722E+03 4.57032E+03 5.47814E+03 6.38542E+03 Y 1.OOO00E+OC l.OOOOOE+OC l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+00 l.OOOOOE+00 l.OOOOOE+G€ -3 ICD 2 2 2 2 2 2 Tf= 210.OO0F, Pf= 14.696 psia, cd 6.09944E-01 6.04898E-01 6.03239E-01 6.02318E-01 6.01467E-01 6.01075E-01 6.00764E-01 pf,p= 58.792 Ib/ft3, p = 2.8250E-01 cP, 9ni 2.79557E+W 8.31742E+04 1.38243E+05 1.93245E+05 2.75674E+05 3.30594E+05 3.85493E+05 k = -1.0, pb = 62.366 lb/ft3 Qv 4.48253E+02 1.33365E+03 2.21665E+03 3.09857E+03 4.42027E+03 5.30086E+03 6.18 114E+03 Y 1.00000E+OC l.OOOOOE+OC 1.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OO l.ooOOOE+OO 1.OOOOOE+OC -2 ICD 2 2 2 2 2 2 Tf= O.OO°F, P f = 14.696 psia, cd 6.09868501 6.04939E-01 6.03392E-01 6.02609E-01 6.02043E-01 6.01919E-01 6.01983E-01 pf,p= 0.13223 lb/ft3, p = 1.3070E-02 cP, 9ni 1.31683E+03 3.85008E+Ol 6.17261E+03 8.15273E+03 1.01870E+04 1.07222E+04 1.04426E+04 k = 1.3198, pb = 0.116198 lb/ft3 Qv 1,13326E+04 3.3 1338E+M 5.31214E+04 7.01624E+04 8.76691E+04 9.22752E+04 8.98691E+04 Y 9.97819E-01 9.80375E-01 9.45485E-01 8.93150E-01 7.81940E-01 6.85993E-01 5.72601E-01 -2 ICD 2 2 2 2 2 2 T,==50.û0°F, Pf= 100.00 psia, cd 6.06696E-01 6.02882E-01 6.01616E-01 6.00917E-01 6.00280E-01 5.99995E-01 5.99775E-01 pf,p= 0.31 109 lb/fG, p = 1.0670E-02 cP, 4ni 2.01520E+03 5.99274E+Ol 9.91725E+03 1.37639E+04 1,93259E+04 2.28532E+04 2.62018E+04 k = 1.3622,pb = 0.044210 Ib/ft3 Q" 4.55825E+04 1.35552E+05 2.24321E+05 3.11329E+05 4.37139E+05 5.16924E+05 5.92667E+05 Y 9.99689E-01 9.97205E-01 9.92237E-01 9.84784E-01 9.68947E-01 9.55284E-01 9.39137E-01 ICD 2 Tf= 0,00OF,Pf= 1000.00psia, cd 6.06708E-01 6.02889E-01 6.01613E-01 6.00901E-01 6.00240E-01 5.99935E-01 5.99693E-01 pf,p= 65.072 lb/ft3, p = 1.5430E-01 cP, 4111 2.91241E+04 8.68232E+W 1.44399E+05 2.019 19E+05 2.88 139E+05 3.45591E+05 4.03027E+05 k=-1.0,pb=0.1161981b/ft3 Qv 2.50642E+05 7.47200E+05 1.24270E+06 1.73772E+06 2.47972E+06 2.97416E+06 3.46845E+06 Y 1.OOOOOE+OC l.OOOOOE+OC l.OOOOOE+OO l.OOOOOE+OO l.OoooOE+00 l.OOOOOE+OO l.OOOOOE+OC -2 ICD 2 n L In In I n I ,l Tf= O.W°F, PI= 200.00 psia, cd I 6.04065E-01 6.01194E-01 6.00227E-01 I5.99687E4115.99189E-01 I 5.98963E-01 5.98785E-01 pf,p= 2.0466 lb/ft3, p = 1.3520E-02 cP, 91" 5.14169E+03 1.53322E+W k = 1.3198, pb = 0.116198 lb/ft3 Qv 4.42494E+04 1.31949E+05 Y 9.99840E-01 9.98558E-01 ICD 2 2 2 2 2 Tf= 50.W°F, P f = 500.00 psia, cd 6.03813E-01 6.01023E-01 6.00080E-01 5.99553E-01 5.99063E-01 5.98838E-01 5.98659E-01 pf,p= 1.6623 lb/ft3, p = 1.1310E-02 cP, 4nr 4.63735E+03 1.38410E+O4 3.21366E+04 4.57262E+04 5.46999E+04 6.35897E+04 k = 1.3622, pb = 0.044210 lb/ft3 Q" l.O4894E+O5 3.13075E+05 7.26908E+05 1.03429E+06 1.23728E+06 1.43836E+06 Y 9.99938E-01 9.99441E-01 9.96957E-01 9.93789E-01 9.91057E-01 9.87827E-01 -2 ICD 2 2 2 2 2 Tf= 150.0O0F, P f = 1ooO.00 psia, cd 6.03583E-01 6.00862E-01 5.99425E-01 5.98944E-01 5.98723E-01 5.98548E-01 pf,p= 2.7573 lb/ft3, p = 1.3650E-02 cP, 4tn 5.98318E+03 1.78643E+O4 4.15320E+04 5.91899E+04 7.09043E+04 8.25632E+04 k = 1,3622,pb = 0.0442101b/f$ Qv 1.35335E+05 4.04079E+05 9.39426E+05 1.33883E+06 1.60381E+06 1.86752E+06 Y 9.99969E-01 9.99720E-01 9.99223E-01 9.98478E-01 9.96894E-01 9.95527E-01 9.93912E-01 ICD Tf= 140.00"F, P f = 2000.00 psia, cd 6.03240E-01 6.00639E-01 pf,p= 32.465 ib/ft3, p = 4.1710E-02 cP, 4ni 2.05150E+04 6.12803E+04 k=-1.0, pb = 0.116198 lb/fG Qv 1.76552E+05 5.27378E+05 Y 1.OOOOOE+OO l.OOOOOE+OO ICD 2 - 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3.4 92 0 7 3 2 2 9 0 O506394 5 0 7 = SECTION SCONCENTRIC, SQUARE-EDGED ORIFICE METERS, PART &BACKGROUND 107 Table 4-Cd-Selected Round Robin Test Results Matrix-US Units ( D, = 7.98146 in, a ! = 0.00000620 in/in-"F, d, = 5.98437 in, a = 0.00000925 in/in-"F) ; l AP (inches H20 at 60F) I Flow Conditions ïj=0.00F, Pf= 14.696 psia, I Value 2.2484 I 20.2360 I 56.2110 2.39587E+00 I .641)30E+OO I .40824E+W I .27622E+W I 110.1736 224.8440 I I 323.7754 I 1 I . 155068+001 I .09942E+001 1.05522E+00 440.6943 I pf,p= 58.199 Ib/ft3, j i = 1.8650E+03 cP, 4.2553 I E+05 8.7881OE+ü5 1.25060E+06 I S867 IE+(Ki 2.05 153E+06 2.34324E+06 2.62389E+06 k=-1.0, pb = 56.861 Ib/ft3 7.4837 I E+03 I .54554E+04 2.199408+04 2.790508+04 3.60798E+04 4.12100E+04 4.61457E+W I .00000E+00 I .00000E+00 I .00000E+OO I .00000E+00 1.00000E+00 1.00000E+ûO 1.OoooOE+OO ICD -6 -5 -5 -5 -4 4 -4 TJ=68.û0°F, P= 14.696 psia, cd I .20140E+W 8.98192E-01 7.84948E-01 7.13884E-01 6.78543E-01 6.69599E-01 6.62896E-01 = P,,~ 56.660 Ib/ft3, j i = 2.1220E+02 cP, qJ,: 2.108478+05 4.72905E+05 6.88801E+05 8.770198+05 1.19086E+06 1.41019E+06 1.62876E+06 k,= -1.0, pb = 56.861 Ib/ft3 Q" 3.7081 IE+03 8.316868+03 1.21 138EtW 1.542398+04 2.09433E+04 2.48007E+04 2.86446E+04 Y I .00000EtUO 1.OOoOOE+00 1 .OOOOE+OO I .00000E+íK1 I .oooOOE+00 1.00000E+ûO 1.00000E+ûO ICD -5 4 -4 -? 3 3 3 TI= 176.OOoF, Pf= 14.696psia, cd 6.70077E-0 I 6.34574E-01 6.25047E-01 6.20204E-0 1 6.15992E-01 6.14137E-01 6.12702E-01 pf,p= 54.214 ib/ft3, j i = 1.7490E+Ol cP, q,,, I. 15298E+05 3.27570E+05 5.37753E+05 7.47021E+05 1.05993E+06 1.26808E+06 1.47597E+06 k = -1.0, pb = 56.861 Iblft3 Q" 2.02771E+03 5.76089E+03 9.45732E+03 1.313778+04 1.86406E+04 2.23014E+04 2.59575E+04 Y I .00000E+00 1.OOOOOE+OO 1.00000E+OO 1.00000E+W 1.00000E+00 1.OOOOOE+00 1.00000E+00 3 13 13 13 3 3 3 ïj=60.00F, Pf= 14.696 psia, 6.1 1774E-01 I 6.04594E-01 I 6.02306E-01 I6.01052E-01 5.99900E-01 5.99373E-01 5.98957E-01 pf,p= 62.366 lb/ft3, j i = 1.1990cP, 1.12624E+05 3.33911E+05 5.54411E+05 7.74559E+05 I . 10439E+06 1.3241lE+06 1.54372E+06 k = -1.0, pb = 62.366 lb/ft3 1.80586E+03 5.35405E+03 8.88964E+03 1.24196E+04 1.77082E+W 2.12312E+04 2.47526E+04 1. OOOOE+OO I .OOOOOE+00 1.00000E+00 1.OOOOOE+W O 1.OoooOE+OO 1.00000E+OO 1.00000E+W ICD 3 2 2 2 2 2 6.03062E-01 5.99236E-01 5.97963E-01 5.97253E-01 5.96595E-01 5.96291E-01 5.96051E-0 1 1.08137E+05 3.22357E+05 5.36120E+05 7.49677E+05 1.06979E+Ot 1.28309E+06 1.49634E+06 1.73391E+03 5.1688OE+O3 8.59635E+03 1.20206E+04 1.71534E+04 2.05736E+04 2.39928E+04 1.OOOOE+OO 1.00000E+00 1.00000E+00 l.OOOOOE+OO 1.00000E+OC 1.ooOOOE+OO 1 .OOOOOE+OO ,I - ,I - " " 2 2 2 L I I I 6.03036E41 I 5.992998-01 I 5.981 11E-01 I 5.975088-01 5.97070E-01 5.96975E-01 5.97023E-01 ~ ~~ Tf= O.OO°F, Pi= 14.696 psia, cd pf,p= 0.13223 lb/ft3, j i = 1.3070E-02 CP, 4": 5.094168+03 1.492278+04 2.393978+04 3.16310E+O4 3.95396E+04 4.16284E+04 4.05568E+04 k = 1.3198, pb = 0.116198 ib/ft3 Q" 4.384WE+04 I .28425E+05 2.06025E+05 2.722 l6E+05 3.40278E+05 3.58254E+05 3.49032E+05 Y 9.97822841 9.80399E-01 9.45554E-01 8.93286E-01 7.82217E-01 6.86392E-01 5.73145E-01 ICD 2 2 2 2 2 2 2 Tf=50.00"F, P= 100.00 psia, cd 6.00632E-01 5.97712E-01 5.96734E-01 5.96193E-ol 5.95699E-01 5.95477E-01 5.95306E-01 pf,p= 0.31 109 lb/ft3, p = 1.0670E-02 CP, qrJI 7.80532E+03 2.324458+04 3.848508+04 5.34263E+04 7.50353E+04 8.874 13E+O4 1.01755E+05 k = 1.3622, pb = 0.044210 ib/ft3 Q" 1.76551E+05 5.25775E+05 8.70505E+05 1.208478+06 1.69725E+Ot 2.00727E+06 2.30162E+06 Y 9.9969OE-O1 9.97209E-01 9.92247E-01 9.84804E-01 9.68987E-01 9.55341E-01 9.39214E-01 2 2 2 2 2 12 12 ïj=0.00F. P f = 1ooO.00 psia, c d 6.00648E-01 5.97724E-01 5.96739E-01 5.96188E-01 5.95675841 I 5.95438F-01 I 5.95250E-01 P,,~= 65.072 ib/ft3, /= 1.5430E-01 cP, i 9": 1.12805E+05 3.36771E+05 5.60359E+05 7.837788+05 1.11872E+06 1.34193E+06 1.56509E+06 k=-1.0, pb = 0.116198 Ib/ft3 Q" 9.70799E+05 2.898258+06 4.82245E+06 6.74520E+O(i 9.62770E+06 1.15486E+07 1.34692E+07 Y 1.00000E+OO I .00000E+00 l.OOOOOE+ûO 1.00000E+0(3 1.00000E+00 1.00000E+OO 1.OOOOOE+OO 2 2 2 2 2 2 2 5.9862860 1 5.964 15E-01 5.95664E-01 5.95245E-o 1 5.94858E-01 5.94681E-01 5.94543E-01 pf,p= 2.0466 lb/ft3, p = 1.3520Er02 cP, 1.99350E+W 5.95080E+04 9.88012E+04 1.37691E+05 1.94957E+05 2.32205E+05 2.68536E+05 k = 1.3198, p = 0.116198 Ib/ft3 b 1.7156OE+O5 5.12126E+05 8.502838+05 1.184978+06 1.67780E+06 1.99836E+06 2.31 102E+06 9.998408-01 9,985608-O1 9.95999501 9.9215 9 ~ 4 19.83997E-01 9.76956-1 9.68635E-01 2 2 2 5.98428E-01 5.96275E-01 5.95543E-01 5.95133E-01 5.94752E-01 5.94576E-01 5.94438E-01 1.798 1OE+04 5.37228E+04 8.93392E+04 1.24802E+05 1.77610E+05 2.12484E+05 2.47033E+05 4.06718E+05 1.21517E+06 2.02079E+06 2.82295E+M 4.01741E+06 4.80623E+06 5.58772E+M 9.99938E-01 9.99442E-01 9.98449501 9.96961E-01 9.93797501 9.91068E-01 9.87843E-01 2 2 2 2 2 2 2 5.98237E-01 5.96136E-01 5.95420E-01 5.95019E-01 5.94645E-01 5.94473E-01 5.94336E-01 2.32007E+04 6.93412E+04 1.15373E+05 1.61292E+05 2.29908E+05 2.75432E+05 3.20743E+05 5.24784E+05 1.56845E+06 2.60965E+06 3.64832E+06 5.20036E+06 6.23008E+06 7.25498E+06 9.99969E-01 9.99721E-01 9.99224E-01 9.98480E-01 9.96898E-01 9.95533E-01 9.93920E-01 2 2 2 5.97974E-01 5.95964E-01 5.95279E-01 5.94894E-01 5.94534E-O1 5.94368E-O1 5.94236E-O1 7.95605E+04 2.37882E+05 3.96013E+05 5.54059E+05 7.91035E+05 9.48976E+05 1.10689E+06 6.84697E+05 2.04721E+06 3.40809E+06 4.76824E+M 6.80765E+06 8.16689E+06 9.52592E+06 l.OOOOOE+OO 1.OOO00E+OO l.OOOOOE+00 1.00000E+OC 1.OOOOOE+00 1.00000E+OO 1.00000E+Cû I ICD ,I - " " n 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • I_ -- - A P I NPMS*L4#3*4 72 0732290 050b39.5 4 4 3 108 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-5-Selected Round Robin Test Results Matrix-US Units ( Dm = 14.31154 in, q = 0.00000620 in/in-"F, d,,, = 10.73437 in, al = 0.00000925 in/in-"F) , Cell AP íinches H O at 60°F) , Flow Conditions ValUf 2.2484 20.2360 I 56.2110 I 110.1736 I 224.8440 323.7754 1 440.6943 I Tf= O.OO°F, Pf= 14.696 psia, c d 1.96155E+O( 1.38180Et00 1.19299E+00 1.08827E+00 9.90379E-0; 9.44490E-01 9.07450E-01 pLP= 58.199 lb/ft3, p = 1.8650E+03cP, 91 11 1.12131E+Of 2.36973E+06 3.40988E+06 4.35477E+06 5.66152E+Oi 6.47903E+06 7.26243E+06 k = -1.0, p = 56.861 lb/ft3- b Qv 1.97202E+oL 4.16759E+04 5.99687E+04 7.65862E+04 9.95676E+O 1.13945E+05 1.27723E+05 Y l.OOOOOE+O( 1.00000E+00 1.00000E+00 l.OOOOOE+00 l.OOOOOE+o( l.OOOOOE+OO 1.OoooOE+00 ICD - -5 -5 -5 -4 -4 -4 -4 Tf= 68.00"F, Pf= 14.696 psia, cd 1.02805E+3+0(7.69481E-01 6.84268E-01 6.67053E-01 6.52787E-01 6.46757E-01 6.42214E-01 pfp = 56.660 Ib/ft3, p = 2.1220E+02 cP, 41 11 5.80702E+O! 1.30395E+06 1.93258E+06 2.63755E+06 3.68734E+0( 4.38394E+06 5.07866E+06 k ; -1.0, pb = 56.861 Ib/ft3 Qv l.O2127E+m 2.29323E+04 3.39879E+04 4.63858E+04 6.48484E+@ 7.70992E+û4.8.93172E+04 Y l.OOOOOE+O( l.O0000E+00 1.00000E+00 1.00000E+00 1.00000E+O( l.OOOOOE+OO 1.00000E+00 ICD -4 4 4 3 3 3 3 - Tf= 176.00F, P f = 14.696 psia, cd 6.47068E-01 6.22607E-01 6.15779E-O1 6.12237E-01 6.09111E-01 6.07719E-01 6.06635E-01 pfp = 54.214 lb/f$, p = 1.749OE+Ol cP, 9 m 3.58348E+O: 1.03441E+06 1.70512E+06 2.37343E+06 3.37330E+0( 4.03871E+06 4.70343E+06 k -1.0, pb = 56.861 lb/ft3 Qv 6.30218E+O? 1.81920E+04 2.99874E+û4 4.17410E+04 5.93255E+@ 7.10278E+04 8.2718 1E+04 Y 1.OOOOOE+OC 1.00000E+00 l.o0000E+00 1.00000E+00 1.00000E+O( 1.OOOOOE+00 1.00000E+00 ICD - 3 3 3 3 3 2 2 Tf= 60.00"F, Pf= 14.696 psia, c d 6.05944E-01 6.00408E-01 5.98610E-01 5.97616E-01 5.96701E-01 5.96280E-01 5.95947E-01 pf,p= 62.366 lb/ft3, p = 1.1990 cP, 4m 3.59031E+O: 1.06726E+06 1.77344E+06 2.47870E+06 3.53557E+ûI 4.23970E+06 4.94356E+06 k = -1.0, pb = 62.366 lb/ft3 Qv 5.75684E+O? 1.71129E+04 2.84361E+04 3.97444E+04 5.66907E+@ 6.79809E+04 7.92668E+04 Y 1.00000E+OC 1.00000E+00 l.OoooOE+00 l.OOOOOE+OO 1.00000E+O( 1.00000E+00 1.00000E+00 ICD 2 2 2 2 2 2 Tf= 210.0O0F, Pf= 14.696 psia, cd 5.99188E-01 5.96154E-01 5.95135E-01 5.94565E-01 5.94035E-01 5.93790E-01 5.93596E-01 pf,p= 58.792 Ib/ft3, /i 2.8250E-01 cP, = 4ni 3.45809E+05 1.03218E+Ot 1.71736E+06 2.40201E+06 3.42838E+06 4.1 1236E+06 4.79618E+06 k = -1.0, pb = 62,366 Ib/ft3 Qv 5.54483E+Ol 1.65504E+M 2.75369E+04 3.85147E+04 5.49719E+@ 6.59391E+04 7.69038E+04 Y l.OOOOOE+OC l.OOOOOE+OC l.OOOOOE+OO 1.00000E+00 1.OOOOOE+O( 1.00000E+00 1.00000E+00 ICD - 2 2 2 2 2 2 2 Tf= O.OO°F, Pf= 14.696 psia, c d 5.99192E-01 5.96228E-01 5.95277E-01 5.94793E-01 5.94441E-01 5.94364E-01 5.94403E-01 pf,p= 0.13223 Ib/ft3, p = 1.3070E-02 cP, 41 11 1.62912E+04 4.77829E+04 7.66843E+04 1.01339E+05 1.26689E+O: 1.33378E+05 1.29931E+05 k = 1,3198,pb = 0.116198 1b/ft3 Qv 1.40202E+05 4.1 1220E+05 6.59945E+05 8.72125E+05 1.09028E+(x 1.14785E+06 1.11819E+06 Y 9.97822E-01 9.80394E-0 1 9.45538E-01 8.93254E-01 7.82151E-01 6.86298E-01 5.73016E-01 ICD - 2 2 2 12 (2 Tf= 50.00F, Pf= 100.00 psia, c d 5.972843-01 5.94951E-01 5.94164E-01 I 5.93728E-01 15.93329E-01 pf,p= 0.31109 Ib/ft3, p = 1.0670E-02 cP, 9 l " 2.498 17E+O4 7.44678E+04 k = 1.3622, pb = 0.044210 lb/f? Q" 5.65069E+05 1.68441E+06 Y 9.99690E-01 9.97208E-01 ICD - 2 2 Tf= O.OO"F, Pf= 1000.00psia, c d 5.97302E-01 5.94966E-01 pf,p= 65.072 lb/ft3, /i 1.5430E-01 cP, = 91 " 3.61045E+05 1.07891E+06 k=-1.0, pb = 0.116198 Ib/ft3 Qv Y ICD - 2 (2 - 12 I 3.10715E+06 9.28509E+06 1.54545E+07 2.16201E+07 3.08644E+Oi 1.00000E+íM 1.00000Et00 1.00000E+00 1.00000E+00 1.OoooOE++oC 2 12 ~ f O.OOOF, pf= 200.0öpsia, = c d 5.95691E-01 5.93912E-ûlI5.93306E-01I5.92967E-01~ 5.92654E-01 pf,p= 2.0466 lb/ft3, p = 1.3520E-02 cP, 4m 6.38466E+04 1.907258+05 3.16736E+05 4.41468E+05 6.25148E+05 7.44628E+05 8.61 168E+05 k = 1.3198, pb = 0.116198 Ib/ft3 Qv 5.49464E+05 1.64138E+06 2.72583E+06 3.79927E+M 5.380028+06 6.40827E+06 7.41 121E+M Y 9.99840E-01 9.98559E-01 9.95998E-01 9.92156E-01 9.83992E-01 9.76949E-01 9.68625E-01 ICD - 2 2 2 2 2 2 2 Tf= 50.00F, P= 500.00 psia, c d 5.95525E-01 5.93794E-01 5.93203501 5.92871E-01 5.92562E-01 5.92420E-01 5.92308501 & = 1.6623 Ib/ft3, p = 1.1310E-02 cP, , 41 11 5.75918E+04 1.72189E+05 2.864128+05 4.00154E+05 5.69538E+05 6.81404E+05 7.92233m.05 k = 1.3622, pb = 0.044210 lb/ft3 Qv 1.30269E+06 3.8948 1E+06 6.478448+06 9.05 122E+O6 1.28826E+Oï 1.54129Et.07 1.79198E+07 Y J.99938E-01 9.99442Ml 9.98449E-01 9.96960Eol 9.93795E-01 9.91065E-01 9.87839E-01 ICD 2 2 2 Tf= 15O.0O0F, Pf= 1000.00 psia, cd 5.95361E-01 5.93671E-01 5.93093E-01 5.92768E-01 5,924650-01 5.92325E-01 5.92214E-01 prP = 2.7573 Ib/ft3, p = 1.3650E-02 cP, 4" 1 7.43135E+04 2.222558+05 3.69880E+05 5.17162E+05 7.37255E+05 8.83286m.05 1.02864E+06 k L 1.3622, Pb = 0.044210 1b/ft3 Qv I .68092E+06 5.02725E+06 8.36642E+06 1.169798+07 1.66762B+07 1.99793E+07 2.32671E+07 Y 9.99969E-01 9.99721E-01 9.99224E-01 9.98479E-01 9.96897841 9.95532E-01 9.93918E-01 ICD - 2 2 2 2 2 2 2 ï j = l4O.0OoF, Pf=2000.00 psia, cd 5.95 151E-01 5.93534E-01 5.92980E-01 5.92668E-01 5.92376E-01 5.92241E-01 5.92134E-01 = 32.465 lb/ft3, /=i . 4.1710E-02 cP, 4"l 2.54860E+05 7.625098+05 1.26966E+06 1.77659E+06 2.53674E+06 3.04339E+06 3.54998E+M k=-1.0,pb=0.11619S1b/ft3 Qv 1.19332E+06 3.56215E+06 1.092678+07 1.528938+07 2.18312E+07 2.61914E+07 3.0551 1E+07 Y I.OOOOOE+00 I .00000E+00 1.00000E+00 1.00000E+00 1.00000E+ûü 1.00000E+00 1.00000E+00 [CD - 1 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14*3=4 92 = 0732290 0506396 38T SECTION &CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 1o9 Table 4-Cd-Selected Round Robin Test Results Matrix-US Units ( Dm = 29.37598 in, q = 0.00000620 in/in°F, d, = 22.03126 in, al = 0.00000925 in/in-"F) , I I Flow Conditions I Value 2.2484 I 20.2360 1 AP (inches H?O at 60°F) 56.2110 I 1.55369E+00 1.12772E+00 9.8G29E-01 9.01873ECol 110.1736 1 3.74090E+06 8.14595E+06 1.18514E+07 1.52006E+07 6.57903E+04 1.4326 1E+05 2.08428E+05 2.67329E705 I .00000E+00 I .00000E+00 1.OOOOOE+00 1.00000E+ûC -5 4 ~-4 -4 8.52642E-01 6.73057E-01 6.51622E-01 6.41 140E-01 6.32329E-01 6.28554E-01 6.25683E-01 2.02857E+3+06 4.80398E+06 7.75 163E+06 1.06777E+Oi 1.5O443E+07 I .79453E+07 2.08406E+07 3.56759E+04 8.44864E+04 1.36326E+05 1.87786E705 2.64580E+05 3.15600E+05 3.665 18E+05 1.00000E+00 i .00000E+00 I .00000E+00 1.OOOOOE+OC I .ooOOOE+00 I .ooOOOE+OO 1.00000E+00 ~ -4 3 3 3 3 13 13 ïj=176.0O0F, PJ= 14.696 psia, Cd 6.28736E-01 6.12914E-01 6.08275E-01 6.058 15E-01 6.03609E-01 I6.02616E-01 I6.01838E-01 pf,p= 54.2 14 Ib/ft, p = 1.749OE+OI cP, qff, I .46659E+06 4.28909E+06 7.09438E-1-O6 9.89 I97E+06 1.40799E+07 1.68681E+07 1.96541E+07 k = -1.0, pb = 56.861 Ib/ft" QI. 2.57926E+04 7.543 12E+Q4 1.24767E+05 1.73968Et05 2.47620E+05 2.96655E+05 3.4565 1E+05 Y 1.OOOOOE+00 I.OOCOOE+00 1. O O E O 1. O O E O O O O+ O O O O+ C 1.00000E+00 1.00000E+00 1.OOOOOE+00 ICD 3 3 3 2 2 2 2 TJ=60.0O0F, PI= 14.696 psia, cd 6.01355E-01 5.97295E-01 5.95951E-O1 5.952O4E-0 I 5.94512E-01 5.94193E-01 5.93940E-01 pf,p= 62.366 ib/ft3, p = I. 1990 cP, 4,f 1.50078E+06 4.47 i98E+06 7.43652E+O6 1.O398 1E+O7 1.4837 1E+07 I .77950E+07 2.07520E+07 k -1 .o, pb = 62.366 Ib/ft3 Q,. 2.40640E+04 7.17054E+04 1.19240E+05 1.66727E+05 2.37904E+05 2.85332E+05 3.32745E+05 Y 1.00000E+00 1.OOOOOE+OO 1.00000Et00 1.00000E+OC 1.00000E+00 1.00000E+00 1.ooOOOE+00 ICD 2 2 2 2 . l - I I I I TJ= 210.00"F. PI= 14.696 psia, cd 5.96367E-01 5.94080E-01 5.93304E-01 5.92869E-01 5.92463E-01 15.92275E-01 I 5.92126E-01 pf,p= 58.792 ib/ft3, p = 2.8250E-01 cP, k = -1.0, pb = 62.366 lb/ft3 I I qfff I .449688+06 4.33240E+O6 7.2 I I24E+06 1.008838+07 Q,. 2.324478+04 6.946748+04 I . 15628E+05 1.617608+05 Y I I I I I .44020E+07 I .7277üE+07 2.015 l4E+07 2.309288+05 2.770258+05 3.231 15E+05 1. OOOOE+OO 1.ooOOOE+00 1.00000E+00 O ICD 2 2 2 TJ=0.00"F, PJ= 14.696psia, Cd 5.92798E-0 1 5.92739E-0 i 5.92769E-O1 pf,p= 0.13223 Ib/ft, p = 1.3070E-02 cP, qJff 5.32147E+05 5.60271E+05 5.45798E+05 k s 1.3198, pb = 0.1 16198 Ib/ft Q,* 4.57966E+06 4.82170E+06 4.69714E+06 Y 7.82170E-01 6.86324E-01 5.73052E-01 ICD 2 2 2 T/= 50.0O0F, PJ= 100.00psia, Cd 5.94954E-0 1 5.93 182E-01 5.92581E-01 5.92246E-01 5.91939E-01 5.91802E-01 5.91695E-01 pf,p= 0.3 1109 Iblft, p = 1.067OE-02 cP, qfa I.O4812E+O5 3.12724E+05 5.18086EIO5 7.19472E+05 ~ 1.01078E+06 1.19557E+O6 1.37104E+06 k = 1.3622, pb = 0.044210 Ib/ft3 QV 2.37077E+06 7.0736OE+M 1.17188E+07 1.62740E+07 2.28632E+07 2.70431E+07 3.10120E+07 Y 9.99690E-01 9.97208E-01 9.92245E-01 9.84800E-01 9.68980E-01 9.55331E-01 9.39201E-01 ICD 2 2 2 2 2 2 2 î j = 0.00"F. PJ= 1ooO.00 psia, cd 5.94974E-01 5.93200E-01 5.92594E-01 5.92253E-01 5.91935E-01 5.91787E-01 5.91670E-01 pf,p= 65.072 Ib/ft3, p = 1.5430E-01 cP, qJJf 1.51478E+06 4.53084E+06 7.54368E+06 1.05551E+Oi 1.50706E+07 1.80802E+07 2.10894E+07 k=-l.O,pb = 0.116198 Ib/ft3 Qv 1.30362E+07 3.89924E+07 6.49209W07 9.08370E+07 1.29697E+08 1.55598E+08 1.81495E+08 Y 1.00000E+00 I.OOCOOE+IX! 1.OOOOOE+00 i.ooOOOE+OC l.OOOOOE+OO l.OOOOOE+00 1.00000E+00 ICD 2 2 2 2 T/= O.OO"F, PJ= 200.00 psia, Cd 5.93753E-01 5.92393E-01 5.91928E-01 5.91667E-01 5.91426E-01 5.91315E-01 5.91229E-01 pf,p= 2.0466 lb/ft3, p = 1.3520E-02 cP, qia 2.68045E+05 8.01275E+05 1.33099E+06 1.85537E+06 2.62765E+06 3.13003E+06 3.62006E+O6 k = 1.3198, pb = 0.116198 Ib/ft3 Qv 2.30680E+06 6.89577E+06 1.14545E+07 1.59674E+07 2.26136E+07 2.69371E+07 3.1 1543E+07 I IY 9.99840E-01 9.98559E-01 9.95998E-01 9.92157E-01 9.83994E-01 9.76951E-01 9.68628E-01 2 12 12 12 12 12 12 TJ= 50.00"F, PJ= 500.00 psia, cd 5.93620E-01 I 5.92297E-01 I5.91843E-01I5.91588E-01 I 5.91350E-01 I5.91240E-01 I 5.91153E-01 pf,p= 1.66231b/ft3, p = 1.1310E-02 cP, qJJf 2.41799E+05 7.23429E+05 1.20359E+06 1.68179E+06 k = 1.3622, pb = 0.044210 Ib/ft3 Qv 5.46933E46 í.63635E+07 2.72244E+07 3.80410E+07 Y 9.99938E-01 9.99442E-01 9.98449E-01 9.96960E-01 ICD 2 2 2 2 2 T/= 150.00"F,PJ= 1ooO.00 psia, cd 5.93483E-01 5.92191E-01 5.91747E-01 5.91497E-01 5.91263E-01 5.91 155E-01 5.91070E-01 pf,p= 2.7573 Ib/ft3, p = 1.3650E-02 cP, qJJi 3.12019E+05 9.33796E+05 1.55439E+06 2.17360E+M 3.09900E+O6 3.7 1303E+O6 4.32422E+06 I Ii k = 1.3622, pb = 0.044210 ib/ft3 Q" 7.05766E+06 2.11218E+07 3.51592E+07 4.91654E+07 7.00972E+07 8.39862E+07 9.78109E+07 Y 9.99969E-01 9.99721E-01 9.99224E-01 9.98480E-01 9.96897E-01 9.95532E-01 9.93919E-01 2 12 12 12 12 12 12 TJ= 140.00"F, PI= 2000.00 psia, 5.93325E-01~5.92087E-01~5.91661E-01~ 5.91420E-0lI5.91196E-01 I 5.91092E-01 I 5.91009E-01 pf,p= 32.465 lb/ft3, p = 4.1710E-02 cP, 1.07017E+06 3.20384E+06 5.33588E+06 7.467208+06 1.066348+07 1.27938E+07 1.49240E+07 k = -1 .o, pb = o. 116198 lb/ft3 9.20987E+M 2.75722E+07 4.59206E+07 6.426278+07 9.176908+07 1.l0103E+08 i .28436E+08 1.00000E+00 1.00000E+00 1.00000E+00 1.00(X)OE+OO I .oOOOOE+00 1.00000E+00 1.OOOOOC+OO 1 0 2 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4.3-4 92 = 0732290 0506397 2Lb SECTION +CONCENTRIC, SQUARE-EDGEDORIFICE METERS. PART 4-BACKGROUND 111 Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (D, = 0.073670 m, CS = 0.00001116 m/m-K, d, = 0.01 4684 m, al = 0.01000665 m/m-K) Cell Pa Flow Conditions Value 559.5 5035.6 13987.7 27415. Tf= 255.37 K, Pf= I.OI325E+O5 Pa, c d 1.43078E+W 1.35697E+OO 1.18122E+00 1.08585E+W = 932.26 kg/m3, p = 1.8650 Pa-s, “in1 2.47361E-01 7.03806E-01 l.O2109E+OO 1.31410E+OO k = -1.0, pb = 910.83 kg/m3 Qv 2.71578- 7.72708- 1.12105E-03 1A4275E-03 Y 1.00000E+00 l.OOOOOE+OO l.OOOOOE+Oû 1.00000E+OO ICD -5 - -5 -4 4 Tf= 293.15 K, Pf = 1.01325E+05Pa, c d 1.03233E+00 8.30723E-01 7.69 144E-01 7.36966E-O1 7.08901E-01 I 6.96641E-01 I 6.87257E-01 = 907.60 kg/m3,p = 2.1220E-01 Pa-s, 4111 1.76320E-01 4.25662E-01 5.56847E-01 8.81114E-01 k=-l.O,Pb= 910.83 kg/m3 Qv 1.93581E-04 4.67335- 7.21152E-04 9.67375E-04 Y l.OooOOE+00 1.OOOOOE+00 l.OOOOOE+OO l.OOOOOE+OO ICD 4 4 -4 -3 -3 r f = 353.15 K, Pf= 1.01325E+05Pa, cd 6.97291E-01 6.45881E-01 6.31661E-01 6.24554E-01 6.18538E-01 6.15959E-01 6.14002E-01 pf,p= 868.43 kg/m3, p = 1.7490E-02 Pa-s, 4m 1.16731E-01 3.24377E-01 5.28724E-01 7.31885E-01 1.03548E+00 1.23739B+OO 1.43904E+00 k=-1.0, Pb=910.83 kg/m3 Qv 1.28159E-04 3.56133E-04 5.80486E-04 8.03536E-04 1.13685E-03 1.35853E-03 1.57992E-03 Y 1. OOOOE+OO 1.00000E+00 1.00000E+Oa O l.OOOOOE+OC 1.00OOOE+00 1.00000E+00 1.000OOE+00 ICD -3 - -3 - 7 -3 -7 I I -? - I -I 7 r/= 288.71 K, Pf= i.O1325E+O5Pa, cd 6.12716E-01 6.03868E-01 6.01673E-01 6.00597E-01 5.99699E-01 I5.99318E-01 15.99032E-01 pf,p= 999.01 kg/m3, p = 1.1990E-03 Pa-s, 4”l 1.09778E-01 3.24582E-01 5.39002E-01 7.53254E-01 1.07447E+00 1.28854E+00 1.50258E+ûû k = -1.0, pb = 999.01 kg/m3 Qv 1.09887E-04 3.24904E-04 5.39537E-04 7.54000E-04 1.07553E-03 1.28982E-03 1.50407E-03 Y l.OOOM)E+00 l.OOOOOE+OO 1.oO000E+oa 1.00000E+OC l.OOOOOE+OO 1.oooOOE+00 l.OOOOOE+OO ICD -3 - 2 2 2 2 2 2 Tf= 372.04 K, Pf = 1.01325E+05Pa, cd 6.02411E-01 5.99259E-01 5.98434E-01 5.98030E-01 5.97692E-01 5.97549E-0 1 5.97441E-O1 pf,p = 941.75 kg/m3, p = 2.8250E-04 Pa-s, 9ni 1.05084E-01 3.13607E-01 5.21957E-01 7.30246E-O 1 1.04262E+00 1.25084E+00 1.45905E+W k =-].o, pb = 999.01 kg/m3 Qv 1.O5 188E-04 3.13917E-04 5.22474E-04 7.30969E4 1.04365E-03 1.25208E-03 1.46050E-03 Y I.OOOOOE+00 l.OooOOE+~ I.OOOOOE+C-C 1.OOOOOE+OC l.OOOOOE+OO 1.00000E+00 1.00000E+Oû ICD - 2 2 2 2 r f = 255.37 K, P f = 1.01325E+05 Pa, cd 5.98461E-01 5.98099E-01 5.97837E-01 5.97758E-01 5.97734E-01 pf,p=2.1181 kg/m3, p = 1.3070E-05 Pa-s, 9n 1 2.35999E-02 3.15975E-02 4.08036-2 4.44903E-02 4.57436E-02 k = 1.3198, pb= 1.86131 kg/m3 Qv 1.26792E-02 1.69760E-02 2.19220E-02 2.39027E-02 2.45760E-02 Y 9.57057E-01 9.15832E-01 8.28229E-01 7.52650E-01 6.63329E-01 ICD - 2 2 2 2 2 Tf = 283.15 K, Pj = 6.89476E+05 Pa, cd 5.97729E-01 5.97474E-0 1 5.97264E-01 5.97176E-01 5.9711 1E-01 pf,p= 4.9831 kg/m3, p = 1.0670E-05 Pas, 9m 3.75799E-02 5.22788E-02 7.37152E-02 8.74695E-02 1.00692E-01 k = 1.3622, pb = 0.70817 kg/m3 Qv 5.30662E-02 7.38224E-02 1.04092E-01 1.235 15E-01 1.42186E-01 Y 9.93886E-01 9.88016E-01 9.75542E-01 9.64781E-0 i 9.52063E-0 i ICD - 2 Tf = 255.37 K, Pf = 6.89476E+06 Pa, cd 6.00256E-01 5.98249E-01 5.97724E-O1 5.97466E-01 5.97250E-Oi pf,p= 1042.35 kg/m3, p = 1.5430E-04 Pa-s 91 11 1.09732E-01 3.28098E-01 5.46349E-01 7.64558E-01 k=-1.0, P b = 1.86131kglm3 Qv 5.8954 1E-02 1.76273E-01 2.93529E-01 4.10764E-01 Y 1.000OOE+OO l.OOOOOE+Oû 1.00000E+OC 1.00000E+OC ICD n -L IL a 2 2 ï j = 255.37 K, Pf = 1.37895E+06Pa, cd 5.98801E-01 I 5.97568E-01 5.9724-1 5.97088E-01 P,,~= 32.783 kg/m3, p = 1.3520E-05 Pa-s, 9m 9.65089E-02 1.34666E-01 1.91092E-01 k = 1.3198, pb= 1.86131 kg/m3 Qv 5.18500E-02 7.23503E-02 1.02665E-01 Y 9.96845E-01 9.93815E-01 9.87378E-01 ICD - 2 2 ï j = 283.15 K, Pf = 3.44738E+06 Pa, cd 5.97206E-0 1 5.97056E-01 5.96930E-01 5.96876E-01 5.96836E-01 pf,p= 26.627 kg/m3, p = 1.1310E-05 Pa-s, 9m 8.72206E-02 1.21934E-01 1.73720E-03 2.07994E-01 2.42022E-01 k = 1.3622, pb = 0.70817 kg/m3 Qv 1.23163E-01 1.72182E-01 2.45308E-03 2.93707E-01 3.41757E-01 Y 9.987773-01 9.97603E-01 9.95108E-01 9.92956E-01 9.90413E-01 ICD L - 2 2 2 2 2 5.98588E-01 I 5.97468E-01 5.97174E-OI ~~ Tf = 338.71 K, Pf = 6.89476E+06 Pa, cd 5.97030E-01 5.969 10E-01 5.96858E-01 5.96820E-01 pf,p= 44.168 kg/m3, p = 1.3650E-05 Pa-s, ‘lin 1.12605E-01 1.575 16E-OI 2.24697E-01 2.69322E-01 3.13788E-01 k = 1.3622, pb = 0.70817 kg/m3 Qv 1.59009E-01 2.22427E-01 3. i7292E-01 3.80308E-01 4.43097E-01 Y ~~~~~ 9.99389E-01 9.98802E-01 9.97554E-03 9.96478E-01 9.95206E-01 ICD - 2 2 2 2 Tf = 333.15 K, Pf = 1.37895E+07Pa, cd 5.97121E-01 5.96987E-01 5.96875E-01 5.96828E-01 5.96792E-01 = 520.04 kg/m3, p = 4.1710E-05 Pa-s, 9m 3.86517E-01 5.4 1OO3E-01 7.727 16E-01 9.271 85E-01 1.08 165E+OC k=-1.0, pb= 1.86131 kg/m3 Qv 4.16222E-02 1.24652E-01 2.07659E-01 2.90657E-01 4.15146E-03 4.98136E-01 5.81 i24E-01 Y l.OOOOOE+OC 1.00000E+OC 1.00000E+O( ~ 1.OOOOOE+00 1.00000E+OC ICD - 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • . - - - API 112 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (Dm= 0.1 02270 m, % = 0.00001116 m/m-KI dm = 0.020439 m, al = 0.00001 665 m/m-K) - Cell Pa Flow Conditions Value 559.5 5035.6 13987.7 27415. 55950.8 80569.I 109663.5 - rJ. = 255.37 K, Pf = 1.01325E+05Pa, c d I .42942~+oa 1.23678E+oC 1.08598E+OC 1.00447E+OC 9.31233E-01 8.98444E-01 8.72954E-01 pf,/, 932.26 kg/m3, p = 1.8650 Pa-s, = 9 m 4.78798E-01 1.24282E+oC 1.81881E+OC 2.35522B+OC 3.1 1928E+OI 3.61 133E+O( 4.09369E+Gí k=-1.0, pb=910.83 kg/m3 Qv 5.25673E-04 I .36449E-03 1.99687E-03 2.58580E-03 3.42465E-03 3.96488E-0- 4.49446E-0: Y 1.00000E+Oû I . O O E O O O O+ C I .00000E+OC 1.000OOE+OC 1.00000E+O( 1.00000E+O( 1.OOOOOE+O( - -S ICD -5 -4 -4 -4 -4 -4 Tf = 293.15 K, Pf = 1 .O 1325E+05 Pa, Cd 9.58873E-O1 7.88535E-01 7.37203E-01 7.1 0578E-3-01 6.87492E-O1 6.77452E-0 1 6.69788E-01 pf,/> 907.60 kg/m3, p = 2.1220E-01 Pa-s, = 4m 3. i 7306E-OI 7.82825E-01 1.2 1977E+OC I .64600E+OC 2.27504E+OC 2.6901 8E+O( 3.10303E+Oi k = -1 .O, pb = 910.83 kg/m3 Q v 3.4837 1E-O4 8.59463E-04 1.339 18E-03 1.80715E-O3 2.49776E-O3 2.95354E-02 3.40682E-0: Y 1.00000E+OC I.OOOOOE+Oû 1.00000E+OC 1 . O O E O O O O+ C I .00000E+O( I .00000E+O( 1 .OOOOOE+O( - 4 ICD 4 -3 -3 -3 -3 -3 Tf = 353.15 K, Pf = l.O1325E+O5 Pa, cd 6.77984E-01 6.36219E-01 6.24766E-0 1 6.1905OE-01 6.14205E-O1 6.12122E-01 6.10537E-03 pL,,= 868.43 kg/m3, p = 1.7490E-02 Pa-s, 4111 2.19900E-01 6.19067E-O1 l.O132OE+OC 1.40550E+oC 1.99215E+O( 2.38247E+0( 2.77235E+Oi k = -1 .O, p6 = 910.83 kg/m3 Qv 2.41428E-04 6.79674E-04 I . I 1239E-O3 1.5431OE-O3 2.187 I8E-03 2.6 1572E-O: 3.04377E-0: Y 1 . O O E O 1.00000E+OC O O O+ O 1.OOO00E+OC 1 . O O E O O O O+ C 1.OOOOOE+O( I .00000E+O( I .00000E+O( - -3 ICD -3 -3 -3 -3 -3 -2 T/ = 288.71 K, Pf = 1.01325E+05Pa, 6.09491E-0 1 6.02522E-O1 6.0078OE-O 1 5.99926E-01 5.99213E-01 5.98911E-01 5.98683E-03 pf,,,= 999.0 1 kg/m3, p = 1. I990E-03 P a s , 91 1 1 2.1 1572E-01 6.27466E-O 1 1.04275E+OC 1.45777E+OC 2.08006E+O( 2.4948 1E+O( 2.9095 1E+O( k=-1.0, pb=999.01 kg/m3 Q" 2.1 1782E-04 6.28087E-04 1.04378E-03 1.45922E-03 2.082I2E-03 2.49128E-02 2.9 I239E-O: Y 1.00000E+00 1.00000E+OC 1 . O O E O 1. O O E O O O O+ C O O O+ C 1.OOOOOE+O( 1 .OOOOOE+O( 1.00000E+O( ICD -2 2 2 2 2 2 2 Tf = 372.04 K, Pf = 1.01325E+05Pa, cd 6.0 1365E-O1 5.98864E-O1 5.98209E-01 5.97888E-01 5.97619E-01 5.97505E-01 5.974 19E-0 1 pf,p 941-75 kg/m3, p = 2.8250E-04 Pa-s, = 41 11 2.03244E-01 6.07202E-01 i,oi089~+0a 1.41449E+OC 2.01979E+OC 2.42329E+O( 2.82676E+ûí k = -1.0, pi>= 999.01 kg/m" Q v 2.03445E-O4 6.07803E-04 1.O1 189E-03 1.41589E-03 2.021 79E-03 2.42569E-01 2.82956E-07 Y I .00000E+ûû I.OOOOOE+Oû l.OOOOOE+Oû 1.00000E+OC 1.00000E+OC 1.OOOOOE+O( 1.OOOOOE+O( - 2 ICD 2 2 2 2 T = 255.37 K, Pf = 1.01325E+05 Pa, j cd 6.01295E-O1 5.98851501 5.98230E-01 5.97942E-O1 5.97734E-01 5.9767 1E-0 1 5.97652E-O1 pf,,=2.1181 kg/m3,p= 1.3070E=o5 Pa-s, 91 11 9.58381E-03 2.82407E-02 4.57063E-02 6.12030E-O2 7.90418E-02 8.61856E-02 8.8614OE-02 k = 1.3198, p b = 1.86131 kg/m3 Q" 5.14896E-03 1.51725E-02 2.4556OE-O2 3.288 17E-O2 4.24657E-O2 4.63037E-O2 4.76084E-02 Y 9.98282E-01 9.84540E-01 9.57057E-0 1 9.15831E-O1 8.28227E-O I 7.52646E-O1 6.63324E-01 ICD 2 - 2 2 2 2 2 2 Tf = 283.15 K, Pf = 6.89476E+05 Pa, cd 5.99655E-01 5.98064E-01 5.97648E-01 5.97446501 5.97278L01 5.97208E-O1 5.97 l57E-01 pLP= 4.9831 kg/m3, p = 1.0670E-05 Pa-s, 4m 1.46950E-O2 4.38825E-02 7.27999E-02 I .01284E-01 1.42824E-01 1.69478E-01 i .95 101E-01 k = 1.3622, p h = 0.70817 kg/m3 Q" 2.07507E-02 6. I9661E 4 2 1.02800E-01 1.43022E-01 2.0 1680E-0 I 2.39319E-01 2.75501E-01 Y 9.99755E-O1 9.97799E-01 9.93885E-Ol 9.88016E-01 9.75542E-01 9.64780E-01 9.52062E-0 1 ICD 2 - 2 2 2 Tf = 255.37 K, Pf = 6.89476E+06 Pa, cd 5.99655E-01 5.98062E-O 1 5.97644E-01 5.97439E-01 5.97267E-01 5.97 194E-01 5.97 14OE-01 = 1042.35 kg/m3, p = 1.5430E-04 Pa-s 9lll 2.12389E-01 5.35480E-01 1.05839EtOO 1.48124E+Oo 2.1 1545E+OC 2.53823B+OC 2.96099E+O( pb= 1.86131 kg/m3 Q" 1.14107E-01 3.41416E-01 5.68627E-01 7.95804E-01 1.13654E+OC 1.36368E+OC 1.59081E+3+0( Y 1.00000E+00 1.00000E+OO 1.O~OE+OOl.OOOOOE+Oû 1.O0000E+OC 1.00000E+OC 1.OOOOOE+O( ICD 2 - 2 2 2 2 2 2 lj = 255.37 K, Pf = 1.37895E+06Pa, 5.98500E-01 5.97520E-01 5.97264E-0 1 5.97138E-01 5.97033E-01 5.96989E-01 5.96956E-01 pfp= 32.783 kg/m3, p = 1.352OE-O5 Pa-s, %Il 3.75887E-02 1.12469E-01 1.86988E-01 2.60933E-01 3.70282E-01 4.4 1807E-O 1 5.1 1967E-01 k L 1.3198, p),1.86131 kg/rn3 Q" 2.0 1948E-02 5.04246E-O2 1.00461E-01 1.40188E-01 1.98936E-O1 2.37363E-01 2.75057E-01 Y 9.99874E-01 9.98864E-01 3.96845E-01 9.93815E-01 9.87378E-O1 9.81825E-01 9.75261E-0 1 ICD 2 - 2 2 ï j = 283.15 K, Pf = 3.44738E+06 Pa, cd 5.98408E-01 5.97477501 5.97232E-01 5.97 112E-0 1 5.970 12E-0 1 5.96969E-01 5.96937E-01 pf,p= 26.627 kg/m3, p = 1.1310E-05 Pa-s, 4lll 3.39049E-02 1.01518E-01 1.68994E-O1 2.36266E-01 3.36623E-01 4.03045E-01 4.68989E-01 k = 1.3622, p,, = 0.70817 kg/m3 Q" 4.78768E-02 1.43352E-01 2.38635E-01 3.33629E-01 4.75342E-01 5.69136E-O1 6.62255E-01 Y 9.99951E-01 3.99560E-01 3.98777E-01 3.97603E-01 9.95108E-01 9.92956E-01 9.90412E-01 ICD 2 - 2 2 2 2 2 2 ï j = 338.71 K, Pf = 6.89476E+06 Pa, C d 5.98331E-01 7.9744 1E-O1 3.97207E-01 5.97092E-O1 S.96996E-O1 5.96955E-01 5.96924E-O 1 of, = 44.168 kg/rn3,p = 1.3650E-05 Pa-s, %li 4.37436E-02 1.31011E-01 1.18180E-01 3.05215E-01 4.35406E-01 5.21888E-01 6.08060E-01 k 1.3622, p b = 0.70817 kg/m3 Q" 6.17698E-02 1.85000E-01 3.0809 1E-O1 4.3099OE-O1 6.14833501 7.36952E-01 8.58636E-01 Y 9.99976E-01 >.99780E-01 ).99389E-01 5.98802E-01 9.97554E-01 9.96478E-01 9.95206E-01 iCD 2 - ? 1 2 rf = 333.15 K, Pf = 1.37895E+07Pa, cd 5.98202E-01 5.9738OE-O1 5.97 164E-01 5.97058E-O1 5.96969E-01 5.96931E-01 5.96902E-01 of,p= 520.04 kg/m3, , = 4.1710E-05 Pa-s, u %Il 1.50043E-01 L49515E-01 7.48918E-O1 l.O483OE+OO 1.49735E+00 1.79670E+OC 2.09605E+OC k = -1.0, pb = 1.86131 kg/m3 Q" 8.06114E-02 L41505E-01 L02361E-01 5.63205E-01 9.04458E-O1 9.65288E-O1 1.12612E+OC Y 1.00000E+00 l.OOOOOE+OO i .OOOOOE+OO 1.00000E+00 I .00000E+00 1. O O E O O O O+ C 1.00000E+OC iCD 2 - l 1 1 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14.3e4 92 W 0732290 0506399 O99 W SECTION SCONCENTRIC. SQUARE-EDGED ORIFICE METERS. PART 4-BACKGROUND 113 Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (O, = 0.202729 m, % = 0.00001 116 m/m-K, d, = 0.040481 m, al = 0.00001665 m/m-K) Cell Pa Flow Conditions ?alue 27415. 55950.8 80569.1 109663.5 - Tf = 255.37 K, Pf = 1.01325E+05Pa, c d 5.73195E-01 8.21381E-01 7.9838 1E-01 7.80599E-01 pl,p= 932.26 kg/m3, p = 1.8650 Pa-s, ?ni 8.0313 lE+OO 1.07925E+01 1.25883E+01 1.435938+01 k = -1.0, pb = 910.83 kg/m3 Qv 8.81757E-03 1.1849 1E-02 1.38207E-O2 1.57651E-O2 Y 1.00000E+00 1.OOOOOE+OC I .00000E+00 1.00000E+00 [CD - 4 4 4 4 Tf = 293.15 K, Pf = 1.01325E+05Pa, c d 8.40869E-O1 7.22461E-01 6.87816E-01 5.701 11E-01 6.54928E-01 6.48378E-01 6.43399E-01 pl,p= 907.60 kg/m3, p = 2.1220E-01 Pa-s, ?ni 1.09151E+00 2.8 1346E+OO 4.46421E+00 5.08902E+OO 8.5015i ~ + o a1.00998E+01 1.16926E+Ol k = -1.0, pb = 910.83 kg/m3 Qv 1.19837E-03 3.08889E-03 4.90126E-03 5.68514E-03 9.33381E-03 1.10885E-02 1.28373E-02 Y l.OOOOOE+OO l.OOOOOE+ûO I.OOOOOE+OO 1.00000E+Oû l.OOOOOE+OC 1.00000E+00 1.00000E+00 [CD 4 - -3 -3 -3 -3 -3 -3 ïj = 353.15 K, Pf = 1.01325E+05Pa, c d 6.48724E-01 6.21815E-01 6.14499E-01 6.10828E-01 6.07674E-01 6.06292E-01 6.05308E-01 pIp = 868.43 kg/m3, p = 1.7490E-02Pa-s, ?lit 8.25368E-01 2.37342E+00 3.90915E+OO 5.4401 lE+Oû 7.73146E+OC 9.25665E+00 1.07819E+01 k = -1.0, pb = 910.83 kg/m3 Qv 9.06172E-04 2.60578E-03 .4.29185E-03 5.97270E-03 8.48837E-03 1.01629E-02 1.18374E-02 Y 1.OOOOOE+OO 1.OOOOOE+00 1.00000E+00 1.00000E+OC 1.00000E+OC 1.00000E+00 1.00000E+00 ICD -3 - -3 -3 -2 -2 -2 -2 Tf = 288.71 K, Pf = 1.01325E+05Pa, cd 6.04694E-01 6.00563E-01 5.99481E-01 5.98950E-01 5.98507E-01 5.983 19E-01 5.98 178E-01 pl,p=999.01 kg/m3, p = 1.1990E-03 Pa-s, 4ni 8.23396E-01 2.45334E+00 4.08151E+00 5.70906B+OC 8.14977E+OC 9.77665E+00 1.14034E+OI k=-1.0, pb = 999.01 kg/m3 Qv 8.24212E-04 2.45577E-03 4.08556E-O3 5.71472E-03 8.15785E-03 9.78634E-03 1.14147E-02 Y l.OOOOOE+OO 1.00000E+OO 1.00000E+OO I.OOOOOE+OC I.OOOOOE+OC I.OOOOOE+OO 1.00000E+00 [CD 2 - 12 12 2 2 2 2 Tf = 372.04 K, Pf = 1.01325E+05Pa, cd I 5.99845E-01 5.98290E-01 I 5.97883E-01 5.97682E-01 5.97515E-01 5.97444E-01 5.97390E-01 pl,p= 941.75 kg/m3, p = 2.8250E-04 Pa-s, k = - . , pb = 999.01 kg/m3 10 4ni Qv Y ìCD - I I 7.95243E-01 2.37957E+00 3.96324E+00 7.96031E-04 2.38193E-03 3.96717E-03 1.OOOOOE+OO 1.OOOOOE+00 1.OOOOOE+Oa 5.54668E+OC 5.55217E-03 l.OOOOOE+OC 7.92 160E+oC 9.50479E+00 1.10879E+01 7.92945E-03 9.51421E-03 1.10989E-02 l.OOOOOE+OC 1.00000E+OO 1.00000E+OO 2 2 2 Tf = 255.37 K, Pf = l.OI325E+05 Pa, cd 5.99801E-01 5.98282E-01 5.97895E-01 5.97716E-01 5.97586E-01 5.97547E-01 5.97535E-01 pl,p= 2.1181 kg/m3, p = 1.3070E-05 Pa-s, 4in 3.75007E-02 1.10674E-01 1.79190E-01 2.39989E-01 3.09979E-01 3.38008E-01 3.47536E-01 k = 1.3198, pb= 1.86131 kg/m3 Qv 2.01475E-O2 5.94600E-02 9.62711E-O2 1.28935E-01 1.66538E-01 I .81597E-Ol 1.867 16E-01 Y 9.98282E-01 9.84540E-01 9.57057E-01 9.15831E-01 8.28227E-01 7.52648E-01 6.63326E-01 ICD 2 - 2 2 2 2 2 2 Tf = 283.15 K, Pf = 6.89476E+05 Pa, cd 5.98782E-01 5.97792E-01 5.97533E-01 5.97406E-O 1 5.9730 1E-O 1 5.97258E-01 5.97225E-01 pl,p= 4.9831 kg/m3, p = 1,0670E-05 Pa-s, 4ni 5.75599E-02 1.72059E-01 2.85515E-01 3.97276E-0 1 5.60274E-0 1 6.64863E-01 7.65407E-01 k = 1.3622, pb = 0.70817 kg/m3 Qv 8.12798E-O2 2.42962E-01 4.03173E-O1 5.60990E-01 7.91157E-01 9.38847E-01 1.08082E+OO Y 9.99755E-01 9.97799E-O1 9.93886E-01 9.88016E-û1 9.75542E-O 1 9.64781E-01 9.52063E-01 ICD 2 - 2 2 2 2 2 2 Tf = 255.37 K, Pl = 6.89476E+06 Pa, cd 5.98781E-01 5.97790E-01 5.97530E-01 5.97402E-01 5.97294E-01 5.97249E-01 5.97214E-01 plSp 1042.35 kg/m3,p = 1.5430E-04 Pa-s = 4in 8.31918E-0 I 2.49 165E+OO 4.15093E+W 5.8 1005E+OC 8.29859E+O( 9.95754E+00 1.16165E+01 k=-1.0, pb=1.86131 kg/m3 Qv 4.46953~-01 1,33865~+00 2.2301i~+oa 3.12149E+OC 4.45846E+O( 5.34975E+00 6.24 101E+OO Y 1.OOOOOE+00 l.OOOOOE+OO l.OOOOOE+Oû I .OOO00E+OC 1.00000E+O( l.OOOOOE+00 1.00000E+OO ICD 2 _. 2 2 2 2 2 2 Tf = 255.37 K, Pf = 1.37895E+06Pa, c d 5.98063E-01 5.97453E-01 5.97292E-01 5.97213E-01 5.97 147E-01 5.97120E-01 5.97099501 pl,p= 32.783 kg/m3,p = 1.3520E-05 Pa-s, QI 1.47341E-01 4.41 129E-01 7.33529E-01 1.02369E+OC 1.45277B+O( 1.73344E+00 2.00876E+00 k = 1.3198, pb= 1.86131 kg/m3 Q" 7.91596E-02 2.36999E-01 3.94093E-01 5.49981E-01 7.80512E-01 9.31303E-01 1.07922E+00 Y 9.99874E-01 9.98864E-01 9.96845E-01 9.938 15E-01 9.87378E-01 9.8 1825E-01 9.7526 1E 4 1 ICD 2 - 2 2 2 2 2 2 Tf = 283.15 K, Pf = 3.44738E+06 Pa, cd 5.98006E-01 5.97426E-01 5.97273E-01 5.97197E-01 5.97 134E.g 5.97 108E-O1 5.97088E-0 1 pl,p= 26.627 kg/m3, p = 1.1310E-05 Pa-s, 4ni 1.32909E-01 3.98 187E-01 6.62954E-01 9.26928E-01 1.32073E+Gí 1.58138E+00 1.84015E+OO k = 1.3622, pb= 0.70817 kg/m3 Qv 1.87679E-01 5.62276E-01 9.36151E-01 1.30891E+o( 1.86499E+O( 2.23305E+OO 2.59846E+OO Y 9.99951E-O1 9.99560E-01 9.98777E-01 9.97603E-01 9.95108E-01 ICD 2 - 2 2 2 2 Tf = 338.71 K, Pf = 6.89476E+06 Pa, cd 5.97958E-01 5.97404E-01 5.97257E-01 5.97185E-01 5.97 125E-01 pl,p=44.168 kg/m3, p = 1.3650E-05 Pa-s, 41 11 1.71485E-O1 5.13882E-0 I 8.55922E-O 1 1.19744E+O( 1.70832E+M k = 1.3622, pb = 0.70817 kg/m3 Qv 2.42152E-01 7.25647E-01 1.20864E+OC 1.69090E+oC 2.4 1231E+O( Y 9.99976E-01 9.99780E-01 9.99389E-01 9.98802E-01 9.97554E-01 9.96478E-01 ICD 2 - 2 2 2 2 2 ïj = 333.15 K, Pf = 1.37895E+07 Pa, cd 5.97878E-01 5.97366E-01 5.97230E-01 5.97 1ó4E-01 5.97108E-01 5.97084E-01 pl,p= 520.04 kg/m3, p = 4.1710E-05 Pa-s, 4ni 5.88250E-01 1.76326E+OC 2.93809E+oC 4.11286E+o( 5.87496E+N 7.04967E+Oa k = -1.0, pb = 1.86131 kg/m3 Q v 3.16041E-01 9.47320E-01 1.57850E+oC 2.20966E+O( 3.15636E+Gí 3.78748E+OC Y 1. OOOOE+OO 1.00000E+OC 1.00000E+OC 1.00000E+O( O l.OOO00E+CM l.OOOOOE+OC ICD 2 - 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 114 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (Dm= 0.363513 m, a ! = 0.0000111 m/m-K, d,,, = 0.072628 m, al = 0.00001 ; 6 665 m/m-K) Cell Pa Flow Conditions Value 559.5 5035.6 I 13987.7 I 27415. 55950.8 I 80569.1 I 109663.5 I î j = 255.37 K, Pf = 1.01325E+05Pa, 1.17826E+O 7.92546E-01 7.54610E-01 7.37907E-O1 7.25060E-01 P,,]~ 932.26 kg/m, p = 1.8650 Pa-s, = 4.98335E+OI 2.34642E+Ol 3. I9158E+OI 3.745 i 3E+Oi 4.29325E+Ol k=-1.0, p,,=910.83 kglm 5.47 122E-0: 2.57614E-0î 3.50404E-02 4. I 1 177E-O2 4.71355E-02 I .00000E+Oi I .00000E+O( 1.00000E+00 1 .OOOOOE+ûû I .0000ûE+Oû 4 -4 -3 -3 -3 7 j =293,15K, P f = 1.01325E+05Pa, 7.6883 1E-O 6.46865E-01 6.36388E-O1 6.3 1890E-01 6.28479E-01 p / = 907.60 kg/m3, p = 2. i 22OE-O I Pa-s , 3.2 I246E+oi 1.89200E+OI 2.65908E+Ol 3.16834E+01 3.67645E+01 k=-1.0, plJ=910.83 kglm" 3.52695E-O: 2.07723E-02 2.91940E-02 3.47852E-02 4.03637E-O2 I .00000E+Oi 1.00000E+O( I . O ~ O E + O O 1.OOOOOE+00 1.00000E+Oû -4 -3 -3 1-3 1-3 ïj =353.15 K, Pf = 1.01325E+05Pa, 6.321 28E-O 6.13732E-01 6.08682E-O1 6.06089E-O 1 6.041 17E-O1 I6.03284E-01 I 6.02656E-01 pi,/, 868.43 kg/rn3,p = 1.749OE-O2 Pa-s = 2.58880E+M 1.24640E+Oi 1.73753E+Ol 2.4741 iE+01 2.96483E+01 3.45537E+01 k = -1.0, pl, = 910.83 kg/m 2.84225E-O: 8.27868E-03 1.36842E-O2 1.90763E-O2 2.71632E-02 3.25509E-02 3.79365E-O2 1 .OOOOOE+O( 1 . O O E O 1.00000E+OC O O O+ C 1.00000E+00 1.00000E+00 i .00000E+00 -3 -2 -2 2 2 2 ïj = 288.71 K, Pf = 1.01325E+05Pa, 6.02246E-O1 5.98771E-01 5.98417E-01 5.98 121E-0 1 5.97995E-01 5.97901E-O1 p,,+= 999.01 kg/m3, p = I . 199OE-O3 Pa-s 2.63970E+M 1.3 i 224E+01 1.83605E+01 2.62 163E+O1 3.14530E+O1 3.66893E+O1 k = -1 .O, plJ= 999.01 kg/m 2.6423 1E-O: 7.89076E-03 1.31354E-02 1.83787E-02 2.62423E-O2 3.14841E-02 3.67257E-02 1 .OOOOOE+O( 1.00000E+OC 1.00000E+OC 1.00000E+00 1.OOOOOE+00 1.00000E+00 2 2 2 2 Tj = 372.04 K, Pf = 1.01325E+05 Pa, 5.990 14E-01 5.97977E-0 1 5.977O4E-O 1 5.9757OE-O I pl,/> 941.75 kgltn, p = 2.8250E-04 Pa-s = 2.55626E+O( 7.65557E+00 i .27534E+Ol i .78508E+01 k = -1.0, plJ= 999.01 kg/m3 2.55879E-0: 7.66315E-03 1.27661E-02 1.78685E-02 3.06235E-02 1 .00000E+O( 1.00000E+00 1. O O E O 1.00000E+Oû O O O+ O 2 2 2 2 Tf = 255.37 K, Pj = 1.01325E+05 Pa, cd 5.98984E-01 5.9797OE-O1 5.97712E-01 5.97592E-01 5.97479E-0 1 5.9747 1EO 1 - pl.p = 2. i 18i kg/rn3,p = 1.3070E-05 Pa-s 4111 1.20546E-03 3.56061E-0 1 5.76618E-0 1 7.72337E-O 1 1.1 1856E+OO k = 1.3198, pl>= 1.86131 kg/m3 Qin 5.47642E-3-02 1.9 1296E-01 3.09791E-01 4.14943E-01 5.84473E-O1 6.00953E-01 Y 3.98282E-01 9.84540801 9.57057E-01 9.15831E-01 7.52647E-01 6.63325E-01 ICD 2 - 2 2 2 2 2 2 T = 283.15 K, Pf = 6.89476E+05 Pa, j cd 5.98304E-01 5.97643E-01 5.97469E-01 5.97384E-01 5.97314E-01 5.97285E-01 5.97263E-O1 pl,/,= 4.983 1 kg/m3, p = 1.0670E-05 Pa-s qlJ1 1.85131E-O1 5.53700E-01 9.18944E-01 1.27874E+00 1.80350E+00 2.14022E+OO 2.46392E+00 Y k = 1.3622, p,, = 0.708 17 kg/m3 Q,, 2.6 1422E-0 1 7.8 1874E-01 1.29763E+Oû 1.80570E+00 2.54670E+00 3.02218E+OO 3.47927E+OC Y >.99755E-01 9.97799E-01 9.93886E-01 9.88016E-01 9.75542E-0 1 9.6478 1E-01 9.52062E-O1 ICD 1 - 2 2 2 Tf = 255.37 K, Pf = 6.89476E+06 Pa, cd 3.98304E-01 5.97642E-O1 5.97467E-01 5.97381E-01 5.97309E-01 5.97278E-O1 5.97255E-01 P , , ~ 1042.35 kg/m3, p = 1.5430E-04 Pa-: = qJJ1 2.67572E+Oí 8.01836E+OO 1.33600E+01 1.87013E+O1 2.67129E+01 3.20538E+01 3.73947E+01 k = - l . O , PI>=1.86131 kg/m3 Qv 1.43755E+OC 4.30791E+00 7.17774E+00 1.00474E+Ol 1.43517E+01 1.72211E+01 2.00905E+01 Y I.00000E+OC 1.00000E+00 1.OOOOOE+OO 1.00000E+00 1.OOOOOE+OO 1.00000E+00 1.OOOOOE+OC [CD 1 - 2 2 2 i = 255.37 K, Pf = 1.37895E+06Pa, j c d L97824E-O1 5.97416E-01 5.97308E-01 5.97254E-01 5.972 10E-01 5.971918-01 5.97 177E-01 = 32.783 kg/m3, p = 1.352OE-O5 Pa-s. YIJI 1.74084E-O1 1.41986E+00 2.36121E+00 3.29536E+00 4.67682E+00 5.580448+00 6.46683E+00 B = 1.3198, p,,= 1.86131 kg/m3 Q" L54705E-01 7.62827E-01 1.26858E+00 1.77045E+00 1.51265B+00 2.998128+00 3.474358+00 Y 1.99874E-01 9.98864E-01 9.96845E-01 9.93815E-01 9.873788-01 9.81825E-01 9.75261E-01 [CD ! - 2 2 2 1 2 2 r/ = 283.15 K, P = 3.44738E+06 Pa, cd i.97786E-01 5.97397E-01 5.97295E-01 5.97244E-01 3.972018-01 5.97 183E-01 5.97170B-01 g,,,,= 26.627 kg/m3, p = 1. I3 IOE-05 Pa-s, bi 1.27661E-0 1 1.28166E+00 2.13406E+00 2.98391E+00 1.25177E+00 5.090938+00 5.924078+00 r( = 1.3622, p,, = 0.708 i 7 kg/m3 2 , i.03896E-01 1.80982E+00 3.01348E+00 4.21355E+00 i.00388E+00 7. I88861!+00 8.365328+00 Y j.99951E-O1 9.99560E-01 9.98777E-O1 9.97603E-O1 j.95108E-01 [CD ! - rJ = 338.71 K, Pf = 6.89476E+06 Pa, r - -d i.97755E-01 L97195E-01 ?+ , = 44.168 kg/m3, p = 1.3650E-05 Pa-s, ?in i.51803E-O1 i = 1.3622, p,, = 0.70817 kg/m3 2 , l.79 196E-01 Y 1.99976E-01 9.95206E-O1 -CD , L I I " rf = 333.15 K, Pf = 1.37895E+07Pa, -d 1.97701E-01 5.973578-01 ~5.972668-01I5.97221E41 i.97183E-O1 5.97167E-01 5.97155501 = 520.04 kg/m3, p = 4.1710E-05 Pa-s, ?,,p 1111 .89295E+OO .89133E+01 := -1.0, pb= 1.86131 kg/m3 2 , .01700E+00 .01613E+01 Y .00000E+00 .OOOOOE+OO -CDCOPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3e4 92 0732290 0506403 577 SECTION 3---CONCENTRIC,SQUARE-EDGED ORIFICE METERS, PART 4-BACKGROUND 115 Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units (Dm= 0.746150 m, Q = 0.00001116 m/m-K, d, = 0.149225 m, al = 0.00001665 m/m-K) - Cell Pa :low Conditions lalue _. 559s 5035.6 13987.7 27415. 55950.8 I 80569.1 I 109663.5 ïj = 255.37 K, Pf = 1.01325E+05 Pa, cd 8.07596801 7.51815E-01 7.22773E-01 5.975 16E-01 6.86507E-01 6.78091E-01 >,,p = 932.26 kg/m3, p = 1.8650 Pa-s, L I 4.32590E+01 6.7 1183E+Oi 9.03359E+O 1 1.245428+02 1.47091E+02 i .69503E+02 :=-].o, pb=910.83 k g h 3 2, 1.94347E-02 4.74941E-02 7.36892E-02 9.91797E-42 1.36734E-O1 1.61491E-01 1.86097E-01 Y l.OOOOOE+OC 1.00OOOE+OO 1.00OOOE+OO 1.00000E+00 1.00000E+00 1.00000E+00 [CD - -4 -3 -3 -3 I -3 1-3 ïj = 293.15 K, PJ = 1.01325E+05 Pa, 6.51218E-01 6.35725E-01 3.27969E-01 6.21400E-01 I6.18585E-01 I6.16449E-01 i cd = J , , ~ 907.60 kg/m3, p = 2.1220E-01 Pa-s, b i 3.446€5E+01 5.60693E+Oi 7.75394E+01 1.09612E+02 :=-].o, pbZ910.83 kg/m3 2, 1.36909E-02 3.78353E-02 6.15585E-02 3.51305l502 1.20343E-01 Y 1.00000E+O( 1.OOOOOE+00 1.00000E+00 1.00000E+00 [CD _. -3 -3 -3 I l fj = 353.15 K, Pl = 1.01325E+05Pa, cd 6.18734E-01 6.07105E-O1 6.04084E-01 5.02653E-01 6.0 1458E-O1 ?,,p = 868.43 kg/m3, p = 1.7490E-02 Pa-s, Il" i.O6973E+Oi 3.14891E+01 5.22205E+01 7.29355E+01 1.03987E+02 ¿ = -1.0, Pb = 910.83 kg/m3 Qv 1.17446E-02 3.45718E-02 5.73329E-02 3.00758E-02 1.14167E-01 Y 1.00000E+00 1.00000E+00 1.OOOOOE+OO ~~ i .00000E+00 l.OOOOOE+OO íCD -3 - -2 12 2 L I 9 =288.71 K, Pf = 1.01325E+05Pa, c d 5.97992E-01 5.97812lHl~ 5.97736E-0115.97678E-01 g,,p = 999.01 kg/m3, p = 1.1990E-03 Pa-s, ?ni 1.11081E+01 3.32317E+01 5.53454E+01 7.74556E+Ol 1.10618E+02 1.32724E+02 1.54830E+02 k =-].o, pb = 999.01 k g h 3 Q" 1.11191E-02 3.32646E-O2 5.54002E-02 7.75324E-02 I . 10727EíIl 1.32855E-01 i ,54983E-01 Y 1.OOOOOE+00 1.OOOOOE+OO 1.OOOOOE+OO 1.00000E+00 1.00000E+00 1.00000E+00 i .00000E+00 iCD - 2 2 2 2 2 2 2 r/ = 372.04 K, Pf = 1.01325E+05 Pa, c d 5.98357E-01 5.97725E-01 5.97558E-01 5.97476E-0 1 5.97407E-01 5.97378E-01 5.97355E-01 %,p = 941.75 kg/m3, p = 2.8250E-44 Pa-s, L 1.07796E+01 3.23051E+01 5.38266E+01 7.53469E+01 1.07626E+02 1.29145E+02 1.50663E+02 k=-1.0, pb=999.01 kg/m3 1.07903E-02 3.23371E-O2 5.38800E-02 7.54216E-02 1.07733E-01 1.29273E-01 1.50813E-01 9 = 255.31 K, Pf = 1.01325E+05 Pa, Qv Y ICD - 2 2 2 L - 1.OOOOOE+00 l.OOOOOE+OO l.OOOOOE+OO l.O0000E+OG 1.00000E+00 l.OOOOOE+OO 1.00000E+00 2 I I* 5.98338E-01 5.97720E-01 5.97562E-01 5.97489E-01 5.97435E-01 5.97419E-01 I 5.97414E-01 cd o , , ~ 2. I 181 kg/m3, p = 1.3070E-05 Pa-s, = PlIl 5.08348E-01 1.50251E+00 2.43364E+OO 3 . 2 m 3 ~ + 0 04.21 119E+00 4.59215E+00 4.72165E+00 k = 1.3198, pb= 1.86131 kg/m3 Qv 2.731 13E-01 8.07235501 1.30749E+3+0(11.75142E+OC 2.26249~+002.467 1 6 ~ + 0 0 2.53673~+00 Y 9.98282E-01 9.84540E-01 9.57056E-01 9.15831E-01 8.28226E-01 7.52645E-01 6.63323E-01 ICD - 2 2 2 2 2 2 2 r/ = 283.15 K, Pf = 6.89476E+05 Pa, cd 5.97924E-O 1 5.97520E-01 5.97414E-O1 5.97361E-01 5.973 18E-01 5.97300E-01 5.97286E-01 = 4.9831 kg/m3, p = 1.0670E-05 Pa-s, 4n1 7.81053~-01 2.33701~+00 3.87905~+005.39812E+(H: 7.61369E+00 9.03536E+00 1.04021E+OI k = 1.3622, pb = 0.70817 k g h 3 Qv i.i0292~+003.30~08~+00 5.47756~+007.62263E+Oí 1.07512E+01 1.27587E+0i 1.46886E+Oi Y 9.99755E-01 9.97799E-01 9.93885E-01 9.88016E-01 9.75542E-01 9.64780E-01 9.52062E-01 ICD - 2 2 2 2 Tf = 255.37 K, Pf = 6.89476E+06 Pa, cd 5.97924E-01 5.975 19E-01 5.97412E-01 5.97359E-01 = 1042.35 kg/m3, p = 1.5430E-04 Pa-s 4ni 1.12886E+01 3.38433E+01 5.63952E+01 7.89464E+01 1.35322E+02 1.57872E+02 k=-l.O, pb= 1.86131 kg/m3 Qv 6.06488E+OO 1.81825E+01 3.02987E+01 4.24 144E+O1 7.27027E+01 8.48178E+01 Y 1.OOOOOE+OO 1.OOOOOE+00 1.00000E+OO 1.OOOOOE+OC l.OOOOOE+00 1.00000E+OC ICD - 2 2 2 2 Tj = 255.37 K, Pf = 1.37895E+06Pa, c d 5.97631E-01 5.97380E-01 5.97314E-01 5.97281E-01 5.97242E-O 1 5.97233E-O1 P,,~= 32.783 kg/m3, p = 1.3520E-05 Pa-s, 4m 2.00074E+00 5.99371E+00 9.968 18E+OC 1.39123E+Ol 2.35603E+Ol 2.73029E+01 k = 1.3198, pb=1.86131 kg/m3 Qv I . O ~ ~ ~ I E 3.22016~+005.35547~+007.47446E+oC 1.O608 i E+O 1 1.26579E+01 1.46686E+01 +OO Y 9.99874E-01 9.98864E-01 9.96845E-01 9.93815E-01 9.87378E-01 9.8 1824E-O1 9.75261E-01 ICD - 2 2 2 2 2 2 2 /i = 283.15 K, Pf = 3.44738E+06 Pa, cd 5.97608E-01 5.97369E-01 5.97306E-01 5.97275E-O1 5.97248E-01 5.97237E-01 5.97229E-01 P,,~ =26.627 kg/m3, p = 1.1310E-05 Pa-s, 9m 1.80487E+OO 5.41040E+00 9.00929E+OC 1.25975E+O1 1.79507E+OI 2.14938E+O 1 2.50 115E+O1 k = 1.3622, Pb = 0.70817 kg/m3 Qv 2.54864E+00 7.63997E+OO 1.27219E+OI 1.77888E+O1 2.53479E+Ol 3.03512E+01 3.53185E+O1 Y 9.99951E-01 9.99560E-01 9.98777E-01 9.97603E-01 9.95 108E-01 9.92956E-01 9.9O412E-O1 ICD - 2 2 2 2 2 2 2 ï j = 338.71 K, Pf = 6.89476E+06 Pa, cd 5.97589E-01 5.97361E-01 5.97300E-01 5.97270E-01 5.97245E-01 5.97234E-01 5.97226E-01 P,,~ = 44.168 kg/m3, p = 1.3650E-05 Pa-s, 9ni 2.32884E+OO 6.98256E+00 1.16318E+01 1.62742E+Ol 2.32188E+01 2.78320E+OI 3.24288E+01 k = 1.3622, pb = 0.70817 kg/m3 Qv 3.28853E+00 9.86001E+00 i .64252E+01 2.29806E+OI 3.2787 i E+O 1 3.93013E+O1 4.57924E+O1 Y y 9 7 6 E - 0 1 I92.99780E-01 9.99389E-4 1 9.98802E-01 9.97554E-01 9.96478E-O 1 9.95206E-01 ICD - 2 2 2 2 2 TJ = 333.15 K, Pf = 1.37895E+07Pa, cd 5.97289E-01 5.97261E-01 5.97237E-01 5.97227E-01 5.97220E-01 P , , ~ 520.04 kg/m3, p = 4.1710E-05 Pa-s, = 9m 3.99291E+OI 5.58982E+Oi 7.98514E+01 9.58200E+01 1.1 1789E+02 k = - l . O , pb= 1.86131 kg/m3 Qv 2.14522E+OI 3.00316E+O1 4.29006E+01 5.14799E+Oi 6.00591E+01 Y 1.00000E+OC 1.00000E+O( 1.OOOOOE+00 1.OOOOOE+00 1.00000E+OC n ICD - 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * 1 4 = 3 - 4 92 m 0732290 0506402 403 m 116 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (Dm= 0.049262 m, Q = 0.00001116 m/m-K, d,,, = 0.020042 m, al = 0.00001 665 m/m-K) - Cell Pa Valut Flow Conditions 559.5 5035.6 13987.7 27415. 55950.8 80569.1 109663.5 - Tf = 255.37 K, Pf = 1.01325E+05 Pa, c, 2.28720E+CM I .58276E+O( 1.35635E+0( ¡.23382E+Oi I. 12345E+Oi i .O739 1E+Oi 1.03533E+O( = 932.26 kg/m3, p = I .8650 Pa-s, 41 11 7.46344E-O I I .54944E+O( 2.21300E+O( 2.8 I83 1E+@ 3.66601 E+O( 4.20523E+Oi 4.72983E+O( k = -I .O, pIl = 9 10.83 kg/m3 QV 8.1941 1E-O4 I -70I I3E-0: 2.42966E-O: 3.09422E-O: 4.0249 I E-0: 4.6 I692E-0: 5. 19287E-03 Y 1.00000E+O( 1.00000E+CM I .00000E+O( 1.OOOOOE+O( 1.OOOOOE+O( 1.000ûOE+Oi I .OOOOOE+O( ICD -6 -5 -5 -5 4 -4 -4 = 293. I 5 K, PJ = I .O I325E+05 Pa, c, 1. I6527E+0( 9.06957E-O1 8.28083E-03 7.86823E-03 7.50763E-Oi 7.34967E-0 7.22844E-01 p = 907.60 kg/m3, I( = 2.1220E-O I Pa-s, 41 11 3.75659E-01 8.7716 0 M I 1.33479E+Oí I .77560E+0( 2.42032E+Oi 2.84327E+O( 3.26243E+OC k=-1.0, pl>=9i0.83kg/m3 Qv 4.12436E-O4 9.63033E-04 1.46547E-0: 1.94943E-0: 2.65727E-0: 3.12163E-O: 3.58182E-03 Y 1.000OOE+O( 1 .OOOOOE+O( 1.00000E+O( i .00000E+O( I .00000E+O( 1.OOOOOE+O( 1.00000E+OC ICD - -4 -4 -4 -4 -3 -3 -3 Tj = 353.15 K, Pf = l.O1325E+O5 Pa, c, 7.35864E-0 1 2.32520E-01 6.68419E-O1 6.48324E-O1 6.37253E-O1 I .40953E+CM 6.26545E-01 6.2 1233E-O 6. I9 144E-0 1 p = 868.43 kg/m3, p = 1.749OE-02 Pa-s, 4lli 6.33631E-O1 1.02430E+Oí 1.97978E+N 2.35559E+Oi 2.73895E+0(: k=-1.0, p,,=910.83 kg/m3 Qv 2.55283W 6.95663E-O4 I . I2458E-OC 1 S4752E-O: 2.37360E-O: 2.5862 1E-0: 3.00709E-03 Y i .00000E+O( 1.00000E+O( 1 .OOOOOE+O( 1.OOOOOE+O( 1.OOOOOE+O( I .00000E+O( i .OOOOOE+OC ICD - -3 -3 -3 -3 -3 -3 3 ï = 288.7 i K, PJ = 1.O i 325E+05 Pa, = 999.0 I kg/m3, p = I . 1990E-03 Pa-s, c, 6.17849E-O1 2.0894OE-O 1 6.09 l74E-01 6.18025E-0 1 6.0687 1E 4 i i .O26 15E+O( 6.05725E-01 1.43389E+0( 6.04753E-01 6.04334E-0 6.040 16E-0 1 2.045 13E+O( 2.45245E+0( 2.85969B+OC %Il k = -1.0, p,, = 999.01 kg/m3 Qv 2.09 147E-04 6.18637E-04 1 .O27 16E-02 1.43531E-0? 2.047 I5E-O: 2.45488E-O: 2.86252E-03 Y I .OOOOOE+oE 1.00000E+OC 1.00000E+O( i .00000E+O( 1.00000E+Oí 1.OOOOOE+O( 1.000OOE+OC ICD 3 - 2 2 2 2 2 2 TJ = 372.04 K, Pf = 1.01325E+05 Pa, o/,/, = 941.75 kg/m3, p = 2.825OE-3-04 Pa-s, c, 6.07653Ml 2.00075E-01 6.04271E-01 5.96891E-01 6.03340E-03 9.93282E-O 1 6.02867E-O I 1.38951E+ûí 6.02460E-03 6.02282E-01 6.02146E-01 1.98367E+O( 2.37970E+Oi 2.77568E+OC 7lll I.= -1.0, pi, = 999.01 kg/m3 Qv 2.00273E-04 5.97483E-O4 9.94267E-04 1.39088E-O? 1.98563E-O: 2.38205E-0: 2.77844E-03 Y 1.00000E+OC 1.OOOOOE+oE 1.OOOOOE+O( l.OOOOOE+O( 1.00000E+O( 1.00000E+O( 1.00000E+OC ICD 2 - 2 2 2 2 2 2 r/ = 255.37 K, Pf = l.Ö1325E+05 Pa, c, 6.07555E-O1 6.04251E-01 6.03369E-01 6.02949E-0 1 6.02639E-01 6.02546E-01 6.02521E-01 ol,,=2.1181 kg/m3,p= 1.3070E-05 Pa-s, ?ni 9.43329E-O3 2.77503E-02 4.48649E-02 6.OOO12Mi 7.72798E-02 8.40345E-3-02 8.60592E-02 k = 1.3198, p 6 = 1.86131 kg/m3 Qv 5.06809E-03 1.49090E-02 2.41039E-02 3.22360E-02 4.15 i 90E-0; 4.51481E-0: 4.62358E-02 Y 9.98245E-01 9.84201 E-O1 9.561 13E-O1 9.13981E-O1 8.24451E-01 7.4721OE-O1 6.55925E-01 [CD - 2 2 2 2 2 2 2 ïj = 283.15 K, Pf = 6.89476E+05 Pa, 6.05358E-01 6.03127E-O1 6.02504E-01 6.02187E-01 6.01915E-03 6.01798E-03 6.01710E-01 glp = 4.9831 kg/m3, p = 1.0670E-05 Pa-s, 7111 1.44520E-02 4.31101E-O2 7.14880E-02 9.94267E-O2 1.40142E-O 1 1.6624 1E-03 1.91305E-01 G 1.3622, p,, = 0.708 i7 kg/m3 Q" 2.04075E-O2 6.08753E-02 i.OO948E-01 1.40400E-01 1.97893E-03 2.34747E-03 2.70 140E-O1 Y 9.99750E-01 9.97750E-01 9.9375 1E-01 9.87752E-01 9.75004F!-OI 9.64006E-03 9.51008E-O1 [CD 2 - 2 2 2 2 Q = 255.37 K, Pf = 6.89476E+06 Pa, cd 6.05357E-O1 6.03 123E-01 6.02496E-O1 6.02 175E-O 1 6.01896E-01 6.01774E-O3 6.01680E-01 31,p = 1042.35 kg/m3, p = 1.5430E104Pa-s 111, 2.08875E-01 6.24318E-O1 1.03945E+OC 1.45445E+0( 2.07682E+0( 2.49168E+CM 2.90650E+W t = -1.0, pi,= 1.86131 kg/m3 2, 1.122I9E-O 1 3.35418E-01 5.58448E-O1 7.8141 1E-01 I . 11578E+0( 1.33867E+ûí 1.56154E+00 Y 1.00000E+00 1. O O E O O O O+ C 1.OOooOE+OC 1.00000E+OC 1.OOOOOE+O( 1.00000E+O( l.OOOOOE+OO [CD 2 - 2 2 2 2 2 2 rf = 255.37 K, P j = 1.37895E+06Pa, - d 6.03756E-01 6.02305E-01 6.0 1890E-O1 6.01677E-O1 6.01491E-01 6.0141OE-01 6.0 1348E-O1 = 32.783 kg/m3, p = 1.352OE-O5 Pa-s, Irir 3.69400E-02 1.10441E-0 1 1.83561E-01 2.56096E-01 3.63317E-01 4.334 15E-Oi 5.02143E-01 i = 1.3198, pi, = 1.86131kg/m3 2, 1.98462E-O2 5.93349E-O2 9.8619OE-O2 1.37589E-01 1-9.5194E-01 2.32855E-O1 2.69779E-01 Y 9.99871E-O1 9.98839E-01 9,96775501 9.93679E-01 9.87 1O 1E-O 1 9.81425E-03 9.74717E-01 - 2 CD 2 2 2 2 2 Q = 283.15 K, Pf = 3.44738E+06 Pa, " 6.03624E-01 6.02236E-01 6.01838E-O1 6.0 1633E-O1 6.01453E-01 6.01373E-03 6.01312E-01 d ),,p = 26.627 kg/m3, p = 1.1310E-05 Pa-s, L i 3.33180E-O2 9.96853E-02 1.65899E-01 2.3 1900E-01 3.30341E-01 3.95480E-01 4.60139E-0 1 := 1.3622, p,, = 0.70817 kg/m3 2, 4.70480E-02 1.40765E-01 2.34265E-01 3.27464E-01 4.6647 IBO1 5.58454E-01 6.49758E-O1 Y 3.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95001E-01 9.92801E-01 9.90202E-01 CD - 2 2 2 2 2 2 2 !j= 338.71 K, Pf = 6.89476E+06 Pa, 7 , -d 5.03515E-01 6.02180E-O1 6.01796E-01 6.01597E-01 6.01423E-O1 6.01346E-O1 6.01287E-01 + p = 44.168 kg/m3, p = 1.3650E-05 Pa-s, 7111 4.29848E-02 1.28645E-01 2.14185E-01 2.99580E-01 4.27301M1 5.12130E-0 1 5.96647E-01 := 1.3622,p,, = 0.70817 kg/m3 2, 5.06984E-O2 1.81658E-O1 3.02448E-O 1 k23034E-0 I 6.03388E-01 7.23 174E-O1 8.42519E-OI f 3.99975E-O1 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-01 9.96400E-01 9.95101E-01 CD - 2 2 2 2 2 2 9 = 333.15 K, Pf = 1.37895E+07 Pa, r7 -d 5.03329E-O1 5.02082E-O1 6.01723E-01 6.01536E-01 6.01372E-O 1 6.01299E-01 6.01243E-01 J ~ = 520.04 kg/m3, p = 4.171OE-O5 , ~ Pa-s, Ill1 1.47426E-01 4.41370E-01 7.35175E-O1 1.02893E+ûC 1.46949E+OC 1.76318E+OC 2.05685E+00 := -1.0, p,, = 1.86131 kg/m3 3" 7.92057E-02 2.37129E-O1 3.94977E-01 5.52796E-O1 7.89494E-01 9.47278E-0 I I. 10505E+00 I .00000E+00 1.00000E+00 1.00000E+00 1.OOOOOE+00 I.OOOOOE+OC 1.OOOOOE+OC i.OOOOOE+OO CD - 1 2 2 2 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * L 4 - 3 * 4 72 0732290 0506403 3 4 T SECTION &CONCENTRIC, SQUAREEDGED ORIFICE METERS, PART &BACKGROUND 117 Table 4-C-&Selected Round Robin Test Results Matrix-SI Units (D, = 0.073670 m, q = 0.00001 116 m/rn-K, d, = 0.029964 m, al = 0.00001 665 m/m-K) - Pa i Cell Value Flow Conditions 559.5 5035.6 13987.7 27415. 55950.8 80569. I 109663.5 Tf=255.37 K, P f = 1.01325E+05Pa, cd 1.98290E+00 1.39637E+00 i .20890E+00 1.10787E+OO i.o1726~+0a9.76749E-01 9.45276E-01 pf,p= 932.26 kg/m3, p = 1.8650 Pa-s, 41 11 1.44626E+00 3.05544E+00 +.40871E+00 5.65637E+00 7.41964E+W 8.54897E+OC 9.65242E+OO k=-1.0, pb=910.83 kg/m3 Qv 1.58785E-03 3.35456E-03 1.84032E-03 5.210i 3E-03 B.14602E-03 9.38591E-03 1.05974E-02 Y 1.00000E+00 1.OOOOOE+OO I.OMXX)E+OO I .000ûOE+00 l.OooOoE+OO 1.00000E+OC 1.000oOE+00 - ICD -5 4 4 4 4 Tf=293.15 K, Pf= 1.01325E+05Pa, c d 1.051550+00 8.41232E-01 7.77967E-01 7.45 12OE-0 1 7.16547E-01 7.04057E-01 6.94472E-01 pf,p= 907.60 kg/m3,p = 2.1220E-01 Pa-s, 41 11 7.577 16E-01 1.81852E+00 L.80293E+00 3.7584lE+OO 5.16327E+OC 6.08792E+OC 7.00588E+00 k = -1.0, pb = 910.83 kg/m3 Qv 8.31896E-04 1.99656E-03 3.07733E-03 t. 12636E-03 5.66875E-O3 6.68393E-O3 7.69176E-03 Y I.OOOOOE+OO 1.00000E+00 LO O O + O 1.00000E+00 l.OOOOOE+OC l.OOOOOE+OC 1.00000E+00 . O O EO - ICD -4 -3 -3 -3 -3 q= 353.15 K, Pf= 1.01325E+05Pa, G 7.04769E-O1 6.50983E-01 5.34050E-01 5.24074E-01 6.17209E-01 6.15227E-01 6.13737E-O1 pf,p= 868.43 kg/m3,p = 1.7490E-02 Pas, 41 11 4.97759E-01 1.37933E+00 2.23908E+00 3.08539~+00~ . 3 5 9 2 i ~ + o5.21426E+OC 6.06856E+OO a k = -1.0, pb = 910.83 kg/m3 Q" 5.4649OE-3-04 1.51436E-03 1.45828E-03 3.38745E-03 4.78597E-03 5.72473E-03 6.66267E-03 Y 1.00000E+O( 1.00000E+00 1.00000E+OO 1.00000E+OO 1.00000E+OC l.OooOoE+O( 1.00000E+00 - ICD -3 -3 -3 -3 3 3 2 Tf= 288.71 K, P f = 1.01325E+05Pa, cd 6.12758E-01 6.06179E-01 5.04415E-01 5.03532E-01 6.02779E-01 6.02454E-01 6.02206E-O I = pf,p 999.01 kg/m3, p = 1.199OE-O3 Pa-s, 4m 4.63168E-01 1.37460E+00 2.28433E+00 3.19338E+OO 4.55629E+OC 5.46459E+oC 6.37273E+00 k = -1 .o, pb = 999.01 kg/m3 Qv 4.63627E44 1.37596503 2.28659E-03 3.19655E-03 4.56080E-03 5.47001E-03 6.37905E-03 Y l.OooOoE+O( 1.00000E+00 l.o0000E+OO 1.OOMH)E+OO l.OOOOOE+OC l.ooOoOE+O( 1.00000E+00 ICD - 2 2 2 2 2 2 Tf= 372.04 K, P f = 1.01325E+05 Pa, c d 6.050 19E-0 1 6.02409E-O1 5.01682E-01 6.013 1OE-01 6.00989E-01 6.00848E-01 6.00740E-01 pf,p= 941.75 kg/m3, p = 2.8250E-04 Pa-s, 41 11 4.45264E-01 1.33004E+OO 2.21405E+00 3.09776E+OC 4.42301E+oC 5.30636E+O( 6.18964E+00 k = -1.0, pb = 999.01 kg/m3 Qv 4.45705E-04 1.33136E-03 2.21625E-03 3.10083E-03 4.42739E-03 5.31 162E-01 6.19578E-03 Y 1.000M)E+00 1.00000E+OO 1.OOOOOE+00 1.000OOE+00 1.00000E+OC 1.OOOOOE+O( l.OOOOOE+OO ICD - 2 2 2 2 2 2 2 Tf= 255.37 K, Pf = 1.01325E+05Pa, c d 6.04938E-01 6.02388E-01 5.0 1699E-O1 6.0 1370E-O1 6.01125E-01 6.0 1052E-O1 6.01032E-01 - pbp -2.1181 kg/m3, p = 1.3070E-05 Pa-s, 91 11 2.09942E-O2 6.18353E-02 1.00003E-01 1.33762E-01 1.72301E-01 1.87367E-01 1.9 1884E-01 k = 1.3198, & = 1.86131 kg/m3 Qv 1.12793E-02 3.322 14E-02 5.37273E-02 7.18644E-02 9.25695E-02 1.00664E-O3 1.03091E-01 Y 9.98245E-01 9.8420 lE-0 1 3.56114E-01 9.13983E-01 8.24456E-O 1 7.472 16E-01 6.55933E-01 ICD 2 2 2 2 2 2 2 T - 283.15 Pf = 6.89476E+05 Pa, 6.03248E-01 6.01510E-01 5.01019E-01 6.00768E-O1 6.00552E-01 6.00459E-O1 6.00388E-01 di=4.983 1K,kg/m3, p = 1.0670E-05 Pa-s, k = 1.3622, pb=0.70817 kg/m3 cd 41 11 3.21900E-02 9.61002E-02 4.54552E-02 1.35702E=Ol 1.59394E-01 2.21712E-01 3.12532E-01 3.70750E-01 4.26660E-01 2.25079E-01 3.13078E-01 4.41323E-01 5.23532E-03 6.02482E-0 1 Qv Y 9.99750E-01 9.97750E-01 3.93751E-01 9.87752E-O1 9.75005E-01 9.64007E-01 9.5 1OO9E-O1 ICD _. 2 2 2 2 2 2 12 Tf= 255.37 K, Pf = 6.89476E+06 Pa, Gf 6.03245E-01 6.01506E-01 6.01012E-01 6.00758E-01 6.00536E-01 6.00438E-01 6.00363E-01 P,,~= 1042.35 kg/m3, p = 1S430E-04 Pa-s QI 4.65242E-01 1.39172E+00 2.31762E+W 3.24329E+OC 4.63 156E+OC k=-1.0, p b = 1.86131 kg/m3 Qv 2.49954E-01 7.47708E-01 1.24515E+OO 1.74248E-M 2.48833E+OC Y l.O0000E+O( l.OOOOOE+OO l.OOOOOE+W 1.00000E+OC l.OOOOOE+oC ICD - 2 2 2 2 2 Tf=255.37 K, Pf = 1.37895E+06Pa, c d 6.02001E-01 6.00531E-01 6.00360E-01 6.00210E-01 pf,p= 32.783 kg/m3, p = 1.3520E-05 Pa-s, 9ni 8.23273E-0; 4.09363E-01 5.7 1165E-01 8.10346E-01 k = 1.3198, pb= 1.86131 kg/m3 Qv 2.19933E-01 3.06862E-01 4.35364E-01 Y 9.96775E-01 9.93680E-01 9.87101E-01 ICD - 2 2 2 I t Tf=283.15 K, Pf = 3.44738E+06 Pa, c d 6.00491E-O1 6.00326E-01 6.00181E-01 6.00117E-0l I6.00067E-01 p,,=26.627 kg/m3,p= 1.1310E-05Pa-s, 4ni 3.69982E-01 5.17211E-01 7.36807E-01 8.82119E-01 1.02636E+OC k = 1.3622, & = 0.70817 kg/m3 Qv 5.22449E-01 7.30349E-01 1.04044E+O[ i .24563~+00I .4493i ~ + o a Y 9.98750E-01 9.97550E-01 9.95001E-01 9.9280 1E-0 1 9.90202E-01 ICD - 2 2 2 Tf= 338.71 K,Pf = 6.89476E+06 Pa, cd 6.00459E-01 6.00300E-01 6.00160E-01 6.00097E-01 6.00049E-01 pf,p= 44.168 kg/m3,p = 1.3650E-05 Pa-s, 4m 4.77676E-01 6.68168E-01 9.53084E-01 i.i4232~+o0 1.33086~+oa k = 1.3622, & =0.70817 k g h 3 , Qv 6.74522E-0 1 9.43514E-01 1.34584E+O( 1.61306E+00 1.87930B+OC Y 9.99375E-01 9.98775E-01 9.97500E-03 9.96401E-01 9.95101E-01 ICD - 2 2 2 L I Tf= 333.15 K, Pf = 1.37895E+07Pa, c d 6.00400E-01 6.00250E-01 6.001 18E-01 6.Ml059E-01 I6.00013E-01 pfP= 520.04 kg/m3, p = 4.1710E-05 Pa-s, 9ni 1.63963E+oC 2.29491E+O( 3.27772E+O( k=-1.0, pb= 1.86131 kg/m3 Qv 8.80901E-01 1.23295E+O( 1.76097E+O( Y 1.00000E+OC 1.00000E+OC 1.00000E+O( ICD 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I M P M S * L 4 - 3 - 4 9 2 W 0732290 050b404 286 W 118 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units (D, = 0.102270 m, c = 0.000011 16 m/m-K, d, = 0.041672 m, al = 0.00001665 m/m-K) + Cell Pa Flow Conditions Value ~ 559.5 5035.6 13987.7 I 27415. I 55950.8 I 80569.1 109663.5 Ti= 255.37 K, P/ = I .O l325E+05 Pa, Cd I .2709 I E+O( 1.77644E+O( I , I 1027E+OO I .02406E+ûC 9.47065E-0 I 9. I2766E-OI 8.86185E-01 pl,/,= 932.26 kglm?, p = 1.8650 Pas, 91 11 2.50628E+0( 5.37924E+O( 7.83214E+00 1.01136E+OI I .33617E+01 I .54534E+Oi I .75039E+OI k=-I.O, p,,=910.83 kg/m3 Q,. 2.75 165E-O: 5.90586E-0: 8.59890E-03 I . I 1037E-02 I .46699E-02 I .92 I76E-O2 I .69663E-O2 Y I .00000E+O( I .OOOOOE+O( I ,00000E-cOO I .OOOOOE+OO I .00000E+00 I .00000E+OC I .00000E+00 ICD -5 - -5 -4 -4 -4 -4 q=293.15K, P f = 1.01325E+05Pa, 9.76 I59E-O I 7.98803E-0 I 7.461 IOE-01 7.18886E-01 6.9524 I EO I 6.84894E-03 6.76935E-01 - pl,,J= 907.60 kg/m3, p = 2.122OE-O1 Pa-s, 9/11 1.36060E+O( 3.34023E+O( 5.19980E+00 7.01410E+Oû 9.69056E+OC I. 14556E+01 I .32096E+01 k=-1.0, p,>=910.83kglm Q,. 1.49381E-O? 3.66723E-0: 5.70886E-O3 7.70078E-03 I ,06393E-02 1.25771E-02 1.45028E-O2 Y I .OOMH)E+O( 1.00000E+O( 1.000ûOE+00 1.00000E+00 1.00000E+OC 1.00000E+OC 1 .OOOOOE+00 ICD -4 4 -3 -3 -3 -3 . Tf=353.15K,Pf= 1.01325E+05Pa, c, 6.85485E-01 6.4002 I E-0 i 6.24525E-0 I 6.17802E-0 I 6.14082E-01 6. I2507E-OI 6.1 132OE-O I 4.26608E+00 5.90822E+00 8.38949E+OC 1.00416E+OI 1.16925E+OI pl,ll = 868.43 kglm, p = 1.749OE-02 Pa-s, q1J1 9.36492E-O 1 2.623 17E+O( k = -I .O, p,, = 9 10.83 kg/m3 Q,. 1.02817E-02 2.87998E-0: 4.68373E-O3 6.48664E-03 9.2 1082E-03 1.10246E-02 1.28371E 4 2 Y I .00000E+O( 1.00000E+O( I .OOOOOE+OO I .00000E+00 I .00000E+Oa 1. O O E O I .o0o00E+00 O O O+ C ICD 2 T f = 288.71 K, Pf = 1.01325E+05 Pa, ,,,, i = 999.0 I kg/m3, p = I . 1990E-03 Pa-s, c,, 6.10538E-01 6.05266E-01 8.92681E-01 2.65494E+O( 6.0384OE-O1 6.03 122E-01 6.02508E-01 6.02242E-O I 6.02039E-O 1 4.41447E+00 6.1729IE+00 8.80947E+00 1.05667E+01 1.23236E+01 qiri k=-1.0, pIJ=999.O1kglm" QI. 8.93565E-04 2.65758E-O? 4.41884E-03 6.17903E-O3 8.81820E-03 1.05772E-02 1.23359E-02 Y 1 .OOOOOE+(H I .OOOOOE+O( I.OOOOOE+OO I.OOOOOE+OO 1.OOOOOE+o(1 I.OOOOOE+OC I .00000E+00 ICD 2 - 2 2 2 2 2 2 Tr= 372.04 K, PJ = 1.01325E+05Pa, G 6.04330E-01 6.02206E-01 6.01609E-01 6.01302E-01 6.01035E-01 6.009 18E-01 6.00828E-01 &,= 94 I .75 kg/m3. p = 2.8250E-04 Pa-s, 91 11 8.603 12E-O1 2.57 189E+O( 4.28222E+00 5.99205E+OO 8.55628E+ûC 1.02655E+01 I . 19747E+01 k = -1 .O, p,, = 999.01 kglm QI. 8.6 I 165E-O4 2.57444E-02 4.28647E-03 5.99799E-03 8.56476E-03 1.02757E-02 I . I9865E-O2 Y 1.00000E+O( 1.00000E+O( 1.00000E+00 1.00000E+00 1.OOOOOE+W 1.00000E+OC 1.OOOOOE+00 ICD 2 2 i"f= 255.37 K, PJ,= 1.01325E+05 Pa, Cd 6.04264E-O1 6.02188E-01 6.0 1622E-01 6.0 135OE-O 1 6.0 1 147E-01 6.0 1087E-O1 6.0 1070E-0 1 p,,,> = 2.1 18 I kg/m, p = I ,307OE-05 Pa-s, 41 11 4.05647E-O2 I. I957 I E-01 1.93414E-0 I 2.58729E-O1 3.33289E-01 3.62433E-O1 3.71161E-01 k = 1.3198, p,,= 1.86131 kg/m3 Q,. 2.17936E-02 6.4240 1E-O2 1.03913E-01 1.39004E-O1 1.79062EXI 1.94719E-O1 I .99409E-01 Y 9.98244E-O1 9.84 198E-O 1 9.56107E-O1 9.13969E-O1 8.24427E-O1 7.47 174E-01 6.55876E-01 [CD 2 - 2 2 2 2 2 2 T/= 283.15 K, P l = 6.89476E+05 Pa, Cd 6.02891E-01 6.01466E-O 1 6.01060E-0I 6.0085 1E-01 6.0067OE-O1 6.00592E-01 6.00533E-01 of,/,,, 4.983 I kg/m, p = 1.0670E-05 Pa-s, = Lh 6.22296E-O2 1.85877E-3-01 3.08344E-O1 4.28926E-01 6.04660E-01 7.17312E-01 8.25498E-01 k = I .3622, p/>= 0.708 17 kglm" QI. 8.78739E-O2 2.62475E-O1 4.35409E-O1 6.05682E-01 8.53834E-01 1.01291E+OC 1.16568E+00 Y 9.99750E-01 9.9775OE-O1 9.9375OE-O I 9.87750E-01 9.75001E-01 9.64001E-01 9.51001E-01 ICD 2 - 2 2 2 2 2 2 TJ= 255.37 K, P/ = 6.89476E+06 Pa, c, 6.02889KOI 6.01463E-01 6.0 1054E-O 1 6.00842E-01 6.00656E-01 6.00574E-01 6.00511E-01 4.48337E+O( 6.27451E+00 8.96082E+00 l.O7515E+Ol I .25421E+01 = 1042.35 kg/m3,p = 1S43OE-O4 Pa-s 7111 8.99406E-01 2.69186E+OC k=-i.û, pi,1.86131 kg/m3 QI. 4.8321 1E-O1 1.44622E+OC 2.40872E+O( 3-37102E+ûO 4.8 1425E+00 5.77631E+OC 6.73832E+00 Y 1.00000E+OC 1. O O E O O O O+ C l.OOOOOE+O( 1.00000E+00 1.OOOOOE+00 l.OOOOOE+OO 1.00OOOE+OO [CD 2 - 2 2 2 2 2 2 ïj=255.37 K, PJ = 1.37895E+06Pa, Cd 6.0 1871E-O1 6.00928E-01 6.00652E-01 6.00509E-01 6.00383E-O1 6.00327E-01 6.00285E-01 = 32.783 kg/m3, p = 1.352OE-O5 Pa-s, ?,il 1.59215E-01 4.76408E-01 7.92007E-01 1.105 IOE+OO i.56793~+001.87053~+oa 2.16721E+00 k = 1.3198, pi,= 1.86131 kg/m3 QI. 8.55391E-02 2.55953E-01 4.2551 IE-01 5.93723E-01 8.42382E-01 1.00495E+00 1.16435E+00 Y 9.99871E-O1 9.98839E-01 9.96775E-O1 9.93678E-01 9.87099E-01 9.81422E-01 9.74714E-01 [CD 2 2 2 2 2 2 2 r/= 283.15 K, Pf = 3.44738E+06 Pa, 6.0 1788E-O 1 6.00883E-01 6.006 19E-01 6.00480E-01 6.00358E-01 6.00304E-01 6.00262E-01 o,+ = 26.627 kg/m3, p = 1.131OE-05 Pas, 1.43615E-01 4.30030E-O 1 7.15826E-01 1.00072E+00 1.42566E+00 1.70685E+00 1.98597E+00 k = 1.3622, pr,= 0.70817 kg/m3 2.02797E-01 6.07241E-OI 1.01081E+OC 1.41311E+OO 2.01316E+00 2.41023E+OO 2.80437E+00 9.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95000E-01 9.92800E-01 9.90200E-01 2 2 2 ïj= 338.71 K, Pf = 6.89476E+06 Pa, 6.0 172OE-O 1 6.00849E-01 6.00247E-01 of./, = 44.168 kg/m3, p = 1.365OE-05 Pa-s, I ,85296E-O1 5.54977E-01 2.57519E+00 i = 1.3622, pr,= 0.708 17 kg/m3 2.6 1654E-01 7.83678E-O1 3.63640E+00 9.99975E-01 9.99775E-01 9.95100E-01 2 2 I I I 2 rf= 333.15 K, Pf = 1.37895E+07 Pa, 6.0 1600E-O1 6.00784E-01 6.005438-01 I 6.00417E-01 I 6.00305E-01 I 6.00255E-O1 6.00216E-0 1 31,1> 520.04 kg/m3, p = = 4.371OE-O5 Pa-s, 6.35584M1 1.90419E+OO 8.87777E+00 ¿=-leo, pb= 1.86131 kg/m3 3.41471E-01 1.02303E+OC 6.76964E+00 1.00000E+OC I .00000E+Oa 1.OOOOOE+00 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*14.3.4 92 0732290 0506405 1 1 2 SECTION 3-CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 119 Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units (O, = 0.202729 m, a2= 0.00001116 m/m-K, d, = 0.082550 m, al = 0.00001 665 m/m-K) - Cell Pa Flow Conditions lalue 5035.6 13987.7 27415. 55950.8 80569.1 109663.5 - r- Tf= 255.37 K, Pf = 1.01325E+05 Pa, "d 8.87250E-01 5.33318E-01 7.91133E-01 = 932.26 kg/m3, y = 1.8650 Pa-s, liir 3.4384OE+Ol g.6 1342E+01 6.13182E+01 k=-1.0, pb=910.83kg/m3 2, 3.77502E-02 5.06507E-02 5.90433E-02 6.73213E-02 Y 1.00000E+00 l.OOOOOE+OO 1.00000E+00 iCD - -4 4 4 Tf= 293.15 K, Pf = 1.01325E+05 Pa, c d 8.53630E-01 7.31434E-01 6.95889E-01 6.77546E-01 6.61455E-01 6.48679E-01 pf,p= 907.60 kg/m3, y = 2.1220E-01 Pa-s, ?Il, 4.66884E+OO 1.20016E+01 1.90306E+Ol 2.59405E+Ol 3.61778E+01 4.96707E+O1 k =-1.0, p,, = 910.83 kg/m3 QV 5.12592E-03 1.31766E-02 2.08937E-02 2.84801E-02 3.97196E-02 4.7 1471E 4 2 5.45335E-02 Y 1.00000E+00 1.OOOOOE+OO 1.00000E+00 l.O0000E+OO 1.00000E+OO 1.00000E+OO 1.OOOOOE+00 [CD - d I -2 - l -2 - I -? - -3 - I -? - Tf=353.15 K, P f = I.O1325E+05 Pa, c d 6.54698E-O1 I6.20169E-01 I6.14514E-01 6.11743E-01 I 6.09423E-01 I 6.08435E-01 6.07688E-01 pf,p= 868.43 kg/m3, y = 1.7490E-02 Pa-s, Ill1 3.50975E+OC 9.97402E+00 1.64717E+Ol 2.29565E+01 3.26706E+OI 3.9141 1E+O1 4.56086E+01 k = -1.0, p,, = 910.83 kg/m3 Q V 3.85335E-03 1.09505E-02 1.80843E-02 2.52039E42 3.58690E-02 4.29730E-02 5.00737E-O2 Y l.OOOOOE+OC l.O0000E+OO 1.OOOOOE+OO 1.OOOOOE+OO 1.00000E+C€ l.O0000E+00 l.OOOOOE+OO [CD - -3 -3 2 2 2 2 2 Tf= 288.71 K, Pf = 1.01325E+05 Pa, c d 6.07194E-01 6.03831E-01 6.02905E-01 6.02434E-01 6.02028E-01 6.0185 1E-01 6.01715E-01 pf.p 999.01 kg/m3, y = 1.199OE-O3 Pa-s, = BI 3.48369B+OC l.O3933E+Ol 1.72955E+01 2.41948E+OI 3.45408E+01 4.14367E+01 4.83319E+OI k=-1.0, pb=999.01 kg/m3 Qv 3.48714E-03 1.04036E-02 1.73127E-02 2.42188E-02 3.45750E-02 4.14778E-02 4.83798E-02 Y l.OOOOOE+OC l.OOOOOE+OO 1.00000E+00 l.OOOOOE+OO 1.00000E+OC 1.00000E+OO 1.00000E+00 [CD - 2 2 2 2 2 2 2 T - 372.04 K, Pf = 1.01325E+05Pa, 6.03226E-01 6.01828E-01 6.01427E-01 6.01219E-01 6.0 1036E-O1 6.00956E-01 6.00893E-01 di= 941.75 kg/m3, y = 2.8250E-04 Pa-s. k = -1 .O, pb = 999.01 kgím3 c d 71 11 3.36970E+oC I.O0858E+Ol 1.67983E+Ol 2.35096E+OI 3.37303E-03 1.00958E-02 1.68150E-02 2.35329E-02 3.35749E+O 1 3.36082E-02 4.02844E+01 4.69936E+O1 4.03244E-02 4.70402E-02 Q V Y l.OOOOOE+OC 1.OOOOOE+OO l.OOOOOE+OO 1.00000E+00 1.00000E+OC 1.oooOOE+00 1.00000E+00 [CD - 2 2 2 2 2 2 2 Tf= 255.37 K, Pf = 1.01325E+05Pa, cd 6.03 I8OE-O 1 6.01814E-01 6.01434E-01 6.01250E-01 6.01 112E-01 6.01070E-01 6.01059E-01 pf,p= 2.1 18 1 kg/m3, y = I ,307OE-05 Pa-s. BI 1.58890E-01 4.68904E-01 7.58722E-01 I.O1509E+OO 1.30777E+OC 1.42218E+00 1.45646E+00 k = 1.3198, pb = 1.86131 kg/m3 Qv 8.53648E-02 2.51922E-01 4.07628E-01 5.45362E-01 7.02605E-01 7.64074E-01 7.82490E-01 Y 9.98244E-01 9.84199E-01 9.56109E-01 9.13974E-01 8.24438E-01 7.47 190E-0 1 6.55898E-O 1 iCD - 2 2 2 2 2 2 2 Tf= 283.15 K, Pf = 6.89476E+05 Pa, c d 6.0228lE-01 6.0 l329E-O1 6.01052E-0 1 6.00908E-O1 6.00783E-01 6.00728E-01 6.00687E-01 pf,p= 4.983 I kg/rn3, y = 1.0670E-05 Pa-s. 9111 2.43942E-01 7.29215E-01 1.20993E+00 1.68327E+OC 2.373 13E+OC 2.81538E+00 3.24009E+W k = 1.3622, pb = 0.70817 kg/m3 Q, 3.44468E-01 l.O2972E+m 1.70852E+00 2.37692E+O€ 3.35108E+OC 3.97557E+00 4.57530E+00 Y 9.99750E-01 9.97750E-01 9.9375 1E-01 9.87751E-01 9.75002E-01 9.64003E-O1 9.51004E-01 ICD - 2 2 2 2 2 2 2 Tf= 255.37 K, Pf = 6.89476E+06 Pa, cd 6.02279E-01 6.01326E-O1 6.01048E-01 6.00902E-01 6.00773E-O1 6.007 l6E-O1 6.0067 IE-01 pf,p= 1042.35 kg/m3, y = 1.5430E-04 Pa-! &Il 3.52570E+o( l.O5605E+Ol 1.75926E+OI 2.46236E+01 3.5 1691E+01 4.21988E+01 4.92283E+01 k=-1.0, pb= 1.86131 kg/m3 Qv Y ICD - I I l.OOOOOE+OO I.OOOOOE+OO 1.00000E+00 I.OOOOOE+O(: I 1.894208+00 5.673U7E+OO 9.45 I7 I E+OO I .32292E+OI 2 1.88948E+OI I .00000E+OC 2.26716E+01 2.64482E+01 1 .00000E+00 1.00000E+OO Tf= 255.37 K, Pf = 1.37895E+06Pa, c d 6.01602E-01 6.00961E-01 6.00770E-01 6.00670E-01 6.0058 1E-01 pf,p= 32.783 kg/m3, p= 1.3520E-05 Pa-s 4"l 6.24479E-01 1.86953E+00 3.10845E+OO ~ 4.33758E+OC 6.15461E+O( k = 1.3198, pb= 1.86131 kg/m3 Q, 3.35505E-01 1.00442E+00 1.67003E+OO 2.33039E+OC 3.30660E+0( Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93679E-01 9.87100E-01 ICD - 2 2 2 2 2 Tf= 283.15 K, Pf = 3.44738E+06 Pa, cd 6.01546E-01 6.00931E-01 6.00747E-01 6.00650E-01 6.00564E-01 pf,p 26.627 kg/m3, y = 1.13IOE-05 Pa-s = 4111 5.63319E-01 1.68757E+OO 2.80950E+OC 3.92794E+OC 5.59619E+O( k = 1.3622, pb = 0.708 17 kg/m3 Qv 7.95457E-01 2.38300E+00 3.96727E+OC 5.54660E+OC 7.90233E+O( Y 9.99950E-01 9.99550E-01 9.98750E-01 9.97550E-01 9.95000E-01 ICD - 2 2 2 2 2 Tf= 338.71 K, Pf = 6.89476E+06 Pa, c d 6.01501E-01 6.00908E-01 6.00730E-01 6.00636E-01 6.00552E-01 pf,p= 44.168 kg/m3, y = 1.3650E-05 Pa-s 4111 7.26836E-01 2.17794E+OO 3.62737E+OC 5.07447E+OC 7.23898E+O( k = 1.3622, pb = 0.70817 kg/m3 Qv l.O2636E+OO 3.07545E+OO 5.12217E+OC 7.16561E+OC 1.02221E+03 Y 9.99975E-01 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-03 ICD - i! 2 2 2 2 Tf= 333.15 K, Pf = 1.37895E+07Pa, cd 6.01420E-01 6.00863E-01 6.00695E-01 6.00606E-O1 6.00526E-01 pf,p= 520.04 kg/m3, p=4.171OE-05 Pa-s 4m 2.49329E+00 7.47300E+00 1.245 l5E+01 1.74295E+03 2.4896OE+Ol k = -1.0, pb = 1.86131 kg/m3 Q" 1.33953E+00 4.01491E+00 6.68964E+M 9.36411E+O( 1.33755E+OI Y I.OOOOOE+00 1.00000E+00 1.00000E+OC 1.00000E+O( 1.00OOOE+01 ICD - 2 2 2 2 2 12COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • - - __ __ - A P I MPMS*LY.3.Y 7 2 W 0732290 0506406 057 W 120 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units (Dm= 0.363513 m, CS = 0.00001116 m/m-K, dm= 0.148034 m, al = 0.00001665 m/m-K) Cell Valui I Flow Conditions Tf = 255.37 K, Pf = 1 .O1 325E+05 Pa, prp= 932.26 kg/m3, p = 1.8650 Pa-s, - Cd 9nr 7 559.5 5035.6 13987.7 8.48644E-O1 55950.8 7.64763E-OI 2. I5677E+OI 4.98779E+O 1 7.55438E+Ol I .O0 I 89E+02 1.36154E+O: 80569.1 7.47581E-O1 1.59714E+O: 109663.5 7.34386E-01 i .83044E+0: k = -1.0, p,, = 910.83 kg/m3 QV 2.36792E-O2 5.47609E-02 8.29395E-02 i ,09997E-01 i .49483E-01 1.7535OE-O1 2.00964E-0 i Y 1 . O O E O I . O O E O I . O O E O I . OOOOE+OO 1 . O O E O O O O+ C O O O+ C O O O+ C O O O O+ E 1 .OOOOOE+O( 1.00000E+O( ICD - -5 -4 4 -3 -3 -3 Tf= 293.15 K, Pf = i.O1325E+O5 Pa, c d 7.79472E-01 6.9171 IE-O1 6.6621 1E-01 6.52776E-01 6.40547E-01 6.34849E-01 6.3022280 I pf,,> 907.60 kg/m3, p = 2. I220E-0 I Pa-s, = 9nr 1.37098E+01 3.64989E+O1 5.85889E+Oi I . 12664E+Oî 1.33994E+O; i .55 187E+O: k = - 1 . 0 , pb=9i0.83 kg/m3 Qv 1.50520E-02 4.00722E-02 6.43247E-02 8.82386E-02 I .23694E-0 1 1.47112E-01 1.70379E-01 Y 1.00000E+00 I .00OOOE+W l.O0000E+Oû i .00000E+OC 1.00000E+O( 1.OOOOOE+Gí ICD -3 -3 -3 -3 i Tf=353.15K,P/= 1.01325E+05Pa, c d 6.35173E-O1 6.14068E-01 6.10294E-01 6.08432E-0 1 6.06863E-01 6.06192E-01 6.05684E-01 pf,/,= 868.43 kg/m3, p = I ,749OE-02 Pa-s, %Il 1 .O950 1E+01 3.1759 1E+O1 5.26063E+01 7.34242E+01 i .O462 1 E+Oî 1.25407E+0; 1.46185E+O: k = - 1 . 0 , pb=910.83 kg/m3 Qv 1.20221E-O2 3.48683E-02 5.77565E-02 8.06 i 24E-O2 i. 14864E-3-01 1.37684E-0 1 1.60497E-01 Y 1.00000E+00 i . O O E O 1.00000E+OC I .000OOE+00 I.OOOOOE+OC O O O+ O i .00000E+O( 1.OOOOOE+ûí ICD - 2 2 2 2 Tf= 288.71 K, Pf = 1.01325E+05Pa, c d 6.02375E-01 6.02042E-01 6.01753E-01 6.0 1626E-0 I 6.01528E-01 P,,~= 999.01 kg/m3, p = 1.1990E-03 Pa-s, 41 11 1.1 1688E+Oi 3.33783E+01 5.55704E+01 7.77555E+Ol I . 11026E+O2 1.33203E+O; I .55378E+O: k = - 1 . 0 , pb=999.01 kg/m3 Qv 1.1 1799E-02 3.341 14E-02 5.56255E-û2 7.78326E-02 1.1 I 136E-01 1.33335E-03 1.55532E-01 Y 1.OOOOOE+00 1 .OûOOOE+OC i .OOOOOE+C€ i .OOOOOE+00 i . O O E O O O O+ C i .00000E+O( l.OOOOOE+O( ICD - 2 2 2 2 Tf= 372.04 K, Pf = 1.01325E+05Pa, c d 6.02603E-01 6.0161 IE-O1 6.01321E-03 6.01 170E-01 6.01036E-O1 6.00977E-01 6.0093 i E X I pf,p= 941.75 kg/m3, p = 2.8250E-04 Pa-s, 9r>i 3.08251E+01 3.24222E+01 5.40 Iû9E+O1 7.55963Et.01 1 .O797iE+O2 I .29552E+O; 1.5 1 132E+O: k = -1 .O, pb = 999.01 kg/m3 Qv 1.08358E-02 3.24544E-02 5.40644E-02 7.567 12E-02 1.08078E-01 i .29680E-01 i .5 1282E-01 Y 1.00000E+00 l.OOOOOE+OO 1. O O E O 1.00000E+OC 1. O O E O O O O+ O O O O+ C I .OOOOOE+OC I .00000E+O( ICD - 2 - 2 2 2 2 2 2 T = 255.37 K, Pf = 1.01325E+05 Pa, f c d 6.02569E-O 1 6.01599E-01 6.01325E-01 6.0 119lE-0 1 6.01090E-01 6.01060E-01 6.01051E-O1 p,+ = 2.1 181 kg/m3, p = 1.307OE-O5 Pa-s, 4m 5.10444E-O1 1.50737E+00 2.43947E+00 3.26402E+00 4.20537E+OC 4.57337E+oE 4.68362B+O( k = 1.3198, pb= 1.86131 kg/m3 Q" 2.74239E-01 8.09845E-01 1.31062E+OC 1.75361E+OC 2.25936E+OC 2.45707E+OC 2.5 1 6 3 0 E 4 Y 9.98244E-01 9.84199E-O1 9.56109E-01 9.13974E-O1 8.24436E-01 7.47188E-01 6.55895E-3-01 ICD - 2 2 2 2 2 2 2 Tf= 283.15 K, Pf = 6.89476E+05 Pa, c d 6.0 1933E-Ol 6.0 1249E-01 6.01047E-O1 6.0094 1E-O1 6.00848E-01 6.00807E-01 6.00776E-01 pf,p= 4.983 1 kg/m3, p = 1.0670E-05 Pa-s, gin 7.84020E-01 2.34471E+00 3.89086E+OO 5.4 1337E+OC 7.63238E+M 9.05492E+OC 1.04211E+OI k = 1.3622, pb= 0.70817 kg/m3 Qv 1.1071lE+OO 3.3 lO94E+OO 5.49425E+Oû 7.64416E+OO l.O7776E+Oi i .27864E+OI 1.47155E+Oi Y 9.99750E-ûl 9.97750E-01 P.9375OE-O1 9.8775 1 5 0 1 9.75002E-01 9.64003E-01 9.5 1OO4E-01 ICD - 2 2 2 2 2 2 2 T = 255.37 K, Pf = 6.89476E+06 Pa, f cd 6.01932E-01 6.01247E-01 5.0 1043E-O1 6.00936E-01 6.00840E-01 6.00797E-O1 6.00764E-01 P,,~= 1042.35 kg/m3, p = 1.5430E-04 Pa-s, 4 1 n lL13315E+01 3.39560E+01 5.65740E+01 1.35722EtO2 1.58334E+Oí k=-1.0, pb= 1.86131 kg/m3 Qv 6.08789E+00 1.82431E+01 3.03947E+01 7.29 i75E+OI 8.50657E+03 Y 1.00OOOE+00 l.OOOOOE+OO l.OOOOOEtO0 i .OOOOOE+OC 1.00000E+O( ICD - 2 2 L 2 2 T p 255.37 K,Pf = 1.37895E+06Pa, cd 6.01446E-01 6.00979E-01 5.00838E-01 6.00666E-01 6.00643E-01 pf,p = 32.783 kg/m3, p = 1.3520E-05 Pa-s, 4ni 2.00769E+00 6.01224E+ûO 3.99732E+OO 2.36173E+Ol 2.73641E+03 k = 1.3198, p,,= 1.86131 kg/m3 Qv 1.07864E+00 3.2301 1E+00 5.37112E+3+00 1.26885E+01 1.47015E+Oi Y 9.99871E-O1 9.98839E-01 3.96775E-01 9.8 1423E-01 9.74715E-01 ICD - 2 2 2 2 Tf= 283.15 K, Pf = 3.44738E+06 Pa, 6.01407E-01 6.00957E-01 5.00821E-01 6.00654E-01 6.00632E-01 pf,p = 26.627 kg/m3, p = 1.1310E-05 Pa-s, 4m 1.81111E+00 5.42715E+00 3.03594E+00 2.15511E+Ol 2.50761E+OI k = 1.3622, pb = 0.70817 kg/m3 Qv 2.55745E+00 7.66363E+00 1.27596E+01 3.04321E+Oi 3.54098E+OI Y 9.99950E-01 9.9955OELol 3.98750E-01 9.92801E-01 9.90201E-01 ICD - 2 2 2 2 2 T p 338.71 K,Pf = 6.89476E+06 Pa, c d 6.01375E-01 6.00941E-01 5.00809E-01 6.00647E-O1 6.00624E-01 pf,,, = 44.168 kg/m3, p = 1.365OE-O5 Pa-s, 41n 2.33688E+00 7.00425E+OO I. 16665E+01 2.79087E+Ol 3.25 164E+OI k = 1.3622, pb = 0.70817 kg/m3 Qv 3.29989E+OO 9.89063E+00 1.64741E+01 3.94095E+O1 4.59 I6 1E+01 Y 9.99975E-0 1 9.99775E-0 1 2.99375E-01 9.964WE-0 1 9.95 IOOE-01 ICD - 2 2 1 2 l2 Tf= 333.15 K, Pf = 1.37895E+07Pa, cd 6.01316E-01 6.00908E41 5.00783E-O1 5.00716E-01 6.00656E-01 6.00629E-01 6.00608E-01 of,p= 520.04 kg/m3, p = 4.1710E-05 Pa-s, 7rn 8.01656E+OO 2.40336E+O1 L00475E+01 5.60603E+01 8.00782E+01 9.60894E+O1 1.12100E+02 k=-l.O, pb= 1.86131 kg/m3 Qv 4.30695E+00 1.29122E+Ol 1.15158E+Ol 3.01187E+01 4.30225E+Ol 5.16246E+Oi 6.02266E+OI Y 1.00000E+00 l.OOOOOE+00 i . O O E O 1.00000E+00 1.00000E+00 O O O+ O 1. O O E O O O O+ O 1. O O E O O O O+ C ICD - 2 2 1 1 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • A P I MPMS*L4-3-4 92 0732290 050bY07 T95 SECTION 3-CONCENTRIC, SQUARE-EDGEDORIFICE METERS, PART 4-BACKGROUND 121 Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units (Dm= 0.746150 m, CS = 0.00001116 m/m-K, d, = 0.303808m, al = 0.00001665 m/m-K) Cell Pa Flow Conditions Value 559.5 5035.6 13987.7 27415. 55950.8 Tf= 255.37 K, Pf = I.O1325E+O5 Pa, cd 1.01286E+00 8.19828E-0 1 7.62126E-O 1 7.32247E-O 1 pf,p= 932.26 kg/m3,p = 1.8650 Pa-s, 41 11 7.5949OE+Ol 1.84425E+02 2.85740E+02 3.84353E+02 k = -1.0, pb = 910.83 kg/m3 Qv 8.33844E-02 2.02480E-01 3.13714E-01 4.21981E-01 5.81458E-01 Y l.OOOOOE+OO l.OOOOOE+OO l.OOOOOE+Oa 1.OOOOOE+OC ICD - 4 -4 -3 -3 Tf= 293.15 K, Pf = 1.01325E+05 Pa, cd 7.16018E-01 6.57743E-01 6.39850E-01 6.29603E-01 pt,p= 907.60 kg/m3,p = 2.1220E-01 Pa-s, q111 5.30428E+01 1.46179E+02 2.37003E+02 3.26490E+02 k = -1.0, pb = 910.83 kg/m3 Qv 5.82356E-02 1.60489E-01 2.60205E-01 3.58454E-01 5.04349E-01 Y l.O0000E+00 1.00000E+00 l.OOOOOE+Oû I . O O E O O O O+ C ICD - -3 -3 -3 -3 -3 Tf=353.15 K, Pf = 1.01325E+05Pa, Cd 6.18033E-01 6.09276E-01 6.06951E-01 6.05793E-01 6.04810E-01 I 6.04387E-01 I 6.04065E-01 pf,p= 868.43 kg/m3, p = 1.7490E-02 Pa-s, 41 11 4.48755E+Ol 1.32720E+02 2.20356E+02 3.07909E+02 4.39157E+02 5.26620E+02 6.14062E+02 k = -1.0, pb = 910.83 kg/m3 Qv 4.92688E-02 1.45713E-O1 2.41928E-01 3.38054E-01 4.82 150E-01 5.78 176E-O1 6.74 179E-0 1 Y l.OOOOOE+OO l.WOOOE+ûO 1.00000E+Oû 1.OOOOOE+OC 1.OOOOOE+00 1.OOOOOE+00 1 .OOOoOE+Oû ICD 3 2 2 2 2 2 2 Tf=288.71 K, Pj = l.O1325E+O5 Pa, cd 6.03849E-01 6.02357E-01 6.0193OE-O1 6.01709E-01 ~ 6.015 15E-01 6.01430E-01 6.01364E-01 pf,p= 999.01 kg/m3, p = 1.1990E-03 Pa-s, %r 4.69249E+01 1.40428E+02 2.33880E+02 3.27313E+02 4.67439E+02 5.60847E+02 6.54249E+02 k = -1.0, pb = 999.01 kg/m3 Qv 4.69714E-02 1.40567E-01 2.341 12E-01 3.27637E-O 1 4.67902E-0 1 5.61403E-O 1 6.54898E-O 1 Y 1.00000E+00 1.00000E+OO 1.00000E+ûC 1. O O E O O O O+ C I.OOOOOE+OO 1.OOOOOE+00 1.00000E+OC ICD - 2 2 2 2 I I I I Tf=372.04 K, Pf = 1.01325E+05 Pa, cd 6.0208 1E-01 6.01421 E-01 6.01224E-O 1 6.01120E-01 6.01028E-01 I 6.00986E-01 I 6.00954E-01 pf,p= 941.75 kg/m3, p = 2.8250E-04 Pas, 4in 4.55542E+01 1.36514E+02 2.27448E+02 3.18373E+02 4.54748E+02 5.45660E+02 6.36569E+02 k = -1.0, pb = 999.01 kg/m3 Qv 4.55994E-O2 1.36649E-01 2.27674E-O 1 3.18688E-01 4.55 199E-0 1 5.46201E-0 1 6.37200E-01 Y 1.OOOOOE+OO 1.OOOOOE+00 l.OOOOOE+OC l.OOOOOE+OC 1.OOOOOE+00 1.OOOOOE+00 1.00000E+OC ICD - 2 2 2 2 2 2 2 cd 6.02057E-01 6.0141 1E-01 6.01225E-01 6.01133E-01 6.01064E-01 6.0 1042E-0 1 6.01036E-01 pf,p= 2.1181 kg/m3, p = 1.3070E-05 Pa-s, B . 2.14808E+OO 6.34683E+00 i .02729E+01 1.37462E+Oi 1.771 16E+OI 1.92618E+Oi 1.97263E+Ol k = 1.3198, p b = 1.86131 kg/m3 Q" i. I ~ ~ O ~ E + O O 3.40987~+005.51919~+007.38523E+OC 9.51567E+00 I.O3485E+Ol 1.05981E+01 Y 9.98244E-01 9.84199E-01 9.561 IOE-01 9.13975E-01 8.24439E-01 7.47192E-O1 6.55900E-01 ICD - 2 2 2 2 2 2 T = 283.1.5 K, Pf = 6.89476E+05 Pa, f cd 6.01636E-O1 6.01 174E-01 6.01034E-01 6.00960E-01 6.00895E-01 6.00866E-01 6.00844E-01 ptSp 4.983 1 kg/m3,p = 1.0670E-05 Pa-s, = %Il 3.30053E+00 9.87429E+00 1.63873E+01 2.28009E+OI 3.21489E+OI 3.81416E+01 4.38969E+01 k = 1.3622, pb = 0.708 I7 kg/m3 Qv 4.66065E+00 1.39434E+Ol 2.31404E+01 3.2197OE+OI 4.5397 1E+O 1 5.38594E+O1 6. I9864E+01 Y 9.99750E-01 9.97750E-01 9.9375 1E-01 9.87751E-O1 9.75002E-01 9.64003E-01 9.51005E-01 ICD - 2 2 2 2 2 2 2 Tf= 255.37 K, Pf = 6.89476E+06 Pa, cd 6.01635E-01 6.01171E-01 6.01031E-01 6.00956E-01 6.00889E-01 6.00858E-01 6.00835E-01 pf,p= 1042.35 kg/m3, p = 1.5430E-04 Pa-s. 4m 4.77027E+01 1.42999E+02 2.38276E+02 3.33544E+O: 4.76439E+02 5.71698E+02 6.66954E+02 k=-1.0, p b = 1.86131 kg/m3 Q" 2.56286E+Oi 7.68272E+01 1.28015E+02 1.79199E+02 2.55970E+02 3.07148E+02 3.58325E+02 Y 1.00000E+00 l.OOOOOE+00 l.OOOOOE+OC 1.00000E+OC l.OOOOOE+OO I.OOOOOE+00 l.OOOOOE+OC ICD - 2 2 2 2 T = 255.37 K, Pf = 1.37895E+06 Pa, f pf,p= 32.783 kg/m3, p = 1.3520E-05 Pa-s, c, 6.01308E-01 6.00986E-01 6.00887E-01 6.00834E-01 8.45412E+OO 2.53229E+Ol 4.21 105E+Oi 5.87664E+OI 6.00786E-01 6.00765E-01 6.00749E-01 q111 8.33896E+Ol 9.94885E+01 1.15273E+02 k = 1.3198, p b = 1.86131 kg/m3 Qv 4.54203E+00 1.36049E+OI 2.26241E-FO 3.15726E+Ol 1 4.48015E+01 5.34508E+O 1 6. i 93 13E+01 Y 9.99871E-01 9.98839E-01 9.96775E-01 9.93679E-01 9.87 1OOE-01 9.8 1424E-O1 9.747 16E-0 1 m ICD - 2 2 2 2 rl L I I I Tf=283.15 K, Pf = 3.44738E+06 Pa, Cd 6.0 1281E-01 6.00972E-O1 6.00876E-01 6.00824E-O1 6.00778E-01 I 6.00757E-01~6.00740E-01 pf,p= 26.627 kg/m3,y = 1.131OE-O5 Pa-s, k = 1.3622, pb = 0.70817 kg/m3 41 11 Q" Y ICD - 7.62651E+OO 2.28588E+Ol 3.80614E+01 5.32173E+O1 1.07693E+OI 3.22787E+Ol 5.37461E+O1 7.5 1477E+Oi 9.99950E-01 9.9955OE-O1 9.98750E-01 9.97550E-01 2 2 2 2 I I 7.58246E+Ol 9.07851E+01 1.05636E+02 1.07071E+02 1.28197E+02 1.49167E+O2 9.95OOOE-O 1 9.9280 1E-O 1 9.90201E-01 Tf=338.71 K, Pf = 6.89476E+06 Pa, cd 6.01261E-01 6.00961E-01 6.00868E-01 6.00818E-01 6.00772E-01 6.00752E-01 6.00736E-01 = 44.168 kg/m3,p = 1.3650E-05 Pa-s, 41 11 9.84068E+OO 2.95017E+Ol 4.91421E+01 6.875l9E+Ol 9.80843E+Ol 1.17567E+02 1.36979E+02 k = 1.3622, pb = 0.70817 kg/m3 Qv 1.38959E+01 4.16591E+OI 6.93931E+01 9.70839E+OI 1.38504E+02 1.66016E+02 1.93427E+02 Y 9.99975E-01 9.99775E-01 9.99375E-01 9.98775E-01 9.97500E-01 9.96400E-01 9.95100E-01 m ICD - I I 2 2 I L IL I I T/= 333.15 K, Pl = 1.37895E+07 Pa, cd 6.01220E-01 I 6.00937E-01 6.00849E-01 6.00802E-01 6.00759E-01 I 6.00739E-01 I 6.00724E-01 l2 l2 l2 l2 P,,~= 520.04 kg/m3, p = 4.1710E-05 Pa-s, 4ni 3.375918+01 1.012318+02 1.686928+02 2.36151E+O; 3.37334E+02 4.04787E+02 4.72240E+02 k=-1.0, p b = 1.86131kg/m3 QV 1.81373E+Ol 5.438678+01 9.06310E+01 1.26873E+0; 1.81235E+02 2.17474E+02 2.53714E+02 Y 1*00000E+00I .OOOOOE+00 I .OOOooE+OC 1.00000E+O( 1.OoooOE+00 1.00000E+00 I .OOOOOE+OC ICD - 2 2 2COPYRIGHT American Petroleum InstituteLicensed by Information Handling Services
  • 122 CHAPTER 14-NATURAL GAS FLUIDS MEASUREMENT Table 4-C-6-Selected Round Robin Test Results Matrix-SI Units ( D,, = 0.049262 m, % = 0.00001116 m/m-K, d,,, = 0.026194 m, ai = 0.00001 665 m/m-K) Cell Pa Value Flow Conditions 559.5 5035.6 13987.7 27415. 55950.8 80569.1 109663.5 Tf= 255.37 K, Pf = 1.01325E+05 Pa, G/ 2.790 I6E+o( I .88676E+0( 1.5967 1 E+O( I .43961 E+O( I .29789E+OO I .234 17E+OC I . I8446E+oC pv = 932.26 kg/m, y = 1.8650 Pa-s, (1111 1.59895E+o( 3.24375E+O( 4.57515E+N 5.77499E+O( 7.43785E+00 8.48719E+OC 9.50290E+oC k=-1.0, p/,=910.83 kg/mJ 8,. 1.75549E-01 3.56131E-02 5.02306E-O? 6.34036E-02 8.16601E-O3 9.31808E-O3 1.04332E-02 Y 1.00000E+O( 1.00000E+O( I .OOOOOE+0( 1 .OOOOOE+O( I .OOOOOE+00 I .00000E+OC 1 . OOOOE+oC O ~ ICD -6 -5 -5 -5 -5 -5 -4 Tf=293.15 K, Pj = 1.01325EtO5 Pa, G/ I .35 I72E+O( 1.O1 838E+0( 9.15217E-01 8.60580E-01 8.121 17E-01 7.90546E-O1 7.73776E-01 p,+ = 907.60 kg/m3, y = 2.1220E-01 Pa-s, (1ru 7.65306E-01 1.72975E+N 2.59086E+O( 3.4 1067E+O( 4.59800E+00 5.37104E+OC 6.13329E+OC k=-1.0, p/,=910.83 k g / d QI. 8.40229E-3-04 I .89909E-01 2.84451502 3.74457E-0: 5.048 14E-03 5.89686E-O3 6.73374E-03 Y I .00000E+O( I .00000E+O( 1.0000OE+O( 1.00000E+O( I .00000E+00 1.OOOOOE+OC I .00000E+OC ICD -5 -4 -4 4 4 -4 -4 TI= 353.15 K, Pj = 1.01325E+05 Pa, G/ 7.9 I82 1EO 1 - 6.93474E-01 6.58288E-O1 6.37689E-01 6.30764E-01 6.27849E-01 6.25659E-O1 p,+ = 868.43 kglm", y = 1.749OE-O2 Pa-s, (1111 4.39427E-O1 1,15456E+0( 1.82662E+0( 2.47725E+O( 3.50049E+00 4.18 1 18E+Oû 4.86103E+OC k=-1.0, p/,=910.83 kg/mJ QI. 4.82447E-O4 1.26759E-03 2.00545E-0? 2.7 1977E-0: 3.84319E-03 4.59051E-03 5.33692E-03 Y 1.00000E+0( 1.00000E+O( I .00000E+M I .00000E+O( 1.00000E+00 1.00000E+Oû l.OOOOOE+OC ICD - 4 -3 -3 -3