• Like
[Day 2] Center Presentation: IFPRI
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

[Day 2] Center Presentation: IFPRI

  • 568 views
Published

Presented by Jawoo Koo, Zhe Guo, and Stanley Wood at the CGIAR-CSI Annual Meeting 2009: Mapping Our Future. March 31 - April 4, 2009, ILRI Campus, Nairobi, Kenya

Presented by Jawoo Koo, Zhe Guo, and Stanley Wood at the CGIAR-CSI Annual Meeting 2009: Mapping Our Future. March 31 - April 4, 2009, ILRI Campus, Nairobi, Kenya

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
568
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
15
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. It turns out… believe it or not… IFPRI … IS SPATIAL TOO! crop fertilizer final remarks introduction profitability modeling JAWOO KOO, ZHE GUO, AND STANLEY WOOD INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE CGIAR-CSI 2009, ILRI, Nairobi, Kenya (1 APRIL 2009)
  • 2. SChEF ECONOMIC EVALUTION dialogue with CHANGES stakeholders/user groups on nutrient & water scenarios, evaluation, and managements, technology-scale evaluation germplasm adoption, climate change, etc. BASELINE characterization, Ingredients potential productivity,  SPAM profitability  Production systems characterization  SIMPLR  Price modeling  DREAM  Web-based data query and visualization tools SPATIAL CHARATERIZATION & EVALUATION FRAMEWORK SChEF
  • 3.  ASSESSMENT OF PRODUCTIVITY RESPONSES TO DETERMINANTS AND THEIR INTERACTIONS  Variety  Nutrient management  Water management  Biotic constraints  Abiotic constraints  Climate change  DYNAMIC CROP SYSTEMS MODELS  DSSAT  APSIM  WOFOST  ORYZA IFPRI HPC (80 CPU’s) GRID-BASED REGIONAL-SCALE ASSESSMENT OF CROP RESPONSES TO CHANGES DYNAMIC CROP SYSTEMS MODELS
  • 4.  Climatology  Soils  Cropping Patterns  Crop Variety  Planting Window  Planting Density  Water Management  Nutrient Management (N and P*)  Residue Management*  Biotic Stresses*  Soil Constraints and Interventions (P and pH)* *Coming Soooooooon! CROP SYSTEMS MODEL APPLICATIONS SIMPLR MODELING TEMPLATE
  • 5. Global / Monthly mean of 1950-2000 Tmax,Tmin,Rain / 1km Global / Daily 1997-recent Srad,Tmax,Tmin,Rain / 1 degree* *WorldWeather downscales to 15’ HISTORIC CLIMATOLOGY DAILY WEATHER WorldClim NASA-POWER
  • 6. Continent Count Africa 1300 Asia 975 Australia 31 Europe 370 North America 291 Oceania 49 South America 388 Total 3404 GLOBAL SOIL PROFILES ISRIC WISE 1.1 DATABASE
  • 7. GENERIC SOIL PROFILES (HWSD+WISE1.1) HC27: Fertility x Texture x Depth
  • 8.  Crop: MAIZE  Model: DSSAT-CSM v4  Region: SSA  Resolution: 5 ARC-MIN  Climate: NASA-POWER (1998-2007)  Soils: HC27  Managements:  Monthly planting window  Rainfed/Irrigation  Three cultivars (long, medium, and short maturity)  Supplemental N fertilizer applications (0, 20, …, 100 kg*N+/ha) Latest Dataset Release (Ver.SIM09064) SPATIAL EVALUATION OF MAIZE PERFORMANCE
  • 9.  Cassava, Chickpea, Cowpea, Fababean, Maize, Millet, Mungbean, Potato, Sorghum, Soybean, Sweet Potato, Wheat, Rice  WOFOST & ORYZA  Global, 1-degree MAIZE | Water limited, med. maturity, coarse soil texture  NASA-POWER daily weather (1997-2007)  Options:  Biweekly planting window  Water-limit vs. potential  Sandy or clayey soil texture  Three maturity classes MAIZE | Potential with no limitation REFERENCE LAYERS GLOBAL YIELD POTENTIAL
  • 10. Scenario A2A (2050-2000) kg/ha < -3,000 MAIZE -2,999 - -2,000 -1,999 - -1,000 -999 - -500 -499 - 500 501 - 1,000 1,001 - 2,000 > 2,001 Scenario A2A (2050-2000) Maize: Climate change hotspots (red) kg/ha GROUNDNUT < -3,000 -2,999 - -2,000 -1,999 - -1,000 -999 - -500 -499 - 500 501 - 1,000 1,001 - 2,000 > 2,001 HOTSPOT ANALYSIS CLIMATE CHANGE IMPACTS
  • 11. Crop model- + SPATIAL Yield ANN generated ASPATIAL Climate, Soil impacts training datasets REDUCED FORM OF CROP SYSTEMS MODEL CLIMATE CHANGE IMPACTS
  • 12. Beyond Nitrogen: 1. GIS: What is the location and severity of key soil productivity constraints in SSA? What crop areas are affected? 2. SIMPLR: How much yield and production is “currently” being lost because of these constraints? What is the annual costs of those losses? 3. SIMPLR: To what extent can the impact of these constraints be mitigated by improved inputs/management interventions? 4. DREAM: What is the potential size and distribution of economic benefits of mitigation/intervention hbo.com NEW THEME 2009 ABIOTIC CONSTRAINTS TO CROP PRODUCTIVITY AND PRODUCTION
  • 13. Key Factors Influencing Fertilizer Adoption & Profitability Farmgate Output Markets Location & Production Prices System Specific Fertilizer Responses (Climate/Weather Farmgate Transport Soils, Management) Fertilizer Costs Prices (on & off road) Policy Experiments for a more enabling environment (a) negotiated urea import discounts Fertilizer Import Costs (b) reduced unit transport costs (c) reduce border crossing costs
  • 14. Maize price Port/border processing fee Y2008 Y2006 Y2004 U.S. $/Mt 395.9841 224.3687 219 Migori : KE U.S.$/kg Stevedore Handling Removal Charge storage Terminal handling 270.7492 153.4093 153.3523 Kitale : KE Kenya 0.008 0.006 0.002 0.0005 0.008 310.3333 191.3333 206.6667 Eldoret : KE Uganda 0.008 0.006 0.002 0.0005 0.008 267.4 169.6667 219 Nakuru : KE 293.6 225 219.25 Nairobi : KE Tanzania 0.005 0.004 0.004 0.0005 0.008 395.3333 224 223.9167 Kisumu : KE Rwanda 0.005 0.004 0.004 0.0005 0.008 291.4 217.3333 210.75 Mombasa : KE Burundi 0.005 0.004 0.004 0.0005 0.008 347.6927 220.6128 245 Kitui : KE 265.5 168.875 138 Busia : KE Source: www.tradeafrica.biz 283.8 270.25 184.2 Kigali : RW A Guide For Maize Traders on Regulatory Requirements For Import and Export Maize in East African Community 259.5 240.1667 191 Ruhengeri : RW 306.6 187.8333 164.6667 Dar es salaam : TZ 276.6981 156.78 187.6364 Arusha : TZ 231.8831 146.615 114.25 Mbeya : TZ 260.012 205.1448 186.9 Mwanza : TZ 224.5972 153.7778 108.5 Songea : TZ 211.7557 133.8889 118 Sumbawanga : TZ 246.4771 196.1111 176.3333 Tanga : TZ 277.8545 219.2222 206 Bukoba : TZ 252.2355 155.375 133 Iganga : UG 237.6648 175.9224 168.3636 Kabale : UG 245.2 181.5 172.1667 Kampala : UG 200.5419 181 153.3333 Kasese : UG 205.2909 151.9588 150.1818 masindi : UG 303 159.75 165.3333 Mbale : UG 254 171.25 150.6667 Lira : UG Source: Regional Agricultural trade intelligence network
  • 15. Policy Scenarios Scenario:1 Reduced Procurement Cost Negotiated decrease in import price of Urea (50%) Scenario 2: Road Transport Cost Reduce road transport costs by 20% per ton per km Scenario 3: Reduce Border Cost Border-crossing cost reduces 50% Baseline
  • 16. Maize Markets & Market Prices 40 maize 40 towns & cities reporting 2005 av. maize prices in “marketsheds” maize prices each marketshed
  • 17. Maize transport costs from Net maize “farmgate” price farmgate to target market
  • 18. VCRs: Baseline and policy scenarios 1 & 2 (estimated at 35kg N/ha) < 0.5 0.5-1.0 Baseline 2: 20% lower road transport 1: 50% lower urea 1.1-2.0 cost procurement price 2.1-4.0 >4.0
  • 19. VCR By Country & Market Access (early 2008) VCR by Market Access Class Country High Med. Low Average Burundi 2.5 2 2 2.25 Kenya 2.75 2.25 1.5 2.25 Rwanda 2 1.5 1.5 1.75 Tanzania 3.25 2.75 1.25 2.5 Uganda 3 2 1.75 2 All 2.75 2.25 1.5 2.25
  • 20. WHERE TO INVEST? AG MARKET FINDER | marketfinder.info
  • 21. Demonstration* http://marketfinder.info *Please, FREE the network for a moment! WHERE TO INVEST? AG MARKET FINDER | marketfinder.info
  • 22.  SPAM* UPDATE  2000 ver.3  2005  AEZ UPDATE FOR SSA  HARVESTCHOICE DOMAIN  VISUALIZATIONS: GKS-2-HMNS *NO name change! THINGS KEEP US BUSY UPDATES
  • 23. Mashup Ingredients  Map data (e.g., Shapefile)  Map tiles using GMapCreator  Google Maps API  Base map  Interface  Marker  Reverse Geocoding  Overlaying tiles  Ajaxing using jQuery  Apache Web Server  Data tables in MySQL  Programming in PHP (CodeIgniter)  Google Chart API  Lots of Coffee DATA EXPLORATION AND VISUALIZATION DROPPR