SlideShare a Scribd company logo
1 of 15
Download to read offline
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
RETAINING WALL ANALYSIS
In accordance with EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values
Retaining wall details
Stem type; Cantilever
Stem height; hstem = 1800 mm
Stem thickness; tstem = 215 mm
Angle to rear face of stem; α = 90 deg
Stem density; γstem = 25 kN/m
3
Toe length; ltoe = 350 mm
Heel length; lheel = 650 mm
Base thickness; tbase = 250 mm
Base density; γbase = 25 kN/m
3
Height of retained soil; hret = 900 mm
Angle of soil surface; β = 0 deg
Depth of cover; dcover = 0 mm
Retained soil properties
Soil type; Medium dense well graded sand
Moist density; γmr = 21 kN/m
3
Saturated density; γsr = 23 kN/m
3
Characteristic effective shear resistance angle; φ'r.k = 30 deg
Characteristic wall friction angle; δr.k = 0 deg
Base soil properties
Soil type; Medium dense well graded sand
Moist density; γmb = 18 kN/m
3
Characteristic cohesion; c'b.k = 0 kN/m
2
Characteristic effective shear resistance angle; φ'b.k = 30 deg
Characteristic wall friction angle; δb.k = 15 deg
Characteristic base friction angle; δbb.k = 30 deg
Loading details
Variable surcharge load; SurchargeQ = 10 kN/m
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Calculate retaining wall geometry
Base length; lbase = ltoe + tstem + lheel = 1215 mm
Moist soil height; hmoist = hsoil = 900 mm
Length of surcharge load; lsur = lheel = 650 mm
- Distance to vertical component; xsur_v = lbase - lheel / 2 = 890 mm
2501800
900900
1150
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Effective height of wall; heff = hbase + dcover + hret = 1150 mm
- Distance to horizontal component; xsur_h = heff / 2 = 575 mm
Area of wall stem; Astem = hstem × tstem = 0.387 m
2
- Distance to vertical component; xstem = ltoe + tstem / 2 = 457 mm
Area of wall base; Abase = lbase × tbase = 0.304 m
2
- Distance to vertical component; xbase = lbase / 2 = 607 mm
Area of moist soil; Amoist = hmoist × lheel = 0.585 m
2
- Distance to vertical component; xmoist_v = lbase - (hmoist × lheel
2
/ 2) / Amoist = 890 mm
- Distance to horizontal component; xmoist_h = heff / 3 = 383 mm
Partial factors on actions - Table A.3 - Combination 1
Permanent unfavourable action; γG = 1.35
Permanent favourable action; γGf = 1.00
Variable unfavourable action; γQ = 1.50
Variable favourable action; γQf = 0.00
Partial factors for soil parameters – Table A.4 - Combination 1
Angle of shearing resistance; γφ' = 1.00
Effective cohesion; γc' = 1.00
Weight density; γγ = 1.00
Retained soil properties
Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 30 deg
Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 0 deg
Base soil properties
Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 30 deg
Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 15 deg
Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 30 deg
Design effective cohesion; c'b.d = c'b.k / γc' = 0 kN/m
2
Using Coulomb theory
Active pressure coefficient; KA = sin(α + φ'r.d)
2
/ (sin(α)
2
× sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
β))]]
2
) = 0.333
Passive pressure coefficient; KP = sin(90 - φ'b.d)
2
/ (sin(90 + δb.d) × [1 - √[sin(φ'b.d +
δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]]
2
) = 4.977
Sliding check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m
Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 6.2 kN/m
Total; Ftotal_h = Fmoist_h + Fsur_h = 12 kN/m
Check stability against sliding
Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/ 2
= 2.7 kN/m
Base friction; Ffriction = Ftotal_v × tan(δbb.d) = 17.1 kN/m
Resistance to sliding; Frest = Fexc_h + Ffriction = 19.8 kN/m
Factor of safety; FoSsl = Frest / Ftotal_h = 1.647
PASS - Resistance to sliding is greater than sliding force
Overturning check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m
Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m
Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 6.2 kN/m
Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/
2 = -2.7 kN/m
Total; Ftotal_h = Fmoist_h + Fexc_h + Fsur_h = 9.3 kN/m
Overturning moments on wall
Surcharge load; Msur_OT = Fsur_h × xsur_h = 3.3 kNm/m
Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 2.4 kNm/m
Total; Mtotal_OT = Mmoist_OT + Msur_OT = 5.7 kNm/m
Restoring moments on wall
Wall stem; Mstem_R = Fstem × xstem = 4.4 kNm/m
Wall base; Mbase_R = Fbase × xbase = 4.6 kNm/m
Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 10.9 kNm/m
Base soil; Mexc_R = -Fexc_h × xexc_h = 0.2 kNm/m
Total; Mtotal_R = Mstem_R + Mbase_R + Mmoist_R + Mexc_R =
20.2 kNm/m
Check stability against overturning
Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 3.543
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
PASS - Maximum restoring moment is greater than overturning moment
Bearing pressure check
Vertical forces on wall
Wall stem; Fstem = γG × Astem × γstem = 13.1 kN/m
Wall base; Fbase = γG × Abase × γbase = 10.3 kN/m
Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 9.8 kN/m
Moist retained soil; Fmoist_v = γG × Amoist × γmr = 16.6 kN/m
Total; Ftotal_v = Fstem + Fbase + Fmoist_v + Fsur_v = 49.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 6.2 kN/m
Total; Ftotal_h = max(Fmoist_h + Fpass_h + Fsur_h - Ftotal_v ×
tan(δbb.d), 0 kN/m) = 0 kN/m
Moments on wall
Wall stem; Mstem = Fstem × xstem = 6 kNm/m
Wall base; Mbase = Fbase × xbase = 6.2 kNm/m
Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 5.4 kNm/m
Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 12.4
kNm/m
Total; Mtotal = Mstem + Mbase + Mmoist + Msur = 29.9 kNm/m
Check bearing pressure
Distance to reaction; x = Mtotal / Ftotal_v = 603 mm
Eccentricity of reaction; e = x - lbase / 2 = -4 mm
Loaded length of base; lload = 2 × x = 1206 mm
Bearing pressure at toe; qtoe = Ftotal_v / lload = 41.2 kN/m
2
Bearing pressure at heel; qheel = 0 kN/m
2
Effective overburden pressure; q = (tbase + dcover) × γmb = 4.5 kN/m
2
Design effective overburden pressure; q' = q / γγ = 4.5 kN/m
2
Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2))
2
=
18.401
Nc = (Nq - 1) × cot(φ'b.d) = 30.14
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 20.093
Foundation shape factors; sq = 1
sγ = 1
sc = 1
Load inclination factors; H = Ftotal_h = 0 kN/m
V = Ftotal_v = 49.6 kN/m
m = 2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
m
= 1
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
(m + 1)
= 1
ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γmb
× lload × Nγ × sγ × iγ = 300.9 kN/m
2
Factor of safety; FoSbp = nf / max(qtoe, qheel) = 7.31
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
Partial factors on actions - Table A.3 - Combination 2
Permanent unfavourable action; γG = 1.00
Permanent favourable action; γGf = 1.00
Variable unfavourable action; γQ = 1.30
Variable favourable action; γQf = 0.00
Partial factors for soil parameters – Table A.4 - Combination 2
Angle of shearing resistance; γφ' = 1.25
Effective cohesion; γc' = 1.25
Weight density; γγ = 1.00
Retained soil properties
Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 24.8 deg
Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 0 deg
Base soil properties
Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 24.8 deg
Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 12.1 deg
Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 24.8 deg
Design effective cohesion; c'b.d = c'b.k / γc' = 0 kN/m
2
Using Coulomb theory
Active pressure coefficient; KA = sin(α + φ'r.d)
2
/ (sin(α)
2
× sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
β))]]
2
) = 0.409
Passive pressure coefficient; KP = sin(90 - φ'b.d)
2
/ (sin(90 + δb.d) × [1 - √[sin(φ'b.d +
δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]]
2
) = 3.473
Sliding check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m
Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m
Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 5.7 kN/m
Total; Ftotal_h = Fmoist_h + Fsur_h = 11.8 kN/m
Check stability against sliding
Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/ 2
= 1.9 kN/m
Base friction; Ffriction = Ftotal_v × tan(δbb.d) = 13.7 kN/m
Resistance to sliding; Frest = Fexc_h + Ffriction = 15.6 kN/m
Factor of safety; FoSsl = Frest / Ftotal_h = 1.319
PASS - Resistance to sliding is greater than sliding force
Overturning check
Vertical forces on wall
Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m
Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m
Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m
Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 5.7 kN/m
Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase)
2
/
2 = -1.9 kN/m
Total; Ftotal_h = Fmoist_h + Fexc_h + Fsur_h = 9.9 kN/m
Overturning moments on wall
Surcharge load; Msur_OT = Fsur_h × xsur_h = 3.5 kNm/m
Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 2.2 kNm/m
Total; Mtotal_OT = Mmoist_OT + Msur_OT = 5.7 kNm/m
Restoring moments on wall
Wall stem; Mstem_R = Fstem × xstem = 4.4 kNm/m
Wall base; Mbase_R = Fbase × xbase = 4.6 kNm/m
Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 10.9 kNm/m
Base soil; Mexc_R = -Fexc_h × xexc_h = 0.2 kNm/m
Total; Mtotal_R = Mstem_R + Mbase_R + Mmoist_R + Mexc_R =
20.1 kNm/m
Check stability against overturning
Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 3.535
PASS - Maximum restoring moment is greater than overturning moment
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Bearing pressure check
Vertical forces on wall
Wall stem; Fstem = γG × Astem × γstem = 9.7 kN/m
Wall base; Fbase = γG × Abase × γbase = 7.6 kN/m
Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 8.5 kN/m
Moist retained soil; Fmoist_v = γG × Amoist × γmr = 12.3 kN/m
Total; Ftotal_v = Fstem + Fbase + Fmoist_v + Fsur_v = 38 kN/m
Horizontal forces on wall
Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m
Moist retained soil; Fmoist_h = γG × KA × γmr × heff
2
/ 2 = 5.7 kN/m
Total; Ftotal_h = max(Fmoist_h + Fpass_h + Fsur_h - Ftotal_v ×
tan(δbb.d), 0 kN/m) = 0 kN/m
Moments on wall
Wall stem; Mstem = Fstem × xstem = 4.4 kNm/m
Wall base; Mbase = Fbase × xbase = 4.6 kNm/m
Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 4 kNm/m
Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 8.8
kNm/m
Total; Mtotal = Mstem + Mbase + Mmoist + Msur = 21.8 kNm/m
Check bearing pressure
Distance to reaction; x = Mtotal / Ftotal_v = 574 mm
Eccentricity of reaction; e = x - lbase / 2 = -34 mm
Loaded length of base; lload = 2 × x = 1147 mm
Bearing pressure at toe; qtoe = Ftotal_v / lload = 33.1 kN/m
2
Bearing pressure at heel; qheel = 0 kN/m
2
Effective overburden pressure; q = (tbase + dcover) × γmb = 4.5 kN/m
2
Design effective overburden pressure; q' = q / γγ = 4.5 kN/m
2
Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2))
2
=
10.431
Nc = (Nq - 1) × cot(φ'b.d) = 20.418
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 8.712
Foundation shape factors; sq = 1
sγ = 1
sc = 1
Load inclination factors; H = Ftotal_h = 0 kN/m
V = Ftotal_v = 38 kN/m
m = 2
iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
m
= 1
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]
(m + 1)
= 1
ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γmb
× lload × Nγ × sγ × iγ = 136.9 kN/m
2
Factor of safety; FoSbp = nf / max(qtoe, qheel) = 4.132
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
RETAINING WALL DESIGN
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the
recommended values and EN1996-1-1:2005 incorporating Corrigenda dated February 2006 and
July 2009 and the recommended values
Concrete details - Table 3.1 - Strength and deformation characteristics for concrete
Concrete strength class; C30/37
Characteristic compressive cylinder strength; fck = 30 N/mm
2
Characteristic compressive cube strength; fck,cube = 37 N/mm
2
Mean value of compressive cylinder strength; fcm = fck + 8 N/mm
2
= 38 N/mm
2
Mean value of axial tensile strength; fctm = 0.3 N/mm
2
× (fck / 1 N/mm
2
)
2/3
= 2.9 N/mm
2
5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.0 N/mm
2
Secant modulus of elasticity of concrete; Ecm = 22 kN/mm
2
× (fcm / 10 N/mm
2
)
0.3
= 32837
N/mm2
Partial factor for concrete - Table 2.1N; γC = 1.50
Compressive strength coefficient - cl.3.1.6(1); αcc = 1.00
Design compressive concrete strength - exp.3.15; fcd = αcc × fck / γC = 20.0 N/mm
2
Maximum aggregate size; hagg = 20 mm
Reinforcement details
Characteristic yield strength of reinforcement; fyk = 500 N/mm
2
Modulus of elasticity of reinforcement; Es = 200000 N/mm
2
Partial factor for reinforcing steel - Table 2.1N; γS = 1.15
Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm
2
Cover to reinforcement
Top face of base; cbt = 50 mm
Bottom face of base; cbb = 75 mm
Masonry details - Section 3.1
Masonry type; Aggregate concrete - Group 1
Normalised mean compressive strength; fb = 10.4 N/mm
2
Characteristic flexural strength - cl.3.6.3(3); fxk = 0.1 N/mm
2
Initial shear strength - Table 3.4; fvko = 0.15 N/mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Mortar details - Section 3.2
Mortar type; General purpose - M6, prescribed mix
Compressive strength of mortar; fm = 6 N/mm
2
Ultimate limit states - cl.2.4.3(1)
Class of execution control; 1
Category of manufacture control; 1
Partial factor for direct or flexural compression; γMc = 1.7
Partial factor for flexural tension; γMt = 1.7
Partial factor for shear; γMv = 1.7
Characteristic strengths of concrete infill - Table 3.2
Concrete infill strength class; C25/30
Characteristic compressive strength; fck,infill = 25 N/mm
2
Characteristic shear strength; fcvk,infill = 0.45 N/mm
2
Design shear strength; fcvd,infill = fcvk,infill / γMv = 0.265 N/mm
2
Check stem design at base of stem
Depth of section; t = 215 mm
Pocket wall details
Length of pocket; lpocket = 200 mm
Depth of pocket; dpocket = 200 mm
Masonry cover to front of pocket; ppocket = 100 mm
Masonry cover to rear of pocket; cpocket = 100 mm
Spacing of pockets; spocket = 1000 mm
Masonry characteristics
Compressive strength constants - Table 3.3; K = 0.55
Characteristic compressive strength - cl.3.6.1.2(1); fk = K × fb
0.7
× fm
0.3
= 4.85 N/mm
2
Design compressive strength; fd = min(fk, fck,infill) / γMc = 2.853 N/mm
2
Design flexural strength; fxd = fxk / γMt = 0.059 N/mm
2
Height of masonry; hwt = hstem = 1800 mm
Compressive axial force combination 1; F = γGf × γstem × hwt × t = 9.7 kN/m
Eccentricity of axial load; e = 0 mm
Capacity reduction factor - exp.6.4; Φ = 1 - 2 × e / t = 1
Design vertical resistance - exp.6.2; NRd = Φ × t × fd = 613.4 kN/m
Design vertical compressive stress; σd = min(F / t, 0.15 × NRd / t) = 0.045 N/mm
2
Apparent design flexural strength - exp.6.16; fxd,app = fxd + σd = 0.104 N/mm
2
Characteristic shear strength - exp.3.5; fvk = min(fvko + 0.4 × σd, 0.065 × fb) = 0.168 N/mm
2
Design shear strength; fvd = fvk / γMv = 0.099 N/mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Reinforced masonry members subjected to bending, bending and axial loading, or axial loading
- Section 6.6
Design bending moment combination 1; M = 3.2 kNm/m
Tension reinforcement provided; 2 × 10 dia.bars @ 1000 c/c
Area of tension reinforcement provided; Asr.prov = 2 × π × φsr
2
/ (4 × spocket) = 157 mm
2
/m
Depth to tension reinforcement; d = 250 mm
Flange thickness - cl.6.6.3(1); tfl = min(tstem, 0.5 × d) = 125 mm
Rib thickness; trib = lpocket + 2 × cpocket = 400 mm
Effective flange width - cl.6.6.3; bfl = min(trib + 12 × tfl, spocket, hstem / 3) = 600 mm
Minimum area of reinforcement - cl.8.2.3(1); Asr.min = 0.0005 × (t + trib × (d - t) / spocket) = 115
mm
2
/m
Lever arm - exp.6.23; z = d × min(1 - 0.5 × Asr.prov × fyd × spocket / (bfl × d ×
fd), 0.95) = 230 mm
Moment of resistance - exp.6.22 and exp.6.28; MRd = min(Asr.prov × fyd × z, fd × bfl × tfl × (d - 0.5 × tfl)
/ spocket)
MRd = 15.7 kNm/m
M / MRd = 0.202
PASS - Moment of resistance exceeds applied design moment
Reinforced masonry members subjected to shear loading - Section 6.7
Design shear force; V = 8.327 kN/m
Design shear resistance - exp.6.40; VRd = min(fvd, fcvd,infill) × trib × d / spocket = 9.882 kN/m
V / VRd = 0.843
PASS - Design shear resistance exceeds applied design shear force
Note - The capacity of the wall stem to span between reinforced pockets is currently beyond the scope
of this calculation and should be verified independently.
Check base design at toe
Depth of section; h = 250 mm
Rectangular section in flexure - Section 6.1
Design bending moment combination 1; M = 2 kNm/m
Depth to tension reinforcement; d = h - cbb - φbb / 2 = 170 mm
K = M / (d
2
× fck) = 0.002
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K)
0.5
, 0.95) × d =
161 mm
Depth of neutral axis; x = 2.5 × (d – z) = 21 mm
Area of tension reinforcement required; Abb.req = M / (fyd × z) = 29 mm
2
/m
Tension reinforcement provided; 10 dia.bars @ 300 c/c
Area of tension reinforcement provided; Abb.prov = π × φbb
2
/ (4 × sbb) = 262 mm
2
/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 256
mm
2
/m
Maximum area of reinforcement - cl.9.2.1.1(3); Abb.max = 0.04 × h = 10000 mm
2
/m
max(Abb.req, Abb.min) / Abb.prov = 0.978
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width; wmax = 0.3 mm
Variable load factor - EN1990 – Table A1.1; ψ2 = 0.6
Serviceability bending moment; Msls = 1.5 kNm/m
Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 34.5 N/mm
2
Load duration; Long term
Load duration factor; kt = 0.4
Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 76250
mm
2
/m
Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm
2
Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.003
Modular ratio; αe = Es / Ecm = 6.091
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 750 mm
Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.078 mm
wk / wmax = 0.259
PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2
Design shear force; V = 11.6 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 2.000
Longitudinal reinforcement ratio; ρl = min(Abb.prov / d, 0.02) = 0.002
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.542 N/mm
2
Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × d
VRd.c = 92.2 kN/m
V / VRd.c = 0.126
PASS - Design shear resistance exceeds design shear force
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Rectangular section in flexure - Section 6.1
Design bending moment combination 2; M = 2.2 kNm/m
Depth to tension reinforcement; d = h - cbt - φbt / 2 = 194 mm
K = M / (d
2
× fck) = 0.002
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K)
0.5
, 0.95) × d =
184 mm
Depth of neutral axis; x = 2.5 × (d – z) = 24 mm
Area of tension reinforcement required; Abt.req = M / (fyd × z) = 27 mm
2
/m
Tension reinforcement provided; 12 dia.bars @ 300 c/c
Area of tension reinforcement provided; Abt.prov = π × φbt
2
/ (4 × sbt) = 377 mm
2
/m
Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 292
mm
2
/m
Maximum area of reinforcement - cl.9.2.1.1(3); Abt.max = 0.04 × h = 10000 mm
2
/m
max(Abt.req, Abt.min) / Abt.prov = 0.775
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width; wmax = 0.3 mm
Variable load factor - EN1990 – Table A1.1; ψ2 = 0.6
Serviceability bending moment; Msls = 0.4 kNm/m
Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 5.5 N/mm
2
Load duration; Long term
Load duration factor; kt = 0.4
Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 75250
mm
2
/m
Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm
2
Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.005
Modular ratio; αe = Es / Ecm = 6.091
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 577 mm
Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.009 mm
wk / wmax = 0.032
PASS - Maximum crack width is less than limiting crack width
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
Rectangular section in shear - Section 6.2
Design shear force; V = 6 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 2.000
Longitudinal reinforcement ratio; ρl = min(Abt.prov / d, 0.02) = 0.002
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.542 N/mm
2
Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × d
VRd.c = 105.2 kN/m
V / VRd.c = 0.058
PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2); Abx.req = 0.2 × Abt.prov = 75 mm
2
/m
Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm
Transverse reinforcement provided; 10 dia.bars @ 300 c/c
Area of transverse reinforcement provided; Abx.prov = π × φbx
2
/ (4 × sbx) = 262 mm
2
/m
PASS - Area of reinforcement provided is greater than area of reinforcement required
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
costas@sachpazis.info
Project: Pocket reinforced masonry Retaining Wall Analysis &
Design, In accordance with EN1997-1:2004 incorporating
Corrigendum dated February 2009 and the recommended
values.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
27/04/2014
Chk'd by
Date App'd by Date
215
100 200 100
400
2 × 10 dia.bars @ 1000 c/c
200 × 200 pockets
@ 1000 c/c with
2 × 10 dia.bars
250
12 dia.bars @ 300 c/c
10 dia.bars @ 300 c/c
10 dia.bars @ 300 c/c
transverse reinforcement
in base
75
50

More Related Content

What's hot

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Dr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Dr.Costas Sachpazis
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Dr.Costas Sachpazis
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleDr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 

What's hot (20)

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 

Similar to Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004

Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Dr.Costas Sachpazis
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing exampleabdullahmohideen
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Dr.Costas Sachpazis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxSamirsinh Parmar
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisDr.Costas Sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNIAEME Publication
 
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURES
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURESPROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURES
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURESIndrajit Sardar
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 

Similar to Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004 (17)

Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
 
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURES
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURESPROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURES
PROJECT REPORT ON SOIL REINFORCEMENT RETAINING STRUCTURES
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Sheet pile presentation
Sheet pile presentationSheet pile presentation
Sheet pile presentation
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 

More from Dr.Costas Sachpazis

Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr.Costas Sachpazis
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Dr.Costas Sachpazis
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...Dr.Costas Sachpazis
 

More from Dr.Costas Sachpazis (20)

Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
 

Recently uploaded

Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
Niintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxNiintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxKevinYaelJimnezSanti
 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssNadaMohammed714321
 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine CharlottePulte
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024digital learning point
 
The spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyThe spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyChristopher Totten
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppNadaMohammed714321
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptJIT KUMAR GUPTA
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks CharlottePulte
 
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Associazione Digital Days
 
Pearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxPearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxDanielTamiru4
 
Pharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfPharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfAayushChavan5
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssNadaMohammed714321
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfLucyBonelli
 
world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbpreetirao780
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxmarckustrevion
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
 

Recently uploaded (20)

Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
Niintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxNiintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptx
 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssss
 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024
 
The spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyThe spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenology
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 ppppppppppppppp
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks
 
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
 
Pearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxPearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptx
 
Pharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfPharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdf
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssss
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
 
world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbb
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptx
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
 

Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date RETAINING WALL ANALYSIS In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Retaining wall details Stem type; Cantilever Stem height; hstem = 1800 mm Stem thickness; tstem = 215 mm Angle to rear face of stem; α = 90 deg Stem density; γstem = 25 kN/m 3 Toe length; ltoe = 350 mm Heel length; lheel = 650 mm Base thickness; tbase = 250 mm Base density; γbase = 25 kN/m 3 Height of retained soil; hret = 900 mm Angle of soil surface; β = 0 deg Depth of cover; dcover = 0 mm Retained soil properties Soil type; Medium dense well graded sand Moist density; γmr = 21 kN/m 3 Saturated density; γsr = 23 kN/m 3 Characteristic effective shear resistance angle; φ'r.k = 30 deg Characteristic wall friction angle; δr.k = 0 deg Base soil properties Soil type; Medium dense well graded sand Moist density; γmb = 18 kN/m 3 Characteristic cohesion; c'b.k = 0 kN/m 2 Characteristic effective shear resistance angle; φ'b.k = 30 deg Characteristic wall friction angle; δb.k = 15 deg Characteristic base friction angle; δbb.k = 30 deg Loading details Variable surcharge load; SurchargeQ = 10 kN/m 2
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Calculate retaining wall geometry Base length; lbase = ltoe + tstem + lheel = 1215 mm Moist soil height; hmoist = hsoil = 900 mm Length of surcharge load; lsur = lheel = 650 mm - Distance to vertical component; xsur_v = lbase - lheel / 2 = 890 mm 2501800 900900 1150
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Effective height of wall; heff = hbase + dcover + hret = 1150 mm - Distance to horizontal component; xsur_h = heff / 2 = 575 mm Area of wall stem; Astem = hstem × tstem = 0.387 m 2 - Distance to vertical component; xstem = ltoe + tstem / 2 = 457 mm Area of wall base; Abase = lbase × tbase = 0.304 m 2 - Distance to vertical component; xbase = lbase / 2 = 607 mm Area of moist soil; Amoist = hmoist × lheel = 0.585 m 2 - Distance to vertical component; xmoist_v = lbase - (hmoist × lheel 2 / 2) / Amoist = 890 mm - Distance to horizontal component; xmoist_h = heff / 3 = 383 mm Partial factors on actions - Table A.3 - Combination 1 Permanent unfavourable action; γG = 1.35 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.50 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 1 Angle of shearing resistance; γφ' = 1.00 Effective cohesion; γc' = 1.00 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 30 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 0 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 30 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 15 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 30 deg Design effective cohesion; c'b.d = c'b.k / γc' = 0 kN/m 2 Using Coulomb theory Active pressure coefficient; KA = sin(α + φ'r.d) 2 / (sin(α) 2 × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] 2 ) = 0.333 Passive pressure coefficient; KP = sin(90 - φ'b.d) 2 / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] 2 ) = 4.977 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 6.2 kN/m Total; Ftotal_h = Fmoist_h + Fsur_h = 12 kN/m Check stability against sliding Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = 2.7 kN/m Base friction; Ffriction = Ftotal_v × tan(δbb.d) = 17.1 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 19.8 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.647 PASS - Resistance to sliding is greater than sliding force Overturning check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 6.2 kN/m Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = -2.7 kN/m Total; Ftotal_h = Fmoist_h + Fexc_h + Fsur_h = 9.3 kN/m Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 3.3 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 2.4 kNm/m Total; Mtotal_OT = Mmoist_OT + Msur_OT = 5.7 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 4.4 kNm/m Wall base; Mbase_R = Fbase × xbase = 4.6 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 10.9 kNm/m Base soil; Mexc_R = -Fexc_h × xexc_h = 0.2 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Mmoist_R + Mexc_R = 20.2 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 3.543
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date PASS - Maximum restoring moment is greater than overturning moment Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 13.1 kN/m Wall base; Fbase = γG × Abase × γbase = 10.3 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 9.8 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 16.6 kN/m Total; Ftotal_v = Fstem + Fbase + Fmoist_v + Fsur_v = 49.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 5.8 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 6.2 kN/m Total; Ftotal_h = max(Fmoist_h + Fpass_h + Fsur_h - Ftotal_v × tan(δbb.d), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 6 kNm/m Wall base; Mbase = Fbase × xbase = 6.2 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 5.4 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 12.4 kNm/m Total; Mtotal = Mstem + Mbase + Mmoist + Msur = 29.9 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 603 mm Eccentricity of reaction; e = x - lbase / 2 = -4 mm Loaded length of base; lload = 2 × x = 1206 mm Bearing pressure at toe; qtoe = Ftotal_v / lload = 41.2 kN/m 2 Bearing pressure at heel; qheel = 0 kN/m 2 Effective overburden pressure; q = (tbase + dcover) × γmb = 4.5 kN/m 2 Design effective overburden pressure; q' = q / γγ = 4.5 kN/m 2 Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) 2 = 18.401 Nc = (Nq - 1) × cot(φ'b.d) = 30.14 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 20.093 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h = 0 kN/m V = Ftotal_v = 49.6 kN/m m = 2
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] m = 1 iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) = 1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γmb × lload × Nγ × sγ × iγ = 300.9 kN/m 2 Factor of safety; FoSbp = nf / max(qtoe, qheel) = 7.31 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Partial factors on actions - Table A.3 - Combination 2 Permanent unfavourable action; γG = 1.00 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.30 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 2 Angle of shearing resistance; γφ' = 1.25 Effective cohesion; γc' = 1.25 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 24.8 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 0 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 24.8 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 12.1 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 24.8 deg Design effective cohesion; c'b.d = c'b.k / γc' = 0 kN/m 2 Using Coulomb theory Active pressure coefficient; KA = sin(α + φ'r.d) 2 / (sin(α) 2 × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + β))]] 2 ) = 0.409 Passive pressure coefficient; KP = sin(90 - φ'b.d) 2 / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] 2 ) = 3.473 Sliding check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 5.7 kN/m Total; Ftotal_h = Fmoist_h + Fsur_h = 11.8 kN/m Check stability against sliding Base soil resistance; Fexc_h = γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = 1.9 kN/m Base friction; Ffriction = Ftotal_v × tan(δbb.d) = 13.7 kN/m Resistance to sliding; Frest = Fexc_h + Ffriction = 15.6 kN/m Factor of safety; FoSsl = Frest / Ftotal_h = 1.319 PASS - Resistance to sliding is greater than sliding force Overturning check Vertical forces on wall Wall stem; Fstem = γGf × Astem × γstem = 9.7 kN/m Wall base; Fbase = γGf × Abase × γbase = 7.6 kN/m Moist retained soil; Fmoist_v = γGf × Amoist × γmr = 12.3 kN/m Total; Ftotal_v = Fstem + Fbase + Fmoist_v = 29.6 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 5.7 kN/m Base soil; Fexc_h = -γGf × KP × cos(δb.d) × γmb × (hpass + hbase) 2 / 2 = -1.9 kN/m Total; Ftotal_h = Fmoist_h + Fexc_h + Fsur_h = 9.9 kN/m Overturning moments on wall Surcharge load; Msur_OT = Fsur_h × xsur_h = 3.5 kNm/m Moist retained soil; Mmoist_OT = Fmoist_h × xmoist_h = 2.2 kNm/m Total; Mtotal_OT = Mmoist_OT + Msur_OT = 5.7 kNm/m Restoring moments on wall Wall stem; Mstem_R = Fstem × xstem = 4.4 kNm/m Wall base; Mbase_R = Fbase × xbase = 4.6 kNm/m Moist retained soil; Mmoist_R = Fmoist_v × xmoist_v = 10.9 kNm/m Base soil; Mexc_R = -Fexc_h × xexc_h = 0.2 kNm/m Total; Mtotal_R = Mstem_R + Mbase_R + Mmoist_R + Mexc_R = 20.1 kNm/m Check stability against overturning Factor of safety; FoSot = Mtotal_R / Mtotal_OT = 3.535 PASS - Maximum restoring moment is greater than overturning moment
  • 8. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 9.7 kN/m Wall base; Fbase = γG × Abase × γbase = 7.6 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 8.5 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 12.3 kN/m Total; Ftotal_v = Fstem + Fbase + Fmoist_v + Fsur_v = 38 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × γQ × SurchargeQ × heff = 6.1 kN/m Moist retained soil; Fmoist_h = γG × KA × γmr × heff 2 / 2 = 5.7 kN/m Total; Ftotal_h = max(Fmoist_h + Fpass_h + Fsur_h - Ftotal_v × tan(δbb.d), 0 kN/m) = 0 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 4.4 kNm/m Wall base; Mbase = Fbase × xbase = 4.6 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 4 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 8.8 kNm/m Total; Mtotal = Mstem + Mbase + Mmoist + Msur = 21.8 kNm/m Check bearing pressure Distance to reaction; x = Mtotal / Ftotal_v = 574 mm Eccentricity of reaction; e = x - lbase / 2 = -34 mm Loaded length of base; lload = 2 × x = 1147 mm Bearing pressure at toe; qtoe = Ftotal_v / lload = 33.1 kN/m 2 Bearing pressure at heel; qheel = 0 kN/m 2 Effective overburden pressure; q = (tbase + dcover) × γmb = 4.5 kN/m 2 Design effective overburden pressure; q' = q / γγ = 4.5 kN/m 2 Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) 2 = 10.431 Nc = (Nq - 1) × cot(φ'b.d) = 20.418 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 8.712 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h = 0 kN/m V = Ftotal_v = 38 kN/m m = 2 iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] m = 1
  • 9. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) = 1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γmb × lload × Nγ × sγ × iγ = 136.9 kN/m 2 Factor of safety; FoSbp = nf / max(qtoe, qheel) = 4.132 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure RETAINING WALL DESIGN In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values and EN1996-1-1:2005 incorporating Corrigenda dated February 2006 and July 2009 and the recommended values Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C30/37 Characteristic compressive cylinder strength; fck = 30 N/mm 2 Characteristic compressive cube strength; fck,cube = 37 N/mm 2 Mean value of compressive cylinder strength; fcm = fck + 8 N/mm 2 = 38 N/mm 2 Mean value of axial tensile strength; fctm = 0.3 N/mm 2 × (fck / 1 N/mm 2 ) 2/3 = 2.9 N/mm 2 5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.0 N/mm 2 Secant modulus of elasticity of concrete; Ecm = 22 kN/mm 2 × (fcm / 10 N/mm 2 ) 0.3 = 32837 N/mm2 Partial factor for concrete - Table 2.1N; γC = 1.50 Compressive strength coefficient - cl.3.1.6(1); αcc = 1.00 Design compressive concrete strength - exp.3.15; fcd = αcc × fck / γC = 20.0 N/mm 2 Maximum aggregate size; hagg = 20 mm Reinforcement details Characteristic yield strength of reinforcement; fyk = 500 N/mm 2 Modulus of elasticity of reinforcement; Es = 200000 N/mm 2 Partial factor for reinforcing steel - Table 2.1N; γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm 2 Cover to reinforcement Top face of base; cbt = 50 mm Bottom face of base; cbb = 75 mm Masonry details - Section 3.1 Masonry type; Aggregate concrete - Group 1 Normalised mean compressive strength; fb = 10.4 N/mm 2 Characteristic flexural strength - cl.3.6.3(3); fxk = 0.1 N/mm 2 Initial shear strength - Table 3.4; fvko = 0.15 N/mm 2
  • 10. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Mortar details - Section 3.2 Mortar type; General purpose - M6, prescribed mix Compressive strength of mortar; fm = 6 N/mm 2 Ultimate limit states - cl.2.4.3(1) Class of execution control; 1 Category of manufacture control; 1 Partial factor for direct or flexural compression; γMc = 1.7 Partial factor for flexural tension; γMt = 1.7 Partial factor for shear; γMv = 1.7 Characteristic strengths of concrete infill - Table 3.2 Concrete infill strength class; C25/30 Characteristic compressive strength; fck,infill = 25 N/mm 2 Characteristic shear strength; fcvk,infill = 0.45 N/mm 2 Design shear strength; fcvd,infill = fcvk,infill / γMv = 0.265 N/mm 2 Check stem design at base of stem Depth of section; t = 215 mm Pocket wall details Length of pocket; lpocket = 200 mm Depth of pocket; dpocket = 200 mm Masonry cover to front of pocket; ppocket = 100 mm Masonry cover to rear of pocket; cpocket = 100 mm Spacing of pockets; spocket = 1000 mm Masonry characteristics Compressive strength constants - Table 3.3; K = 0.55 Characteristic compressive strength - cl.3.6.1.2(1); fk = K × fb 0.7 × fm 0.3 = 4.85 N/mm 2 Design compressive strength; fd = min(fk, fck,infill) / γMc = 2.853 N/mm 2 Design flexural strength; fxd = fxk / γMt = 0.059 N/mm 2 Height of masonry; hwt = hstem = 1800 mm Compressive axial force combination 1; F = γGf × γstem × hwt × t = 9.7 kN/m Eccentricity of axial load; e = 0 mm Capacity reduction factor - exp.6.4; Φ = 1 - 2 × e / t = 1 Design vertical resistance - exp.6.2; NRd = Φ × t × fd = 613.4 kN/m Design vertical compressive stress; σd = min(F / t, 0.15 × NRd / t) = 0.045 N/mm 2 Apparent design flexural strength - exp.6.16; fxd,app = fxd + σd = 0.104 N/mm 2 Characteristic shear strength - exp.3.5; fvk = min(fvko + 0.4 × σd, 0.065 × fb) = 0.168 N/mm 2 Design shear strength; fvd = fvk / γMv = 0.099 N/mm 2
  • 11. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Reinforced masonry members subjected to bending, bending and axial loading, or axial loading - Section 6.6 Design bending moment combination 1; M = 3.2 kNm/m Tension reinforcement provided; 2 × 10 dia.bars @ 1000 c/c Area of tension reinforcement provided; Asr.prov = 2 × π × φsr 2 / (4 × spocket) = 157 mm 2 /m Depth to tension reinforcement; d = 250 mm Flange thickness - cl.6.6.3(1); tfl = min(tstem, 0.5 × d) = 125 mm Rib thickness; trib = lpocket + 2 × cpocket = 400 mm Effective flange width - cl.6.6.3; bfl = min(trib + 12 × tfl, spocket, hstem / 3) = 600 mm Minimum area of reinforcement - cl.8.2.3(1); Asr.min = 0.0005 × (t + trib × (d - t) / spocket) = 115 mm 2 /m Lever arm - exp.6.23; z = d × min(1 - 0.5 × Asr.prov × fyd × spocket / (bfl × d × fd), 0.95) = 230 mm Moment of resistance - exp.6.22 and exp.6.28; MRd = min(Asr.prov × fyd × z, fd × bfl × tfl × (d - 0.5 × tfl) / spocket) MRd = 15.7 kNm/m M / MRd = 0.202 PASS - Moment of resistance exceeds applied design moment Reinforced masonry members subjected to shear loading - Section 6.7 Design shear force; V = 8.327 kN/m Design shear resistance - exp.6.40; VRd = min(fvd, fcvd,infill) × trib × d / spocket = 9.882 kN/m V / VRd = 0.843 PASS - Design shear resistance exceeds applied design shear force Note - The capacity of the wall stem to span between reinforced pockets is currently beyond the scope of this calculation and should be verified independently. Check base design at toe Depth of section; h = 250 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1; M = 2 kNm/m Depth to tension reinforcement; d = h - cbb - φbb / 2 = 170 mm K = M / (d 2 × fck) = 0.002 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) 0.5 , 0.95) × d = 161 mm Depth of neutral axis; x = 2.5 × (d – z) = 21 mm Area of tension reinforcement required; Abb.req = M / (fyd × z) = 29 mm 2 /m Tension reinforcement provided; 10 dia.bars @ 300 c/c Area of tension reinforcement provided; Abb.prov = π × φbb 2 / (4 × sbb) = 262 mm 2 /m
  • 12. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 256 mm 2 /m Maximum area of reinforcement - cl.9.2.1.1(3); Abb.max = 0.04 × h = 10000 mm 2 /m max(Abb.req, Abb.min) / Abb.prov = 0.978 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.6 Serviceability bending moment; Msls = 1.5 kNm/m Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 34.5 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 76250 mm 2 /m Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm 2 Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.003 Modular ratio; αe = Es / Ecm = 6.091 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 750 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.078 mm wk / wmax = 0.259 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 11.6 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 2.000 Longitudinal reinforcement ratio; ρl = min(Abb.prov / d, 0.02) = 0.002 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.542 N/mm 2 Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × d VRd.c = 92.2 kN/m V / VRd.c = 0.126 PASS - Design shear resistance exceeds design shear force
  • 13. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Rectangular section in flexure - Section 6.1 Design bending moment combination 2; M = 2.2 kNm/m Depth to tension reinforcement; d = h - cbt - φbt / 2 = 194 mm K = M / (d 2 × fck) = 0.002 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; z = min(0.5 + 0.5 × (1 – 3.53 × K) 0.5 , 0.95) × d = 184 mm Depth of neutral axis; x = 2.5 × (d – z) = 24 mm Area of tension reinforcement required; Abt.req = M / (fyd × z) = 27 mm 2 /m Tension reinforcement provided; 12 dia.bars @ 300 c/c Area of tension reinforcement provided; Abt.prov = π × φbt 2 / (4 × sbt) = 377 mm 2 /m Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 292 mm 2 /m Maximum area of reinforcement - cl.9.2.1.1(3); Abt.max = 0.04 × h = 10000 mm 2 /m max(Abt.req, Abt.min) / Abt.prov = 0.775 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.6 Serviceability bending moment; Msls = 0.4 kNm/m Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 5.5 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 75250 mm 2 /m Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm 2 Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.005 Modular ratio; αe = Es / Ecm = 6.091 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 577 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.009 mm wk / wmax = 0.032 PASS - Maximum crack width is less than limiting crack width
  • 14. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date Rectangular section in shear - Section 6.2 Design shear force; V = 6 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 2.000 Longitudinal reinforcement ratio; ρl = min(Abt.prov / d, 0.02) = 0.002 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.542 N/mm 2 Design shear resistance - exp.6.2a & 6.2b; VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × d VRd.c = 105.2 kN/m V / VRd.c = 0.058 PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); Abx.req = 0.2 × Abt.prov = 75 mm 2 /m Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm Transverse reinforcement provided; 10 dia.bars @ 300 c/c Area of transverse reinforcement provided; Abx.prov = π × φbx 2 / (4 × sbx) = 262 mm 2 /m PASS - Area of reinforcement provided is greater than area of reinforcement required
  • 15. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Pocket reinforced masonry Retaining Wall Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. www.geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 27/04/2014 Chk'd by Date App'd by Date 215 100 200 100 400 2 × 10 dia.bars @ 1000 c/c 200 × 200 pockets @ 1000 c/c with 2 × 10 dia.bars 250 12 dia.bars @ 300 c/c 10 dia.bars @ 300 c/c 10 dia.bars @ 300 c/c transverse reinforcement in base 75 50