• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Embodying the Calculus: Planimeters and Analogue Computing
 

Embodying the Calculus: Planimeters and Analogue Computing

on

  • 327 views

Paper given at BSHM Postgraduate Research in Progress, Oxford, February 2005.

Paper given at BSHM Postgraduate Research in Progress, Oxford, February 2005.

Statistics

Views

Total Views
327
Views on SlideShare
327
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Embodying the Calculus: Planimeters and Analogue Computing Embodying the Calculus: Planimeters and Analogue Computing Presentation Transcript

    • Embodying the Calculus:Planimeters and Analogue Computing Charles Care Feburary 2005
    • • Planimeters invented and re-invented throughout the 19th Century. – Hermann (1814) – Gonnella (1824) – Oppikofer (1827) – Wetli (1849) – Sang (1851) – Amsler (1854)• Principle uses in: – Land area calculation – Indicator diagrams
    • Using a planimeter to calculate the area of an indicator diagram
    • A roller can be used to calculate the length S ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ £ £ £                         ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ £ £ £                         ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ £ £ £                        h ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ £ £ £                         ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ £ £ £                         S
    • Calculating the area under a two-state function ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ £ £ £                    h2 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ £ £ £                     ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ £ £ £                     ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ £ £ £                     h1 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ £ £ £                     S2 S1
    • Scaling the rotation according to the function’s height
    • The cone provides a different gear for every possible value in the y-axis
    • An Oppikofer planimeter
    • A model of an Oppikofer planimeter
    • The Hermann Planimeter
    • The Wetli Planimeter
    • A differential analyser∗∗ Crank, J. The Differential Analyser. Longmans, London, 1947.
    • Embodying the Calculus:Planimeters and Analogue Computing Charles Care Feburary 2005