ESF conference Spain

  • 857 views
Uploaded on

Presentation about the economic impact of seismic retrofit of buildings at the ESF conference by Barcelona, Spain, 2011

Presentation about the economic impact of seismic retrofit of buildings at the ESF conference by Barcelona, Spain, 2011

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
857
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
7
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. THE ECONOMIC IMPACTOF SEISMIC RETROFITON HERITAGEBUILDINGS WITHHISTORICREINFORCEDCONCRETE SKELETONSTRUCTURE OF THEINTERWAR TIMEMaria BOSTENARU DAN
  • 2. Overview Introduction The building typology Performance levels and seismic retrofit costs Building modelling Computation methodology Structural damage Comparison of costs Output for the decision system Outlook to further studies
  • 3. The building typology
  • 4. The RC skeleton buildingtypology in Europe Studies of seismic countries: Romania, Italy, Greece, Slovenia, Portugal (for the first two including archives) Studies of other countries presenting the typology: Poland, Bulgaria, France, Czech Republic, Estonia, Austria, Netherlands, Spain, Germany (the last two moderate seismicity; Germany is steel frame) and of Art Nouveau forerunners (Belgium, Romania, Hungary, Estonia, Finnland, Germany) see http://bostenaru.natkat.org/project_results/study_trips.html
  • 5. The RC skeleton among typologiesin Bucharest, Romania Romanian housing typologies analysed (WHE&beyond)  Historic building with timbered balcony  „wagon“ house (single story brick row)  Two story brick masonry timber floor  Multistory brick masonry steel composite floor  RC skeleton (residential and mixed use)  RC skeleton with RC braces  Cast in situ RC structural walls (vulnerable and not)  Precast RC structural walls  Moment resisting RC frame multistorey (socialist)  Moment resisting RC frame low rise (post 1989) RC skeleton most vulnerable
  • 6. Early RC skeletonBucharest, Romania
  • 7. Building typology: Romania Impact of apartment buildings bigger than any other housing  Strong economy, private enterprise  Deviations from mainstream movement dicated by the market Condominium, like in Greece, until today Double entrance  Ottulescu building: free plan in an apartment block
  • 8. Romania
  • 9. Building typology: Romania
  • 10. Building typology: Romania Legend: Bedroom / night zone Living room, including dinning Elena Ottulescu Corridors / circulation zone building, Bathrooms, toillets architect Horia Kitchen Creangă, 1934- Hall / vertical circulation 35 Deposit / external circulation
  • 11. Building typology: Italy Two directions  Rationalism (contextual Modernism)  Giuseppe Terragni  Novecento  Decorative  Geometrical Novecento: function bound housing typologies, condominium Zoning: function groups, double entrance
  • 12. Building typology: Italy Giuseppe Terragni - Como Photos 2005
  • 13. Italy Como
  • 14. Building typology: Italy Giuseppe Terragni - Milano Photos 2005
  • 15. Italy Milano  Rationalist architecture: blue  Novecento architecture: red
  • 16. Building typology: Italy NovecentoPhotos 2007
  • 17. Building typology: Italy NovecentoPhotos 2007
  • 18. Building typology: Italy  Novecento B edroom / Night zone Living room, dinning Corridors/ circulation zone B athroom, toilets Kitchen Hall DepositBuilding in ViaDomenichino, architectsLancia şi Ponti1928-30
  • 19. Building typology: Greece 1929 – ownership system for multistorey apartments Housing in private hand, seen to be unique, but similar to Romania and Portugal Training in Germany, little in France zonation  Zaimi and Stournary street example: „ressemble Italian rationalism“ – to be investigated  Double entrance
  • 20. Building typology: Greece Photos 2005
  • 21. Greece Athens
  • 22. Greece Legend: building on Bedroom / night zone Zaimi and Living room, including dinning Stournari Corridors / circulation zone streets, Bathrooms, toillets architects Kitchen Valentis and Michailidis, Hall / vertical circulation 1933 – 1934 Deposit / external circulation
  • 23. Slovenia Few reinforced concrete skeleton multi-family housing Joze Plecnik built housing programmes The multi-family housing by Plecnik can be found in Vienna (ex. Zacherl house) Multi-family housing is mainly in brick Ljubljana was reconstructed after the 1895 earthquake mainly with buildings of Art Nouveau; Modernism and RC came later
  • 24. Slovenia  Plecnik
  • 25. Plecnik In Austria skeleton photos 2005-2006
  • 26. Slovenia Triglav versicherung peglezen Joze plecnik gymansium National and uni bibl
  • 27. Portugal RC buildings in the north of the city, where avenues were built in the interwar time Master Plan according to the 1933 Charter of Athens was done post-war Traditional floor plans
  • 28. PortugalCassiano Branco (photos 2005)
  • 29. Haussmannian BoulevardPortugal built before those in Paris Middle-age quarter Alfama Baixa quarter built after the 1755 earthquake
  • 30. Performance levels and seismicretrofit costs
  • 31. Performance levels and seismicretrofit costs Inspiration from studies in the theory of daylight in atria Depending on the expected earthquake, the measure can be more extensive or not Adding a second window should be similar to adding a retrofit element and the distance to the amount
  • 32. Extent of the measureMoment of the measure Reparation Rebuilding Retrofit Extent of the measure Costs
  • 33. Building modelling
  • 34. Building modelling Study of the structural typology of early RC  Report for the WHE (extended characteristics)  Study of planimetry to identify typology of distribution of spans and bays in a skeleton Modelling in the software  Building  Retrofit measures
  • 35. 350mm 30mm Steel bars anchored into the concrete to which the braces are fixed350mm 30mm 350mm
  • 36. Computation methodology
  • 37. Computation methodology Calculation using construction devices for „retrofit elements“ for  Retrofit measures  Repair measures after earthquake damage, depending on damage degree (the software allowed to apply the retrofit method on a predamaged element)  Computed following performance criteria available in fibre based software  Option for use of Project Management software (considering all costs transformed in time) Calculation using surfaces for rebuilding the building in case of total damage  Use of MS Excell forms  Option for use of new BIM software (2011)
  • 38. Retrofit measure
  • 39. Repair measure
  • 40. After supervised work of Öztürk (2003)
  • 41. ID Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb51ba. Unc Conc Strain = -0.002173 - G.p.(b) 1 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) Otpt No: 73 Time= 9,3360, spallig reached. Elm: Cb2051a. Unc Conc Strain = -0.002116 - G.p.(b) 2 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) Otpt No: 73 Time= 9,3360, spallig reached. Elm: C2031a. Unc Conc Strain = -0.002198 - G.p.(b) 3 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) Otpt No: 73 Time= 9,3360, yield reached. Elm: C11bb. Steel Strain = 0.002502 - G.p.(a) Otpt No: 73 Time= 9,3360, yield reached. Elm: C2011a. Steel Strain = 0.002633 - G.p.(b) 4 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.069858 - G.p.(a) 5 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) Otpt No: 73 Time= 9,3360, fracture reached. Elm: C2011b. Steel Strain = 0.109096 - G.p.(b) 6 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.007241 - G.p.(a) 7 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) Otpt No: 73 Time= 9,3360, crush reached. Elm: C2011b. Conf Conc Strain = -0.04781 - G.p.(b) Otpt No: 73 Time= 9,3360, yield reached. Elm: C5011b. Steel Strain = 0.005749 - G.p.(a) 8 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 9 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 10 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b)Typical log-file output Log-file imported in MS Access Otpt No: Time= reached Elm: Mat 1 Mat 2 Strain = Gauss point Gesamtsumme von ID yield crush spall crack_core crack_cover element 1 0.1500, crack_cover bmz3412. Unc Conc 0.000107 G.p.(b) 15 4 1 2 4 4 bmx121 1 0.1500, crack_core bmz2511. Conf Conc 0.000101 G.p.(a) 14 4 2 4 4 bmx122 1 0.1500, crack_cover bmz2511. Unc Conc 0.000113 G.p.(a) 14 4 2 4 4 bmx133 1 0.1500, crack_core bmz2512. Conf Conc 0.000108 G.p.(b) 14 4 2 4 4 bmx141 1 0.1500, crack_cover bmz2512. Unc Conc 0.000122 G.p.(b) 14 4 2 4 4 bmx142 1 0.1500, crack_cover bmz4411. Unc Conc 0.000101 G.p.(a) 10 2 4 4 bmx152 1 0.1500, crack_cover bmz4412. Unc Conc 0.000109 G.p.(b) 10 2 4 4 bmx153 1 0.1500, crack_core bmz3511. Conf Conc 0.000104 G.p.(a) 10 2 4 4 bmx154 1 0.1500, crack_cover bmz3511. Unc Conc 0.000116 G.p.(a) 8 4 4 bmx161 1 0.1500, crack_core bmz3512. Conf Conc 0.000111 G.p.(b) 8 4 4 bmx162 Log-file output imported in MS Excell MS Access query
  • 42. Structural damage
  • 43. Structural damage The method allows to count the damaged elements, and thus the costs for the entire building The method also allows to localise the damaged elements
  • 44. Retrofitted with side walls spalling in spalling in crushing in first floor ground floor ground floorNot retrofitted columns columns columns
  • 45. fracture+crush+s yield+crush+ crush+spall yield+spall spall+ yield+ crackRetrofit method EQ pall+crack spall+crack +crack +crack crack crack only 1977 0,98 8,5 0 47,1 0 18,3 25,16 1986 0 0,7 0 19,9 1,0 1,0 77,45 1990, 1 0 0 0 0 0 0 65,7 1990, 2 0 0 0 0 2,0 7,2 88,6 1977+1977 3,27 14,05 0 45,75 0 16,01 20,92 1977+1986 0,98 9,15 0 44,12 0 19,93 25,82 1977+1990,2 0,98 9,15 0 44,44 0 19,28 26,14 1986+1990,1 0 3,92 0 17,32 1,63 9,74 47,39None Th.+Th. 0 0 0 0 0,98 0 97,71 1977 0 9,2 0 50,7 0,0 19,0 30,39 1986 0 2,6 0 20,9 2,0 28,8 45,75 1990, 1 0 0 0 0 0 0 66,3Metal jacketing Thessaloniki 0 0 0 0 0,98 0 97,71 1986 0 0 1,2 0 0,6 0 62,3 1990, 1 0 0 0 0 0 0 64,0 1990, 2 0 0 0 0 0,6 0,3 88,3 Thessaloniki 0 0 0 0 1,75 0 96,78 1977+1977 0,58 10,53 0 63,16 0 10,53 15,2 1977+1986 0,88 8,19 0 50 0 19,93 21,64 1977+1990,1 0,88 8,19 0 39,47 0 13,45 31,87 1977+1990,2 0,88 9,06 0 38,89 0 16,67 28,65 1986+1977 0 4,09 0 16,08 0,29 23,1 48,83Side walls 1986+1977 0 7,02 0 53,8 0,29 18,13 20,76 1986 0 0 0 0 0 0 64,05 1990,1 0 0 0 0 0 0 54,25Diagonal braces 1990,2 0 0 0 0 0 0 85,62 1990,1 0 0 0 0 0 0 56,36Structural wall 1990,2 0 0 0 0 0,3 0 77,24
  • 46. Comparison of costs
  • 47. Comparison of costs Done for  Retrofit techniques (braces, jacketing, structural wall, side walls) – seen earlier at %  Retrofit strategies (amount and position of braces) Compared for different earthquakes Compared with rebuild Computed the savings done in repair costs by applying the retrofit before the earthquake, or before a second earthquake
  • 48. Reparation(€) not retrofitted Earthquake 1 Earthquake 2 Difference to Rebuild-0,30 Reparation/ Reparation/ Rebuild (€) Retrofit (€) Reparation Reparation Reparation Retrofit/ Retrofit/ Total(€) Rebuild Rebuild Rebuild Retrofit Retrofit retrofit/ saving/ retrofitModel saving Total/ Total/ (€)Gregor - 1977 - 406968 0 406968 3195391 0,13 0,00 0,13 -0,17 - 0- - -Gregor - 1986 - 432952 0 432952 3195391 0,14 0,00 0,14 -0,16 - 0- - -Gregor - 1990,1 - 271407 0 271407 3195391 0,08 0,00 0,08 -0,22 - 0- - -Gregor - 1990,2 376411 0 376411 3195391 0,12 0,00 0,12 -0,18 - 0- - -Gregor - 1977 1977 430400 0 430400 3195391 0,13 0,00 0,13 -0,17 - 0- - -Gregor - 1977 1986 398150 0 398150 3195391 0,12 0,00 0,12 -0,18 - 0- - -Gregor - 1977 1990,1 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - -Gregor - 1977 1990,2 401200 0 401200 3195391 0,13 0,00 0,13 -0,17 - 0- - -Gregor - 1986 1977 0 0 3195391 0,00 0,00 0,00 -0,30 - - - - -Gregor Metal jacket 1977 - 445586 55152 500738 3195391 0,14 0,02 0,16 -0,14 8 0,12377395 38619 1 1Gregor Metal jacket 1986 - 324031 55152 379183 3195391 0,10 0,02 0,12 -0,18 6 0,17020591 -108921 -2 -1Gregor Metal jacket 1990,1 273885 55152 329037 3195391 0,09 0,02 0,10 -0,20 5 0,20136897 2479 0 22Gregor Metal jacket Thessaloniki 408750 55152 463902 3195391 0,13 0,02 0,15 -0,15 7 0,13492844 0 -Gregor Sidewalls 1986 299336 102960 402296 3195391 0,09 0,03 0,13 -0,17 3 0,34396188 -133616 -1 -1Gregor Sidewalls 1990,1 295488 102960 398448 3195391 0,09 0,03 0,12 -0,18 3 0,34844055 24081 0 4Gregor Sidewalls 1990,2 411170 102960 514130 3195391 0,13 0,03 0,16 -0,14 4 0,25040768 34759 0 3Gregor Sidewalls Thessaloniki 457050 102960 560010 3195391 0,14 0,03 0,18 -0,12 4 0,22527076 0 -Gregor Sidewalls 1977 1977 513400 102960 616360 3195391 0,16 0,03 0,19 -0,11 5 0,20054538 83000 1 1Gregor Sidewalls 1977 1986 452600 102960 555560 3195391 0,14 0,03 0,17 -0,13 4 0,22748564 54450 1 2Gregor Sidewalls 1977 1990,1 438650 102960 541610 3195391 0,14 0,03 0,17 -0,13 4 0,23472016 438650 4 0Gregor Sidewalls 1977 1990,2 426400 102960 529360 3195391 0,13 0,03 0,17 -0,13 4 0,24146341 25200 0 4Gregor Sidewalls 1986 1977 458350 102960 561310 3195391 0,14 0,03 0,18 -0,12 4 0,22463183 458350 4 0Gregor Braces 1986 - 264600 87624 352224 3195391 0,08 0,03 0,11 -0,19 3 0,33115646 -168352 -2 -1Gregor Braces 1990,1 - 224100 87624 311724 3195391 0,07 0,03 0,10 -0,20 3 0,39100402 -47307 -1 -2Gregor Braces 1990,2 - 353700 87624 441324 3195391 0,11 0,03 0,14 -0,16 4 0,24773537 -22711 -0 -4Gregor Structural wall 1990,1 - 251100 103622 354722 3195391 0,08 0,03 0,11 -0,19 2 0,41267224 -20307 -0 -5Gregor Structural wall 1990,2 - 345950 103622 449572 3195391 0,11 0,03 0,14 -0,16 3 0,29952883 -30461 -0 -3
  • 49. Reparation(€) not retrofitted Earthquake 1 Earthquake 2 Difference to Rebuild-0,30 Reparation/ Reparation/ Rebuild (€) Retrofit (€) Reparation Reparation Reparation Retrofit/ Retrofit/ Total(€) Rebuild Rebuild Rebuild Retrofit Retrofit retrofit/ saving/ retrofitModel saving Total/ Total/ (€) 1977 - 506950 0 506950 3123067 0,16 0,00 0,16 -0,14 - 0- 1977 1977 526850 0 526850 3123067 0,17 0,00 0,17 -0,13 - 0- Thessaloniki - 422000 0 422000 3123067 0,14 0,00 0,14 -0,16 - 0-Özzi Thessaloniki Thessaloniki 423050 0 423050 3123067 0,14 0,00 0,14 -0,16 - 0- 1977 - 544400 74785 619185 3123067 0,17 0,02 0,20 -0,10 7 0,1373719 0 0 6236566 1977 1977 595400 74785 670185 3123067 0,19 0,02 0,21 -0,09 8 0,12560507 0 0 3407139 Thessaloniki - 422000 74785 496785 3123067 0,14 0,02 0,16 -0,14 6 0,17721626 0 0 -Özzi Braces 1 Thessaloniki Thessaloniki 479850 74785 554635 3123067 0,15 0,02 0,18 -0,12 6 0,15585133 0 0 4111961 1977 - 553050 67987 621037 3123067 0,18 0,02 0,20 -0,10 8 0,1229303 46100 1 1 1977 1977 605250 67987 673237 3123067 0,19 0,02 0,22 -0,08 9 0,11232813 78400 1 1 Thessaloniki - 67987 67987 3123067 0,00 0,02 0,02 -0,28 0 - -422000 -6 -0Özzi Braces 2 Thessaloniki Thessaloniki 478800 67987 546787 3123067 0,15 0,02 0,18 -0,12 7 0,14199373 55750 1 1 1977 - 580950 67987 648937 3123067 0,19 0,02 0,21 -0,09 9 0,11702659 74000 1 1 1977 1977 606650 67987 674637 3123067 0,19 0,02 0,22 -0,08 9 0,1120689 79800 1 1 Thessaloniki - 473900 67987 541887 3123067 0,15 0,02 0,17 -0,13 7 0,14346191 51900 1 1Özzi Braces 3 Thessaloniki Thessaloniki 476700 67987 544687 3123067 0,15 0,02 0,17 -0,13 7 0,14261926 53650 1 1 1977 - 455100 135973 591073 3123067 0,15 0,04 0,19 -0,11 3 0,29877653 -51850 -0 -3 1977 1977 596400 135973 732373 3123067 0,19 0,04 0,23 -0,07 4 0,22798994 69550 1 2 Thessaloniki - 345850 135973 481823 3123067 0,11 0,04 0,15 -0,15 3 0,39315657 -76150 -1 -2Özzi Braces 4 Thessaloniki Thessaloniki 408900 135973 544873 3123067 0,13 0,04 0,17 -0,13 3 0,33253412 -14150 -0 -10 1977 - 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -506950 -3 -0 1977 1977 586250 176765 763015 3123067 0,19 0,06 0,24 -0,06 3 0,3015184 59400 0 3 Thessaloniki - 176765 176765 3123067 0,00 0,06 0,06 -0,24 0 - -422000 -2 -0Özzi Braces 5 Thessaloniki Thessaloniki 476700 176765 653465 3123067 0,15 0,06 0,21 -0,09 3 0,37081007 53650 0 3Özzi - 1990,1 - 333461 0 333461 2808021 0,12 0,00 0,12 -0,18 - 0Özzi - 1990,2 - 389594 0 389594 2808021 0,14 0,00 0,14 -0,16 - 0
  • 50. Output for the decision system
  • 51. Output for the decision system The costs have to be compared to the benefits; benefits stay in first place Benefits can be compared among different retrofit techniques and strategies, or compared to the status quo (no measure) Comparison was done with two out of four identified methods:  Pairwise comparison (costs are ranked numerically)  Utility value method (costs enter the measurement spaces of some criterions)
  • 52. Pairwise comparison method
  • 53. Utility value method
  • 54. [Nr.] Criterion [from] [to][unit] [weight]Observations (on the units) 1 Reversibility 0 100% 37,5reversibility of the measure 2 Guidelines 1 5points 37,5for the complinance with maintenance guidelines 5 Facade 1 4style points 9,0for the architectural value of the façade 6 Interiors 1 4spatiality points 9,0for the architectural value of the space ARCHITECT 7 Structural system 1 4technology points 3,0for the architectural value of the structure 8 Demolition 0 100rebuild possibility 9,0of the building following the original plans 9 Size change 0 50cm 9,0size change of a building element 10 Looks change 1 5points 4,5look change of a building element 11 Material change 1 2000age (years) 9,0of the construction material 13 Compatibility 0 100% 4,5collaboration with the existing construction material 14 Conservation 0 100% 11,3maintenance of the existing building material 15 Sustainability 1 500years 2,3lifetime of the building 16 Maintenance 1 50years 4,5lifetime of the new construction material 17 Duration 1 100weeks 4,5of the measure 18 Noise 1 45dB 1,5noise during the measure 19 Move 1 100weeks 12,0duration of the relocation 20 Participation 0 15decision steps 12,0with possible participation of the inhabitants 21 Property form 1 5points 7,2lastingness of the inhabitance USER 22 Assurance 0 100% coverage 33,6earthquake damage through assurance 23 Own costs share 1 100% 4,8own costs/measure costs 24 Other advantages 1 5points 14,4for inhabitant advantages of the measure 25 During measures 0 200spaces 9,0usable during the measure 26 After measure 0 200spaces 15,0usable after the measure 27 After earthquake 0 200spaces 6,0usable after damaging in earthquake 29 Value 1 20points 30,0for housing quality 33 Earthquake 1 12EMS intensity 27,5of the earthquake 34 Shape 8 10.10scores 5,0for seismic suitability of the conformation 35 Structure 0 8scores 15,0for seismic suitability of the structure 36 Material 1 6scores 2,5for seismic suitability of the construction material 37 Forces 0 1000kN base shear 35,0during the design earthquake Remaining 38 displacement 0 200mm 105,0at roof level after the earthquake ER 39 Maximal displacement 0 200mm 105,0at roof level during the earthquake
  • 55. 29 Value 1 20points 30,0for housing quality33 Earthquake 1 12EMS intensity 27,5of the earthquake34 Shape 8 10.10scores 5,0for seismic suitability of the conformation35 Structure 0 8scores 15,0for seismic suitability of the structure36 Material 1 6scores 2,5for seismic suitability of the construction material37 Forces 0 1000kN base shear 35,0during the design earthquake Remaining38 displacement 0 200mm 105,0at roof level after the earthquake ENGINEER39 Maximal displacement 0 200mm 105,0at roof level during the earthquake40 Strains -6 60‰ 105,0in building elements during earthquake41 Element replacement 0 300number 25,0replaced elements42 New elements 0 300number 7,5new elements43 Nonstruct>struct 0 300number 10,0nonstructural elements which become structural44 Partial demolition 0 300number 7,5demolished elements45 System completion 0 200needed anchors 5,0for a system completion measure Strengthening/Stiffeni46 ng 1 6Sa_new/Sa_old 15,0spectral acceleration new/old47 Enhanced ductility 1 4Sd_new/Sd_old 20,0spectral displacement new/old48 Reduced demand 1 6damping actor 10,0of the soil movement49 Aggregate 1 44nr. owners 8,0of the building50 Building site 0 24hours available 12,0for the work51 Phases 1 44simultaneous 12,0conducted52 Repeatability 1 200nr. identical 8,0retrofit measures construction material price for measure at one53 Material versus 10 40price T€/app. 8,0housing unit INVESTOR54 Technology v. 0 10number 8,0available technologies55 Funding money 0 10nr. programs 4,0which could grant funding money56 Replace space 0 5eq. buildings 20,0available for the relocation57 Reparation/Rebuild 0 2€/€ 5,0costs/costs58 Retrofit/Rebuild 0 0.5€/€ 5,0costs/costs Reparation-59 save/Retrofit -5 5€/€ 5,0costs/costs Total costs/Rebuild-60 30% -0.3 2.2€/€ 5,0costs/costs
  • 56. Outlook to further studies
  • 57. Optimisation of the current study Taking the prices for hour work for the country from where the typology and the measures are (not always available; despite of flexible computation mean) Making the computed curves to meet the one from the concept Optimisation of measures for a given earthquake in order to make right computations Employment also of probabilistic means to extend from the study cases to larger urban base Comparison to the retrofit costs for a real building (soon envisaged through contact to offices; already done for stone masonry)
  • 58. Studies of implemented retrofitmeasures Italy  FRP (Torre delle Nazioni, Napolo)  Seismic dissipators (school Fabriano) Romania  Cutting of the corner <> new planimetry  Jacketing Greece  Combined methods of FRP for horizontal elements and jacketing for vertical elemens (Army Pension Fund building, hotel in northern Greece)
  • 59. Relationship to earlier RCstructures Pre-study of the distribution of predecessors in Europe is already done Before RC skeleton the Hennebique system was spread (after it was RC frame) Differences and common features have to be put in connection
  • 60. Relationship to timber Preliminary research on a language for reinforced concrete from timber Lessons to be learned from half-timbered housing for reinforced concrete A similar study of geografic distribution of half- timbered construction  Study of the bracing method for retrofit  Local seismic culture in reinforced concrete bracing  Computations for steel  Realised projects with dissipators
  • 61. Computer games A method of training in the pre-disaster phase might be computer games For the genre computer and management games there is an economic component, which can be derived from this research  At urban scale: SimCity, also involving in the early phases disaster scenarios such as 1906 San Francisco Earthquake  For building scale, see the games following the Ken Follett novels Abstractisation of needed materials and people
  • 62. Construction and management gamesPlaying „World without End“
  • 63. Conclusions
  • 64. Conclusions An original methodology for computation of costs was developed, based on available project management methods and software possibilities The method is aplicable for the single building (type) The building typology under study represents heritage across Europe in seismic and non-seismic countries An orginal concept of costs levels depending on expected earthquake was developed It shows the value of planned conservation The costs have been put in the context of decision of experts and larger participation in conservation efforts, part of which retrofit is
  • 65. Acknowledgements EFS Grant to attend this workshop fellowship in frame of the DFG funded Research Training Network 450 “Natural Disasters” at the Universität Karlsruhe (TH), Germany (2000-2003) Marie Curie Early Stage Research Host Fellowship, contract HPMT-CT-2001-00359, at the Istituto Universitario di Studi Superiori di Pavia, Italy (2002-2003) Marie Curie Intra-European Fellowship, contract MEIF-CT- 2005-009765, same host institution as above (2005-2007) Marie Curie European Reintegration Grant, contract MERG- CT-2007-200636, at Foundation ERGOROM ´99, Bucharest, Romania (2007-2010)
  • 66. Thank you!