
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
n today’s changing world huge amount of data is ge
nerated and transferred frequently.
Although the data is sometimes static but most comm
only it is dynamic and transactional. New
data that is being generated is getting constantly
added to the old/existing data. To discover the
knowledge from this incremental data, one approach
is to run the algorithm repeatedly for the
modified data sets which is time consuming. The pap
er proposes a dimension reduction
algorithm that can be applied in dynamic environmen
t for generation of reduced attribute set as
dynamic reduct.
The method analyzes the new dataset, when it become
s available, and modifies
the reduct accordingly to fit the entire dataset. T
he concepts of discernibility relation, attribute
dependency and attribute significance of Rough Set
Theory are integrated for the generation of
dynamic reduct set, which not only reduces the comp
lexity but also helps to achieve higher
accuracy of the decision system. The proposed metho
d has been applied on few benchmark
dataset collected from the UCI repository and a dyn
amic reduct is computed. Experimental
result shows the efficiency of the proposed method
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment