SlideShare a Scribd company logo
1 of 7
Download to read offline
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Chk'd by

Date

Dr.C.Sachpazis 23/05/2013

Date

1
App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

RC SLAB DESIGN
In accordance with EN1992-1-1:2004 incorporating corrigendum January
2008 and the recommended values

7200
Slab definition
;
Type of slab;

Two way spanning with restrained edges

Overall slab depth;

h = 200 mm

Shorter effective span of panel;

lx = 6000 mm

Longer effective span of panel;

ly = 7200 mm

Support conditions;

Two adjacent edges discontinuous

Top outer layer of reinforcement;

Short span direction
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Chk'd by

Date

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Bottom outer layer of reinforcement;

Short span direction

Loading
Characteristic permanent action;

Gk = 6.0 kN/m

2

Characteristic variable action;

Qk = 5.0 kN/m

2

Partial factor for permanent action;

γG = 1.35

Partial factor for variable action;

γQ = 1.50

Quasi-permanent value of variable action;

ψ2 = 0.30

Design ultimate load;

q = γG × Gk + γQ × Qk = 15.6 kN/m

Quasi-permanent load;

qSLS = 1.0 × Gk + ψ2 × Qk = 7.5 kN/m

2
2

Concrete properties
Concrete strength class;

C25/30

Characteristic cylinder strength;

fck = 25 N/mm

Partial factor (Table 2.1N);

γC = 1.50

2

Compressive strength factor (cl. 3.1.6);

αcc = 1.00

Design compressive strength (cl. 3.1.6);

fcd = 16.7 N/mm

Mean axial tensile strength (Table 3.1);

fctm = 0.30 N/mm × (fck / 1 N/mm )

Maximum aggregate size;

dg = 20 mm

2
2

2 2/3

= 2.6 N/mm

2

Reinforcement properties
Characteristic yield strength;

fyk = 500 N/mm

2

Partial factor (Table 2.1N);

γS = 1.15

Design yield strength (fig. 3.8);

fyd = fyk / γS = 434.8 N/mm

2

Concrete cover to reinforcement
Nominal cover to outer top reinforcement;

cnom_t = 25 mm

Nominal cover to outer bottom reinforcement;

cnom_b = 20 mm

Fire resistance period to top of slab;

Rtop = 60 min

Fire resistance period to bottom of slab;

Rbtm = 60 min

Axia distance to top reinft (Table 5.8);

afi_t = 10 mm

Axia distance to bottom reinft (Table 5.8);

afi_b = 10 mm

Min. top cover requirement with regard to bond;

cmin,b_t = 12 mm

Min. btm cover requirement with regard to bond;

cmin,b_b = 10 mm

Reinforcement fabrication;

Subject to QA system

Cover allowance for deviation;

∆cdev = 5 mm

Min. required nominal cover to top reinft;

cnom_t_min = 17.0 mm

Min. required nominal cover to bottom reinft;

cnom_b_min = 15.0 mm

PASS - There is sufficient cover to the top reinforcement
PASS - There is sufficient cover to the bottom reinforcement
Reinforcement design at midspan in short span direction (cl.6.1)
Bending moment coefficient;

βsx_p = 0.0470

Design bending moment;

Mx_p = βsx_p × q × lx = 26.4 kNm/m

Reinforcement provided;

10 mm dia. bars at 200 mm centres

2
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Chk'd by

Date

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

2

Area provided;

Asx_p = 393 mm /m

Effective depth to tension reinforcement;

dx_p = h - cnom_b - φx_p / 2 = 175.0 mm

K factor;

K = Mx_p / (b × dx_p × fck) = 0.034

Redistribution ratio;

δ = 1.0

K’ factor;

K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208

2

2

K < K' - Compression reinforcement is not required
0.5

Lever arm;

z = min(0.95 × dx_p, dx_p/2 × (1 + (1 - 3.53×K) )) =

166.3 mm
2

Area of reinforcement required for bending;

Asx_p_m = Mx_p / (fyd × z) = 365 mm /m

Minimum area of reinforcement required;

Asx_p_min = max(0.26 × (fctm/fyk) × b × dx_p,

2

0.0013×b×dx_p) = 233 mm /m
2

Asx_p_req = max(Asx_p_m, Asx_p_min) = 365 mm /m

Area of reinforcement required;

PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing
Reinforcement service stress;
= 194.4 N/mm

σsx_p = (fyk / γS) × min((Asx_p_m/Asx_p), 1.0) × qSLS / q

2

Maximum allowable spacing (Table 7.3N);
Actual bar spacing;

smax_x_p = 257 mm
sx_p = 200 mm
PASS - The reinforcement spacing is acceptable

Reinforcement design at midspan in long span direction (cl.6.1)
Bending moment coefficient;

βsy_p = 0.0340

Design bending moment;

My_p = βsy_p × q × lx = 19.1 kNm/m

2

Reinforcement provided;

10 mm dia. bars at 250 mm centres

Area provided;

Asy_p = 314 mm /m

2

Effective depth to tension reinforcement;

dy_p = h - cnom_b - φx_p - φy_p / 2 = 165.0 mm

K factor;

K = My_p / (b × dy_p × fck) = 0.028

Redistribution ratio;

δ = 1.0

K’ factor;

K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208

2

2

K < K' - Compression reinforcement is not required
0.5

Lever arm;

z = min(0.95 × dy_p, dy_p/2 × (1 + (1 - 3.53×K) )) =

156.8 mm
2

Area of reinforcement required for bending;

Asy_p_m = My_p / (fyd × z) = 280 mm /m

Minimum area of reinforcement required;

Asy_p_min = max(0.26 × (fctm/fyk) × b × dy_p,

2

0.0013×b×dy_p) = 220 mm /m
2

Area of reinforcement required;

Asy_p_req = max(Asy_p_m, Asy_p_min) = 280 mm /m
PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing
Reinforcement service stress;
= 186.4 N/mm

σsy_p = (fyk / γS) × min((Asy_p_m/Asy_p), 1.0) × qSLS / q

2

Maximum allowable spacing (Table 7.3N);

smax_y_p = 267 mm
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Chk'd by

Date

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Actual bar spacing;

sy_p = 250 mm
PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in short span direction (cl.6.1)
Bending moment coefficient;

βsx_n = 0.0630

Design bending moment;

Mx_n = βsx_n × q × lx = 35.4 kNm/m

Reinforcement provided;

12 mm dia. bars at 200 mm centres

Area provided;

Asx_n = 565 mm /m

Effective depth to tension reinforcement;

dx_n = h - cnom_t - φx_n / 2 = 169.0 mm

K factor;

K = Mx_n / (b × dx_n × fck) = 0.050

Redistribution ratio;

δ = 1.0

K’ factor;

K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208

2

2

2

2

K < K' - Compression reinforcement is not required
0.5

Lever arm;

z = min(0.95 × dx_n, dx_n/2 × (1 + (1 - 3.53×K) )) =

160.5 mm
2

Area of reinforcement required for bending;

Asx_n_m = Mx_n / (fyd × z) = 507 mm /m

Minimum area of reinforcement required;

Asx_n_min = max(0.26 × (fctm/fyk) × b × dx_n,

2

0.0013×b×dx_n) = 225 mm /m
2

Area of reinforcement required;

Asx_n_req = max(Asx_n_m, Asx_n_min) = 507 mm /m
PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing
Reinforcement service stress;
= 187.4 N/mm

σsx_n = (fyk / γS) × min((Asx_n_m/Asx_n), 1.0) × qSLS / q

2

Maximum allowable spacing (Table 7.3N);
Actual bar spacing;

smax_x_n = 266 mm
sx_n = 200 mm
PASS - The reinforcement spacing is acceptable

Reinforcement design at continuous support in long span direction (cl.6.1)
Bending moment coefficient;

βsy_n = 0.0450

Design bending moment;

My_n = βsy_n × q × lx = 25.3 kNm/m

2

Reinforcement provided;

10 mm dia. bars at 200 mm centres

Area provided;

Asy_n = 393 mm /m

2

Effective depth to tension reinforcement;

dy_n = h - cnom_t - φx_n - φy_n / 2 = 158.0 mm

K factor;

K = My_n / (b × dy_n × fck) = 0.040

Redistribution ratio;

δ = 1.0

K’ factor;

K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208

2

2

K < K' - Compression reinforcement is not required
0.5

Lever arm;

z = min(0.95 × dy_n, dy_n/2 × (1 + (1 - 3.53×K) )) =

150.1 mm
2

Area of reinforcement required for bending;

Asy_n_m = My_n / (fyd × z) = 387 mm /m

Minimum area of reinforcement required;

Asy_n_min = max(0.26 × (fctm/fyk) × b × dy_n,

2

0.0013×b×dy_n) = 211 mm /m
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

2

Area of reinforcement required;

Asy_n_req = max(Asy_n_m, Asy_n_min) = 387 mm /m
PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing
Reinforcement service stress;
= 206.1 N/mm

σsy_n = (fyk / γS) × min((Asy_n_m/Asy_n), 1.0) × qSLS / q

2

Maximum allowable spacing (Table 7.3N);

smax_y_n = 242 mm

Actual bar spacing;

sy_n = 200 mm
PASS - The reinforcement spacing is acceptable

Shear capacity check at short span continuous support
Shear force;

Vx_n = q × lx / 2 + Mx_n / lx = 52.7 kN/m

Effective depth factor (cl. 6.2.2);

k = min(2.0, 1 + (200 mm / dx_n) ) = 2.000

Reinforcement ratio;

ρl = min(0.02, Asx_n / (b × dx_n)) = 0.0033

Minimum shear resistance (Exp. 6.3N);

VRd,c_min = 0.035 N/mm × k

0.5

2

1.5

2 0.5

× (fck / 1 N/mm )

×

b × dx_n
VRd,c_min = 83.7 kN/m
Shear resistance (Exp. 6.2a);
2

N/mm ))

0.333

2

VRd,c_x_n = max(VRd,c_min, (0.18 N/mm / γC) × k × (100 × ρl × (fck / 1

× b × dx_n)
VRd,c_x_n = 83.7 kN/m
PASS - Shear capacity is adequate

Shear capacity check at long span continuous support
Shear force;

Vy_n = q × lx / 2 + My_n / ly = 50.3 kN/m

Effective depth factor (cl. 6.2.2);

k = min(2.0, 1 + (200 mm / dy_n) ) = 2.000

Reinforcement ratio;

ρl = min(0.02, Asy_n / (b × dy_n)) = 0.0025

Minimum shear resistance (Exp. 6.3N);

VRd,c_min = 0.035 N/mm × k

0.5

2

1.5

2 0.5

× (fck / 1 N/mm )

×

b × dy_n
VRd,c_min = 78.2 kN/m
Shear resistance (Exp. 6.2a);
2

N/mm ))

0.333

2

VRd,c_y_n = max(VRd,c_min, (0.18 N/mm / γC) × k × (100 × ρl × (fck / 1

× b × dy_n)
VRd,c_y_n = 78.2 kN/m
PASS - Shear capacity is adequate

Shear capacity check at short span discontinuous support
Shear force;

Vx_d = q × lx / 2 = ;46.8; kN/m;

Reinforcement provided;

8 mm dia. bars at 200 mm centres

Area provided;

Asx_d = 251 mm /m

Effective depth;

dx_d = h - cnom_b - φx_d / 2 = ;176.0; mm

Effective depth factor;

k = min(2.0, 1 + (200 mm / dx_d) ) = 2.000

2

0.5

Reinforcement ratio;

ρl = min(0.02, Asx_d / (b × dx_d)) = 0.0014

Minimum shear resistance;

VRd,c_min = 0.035 N/mm × k

2

b × dx_d
VRd,c_min = 87.1 kN/m

1.5

2 0.5

× (fck / 1 N/mm )

×
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Chk'd by

Date

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

2

Shear resistance;
2

N/mm ))

0.333

VRd,c_x_d = max(VRd,c_min, 0.18 N/mm / γC × k × (100 × ρl × (fck/1

× b × dx_d)
VRd,c_x_d = 87.1 kN/m
PASS - Shear capacity is adequate (0.537)

Shear capacity check at long span discontinuous support
Shear force;

Vy_d = q × lx / 2 = ;46.8; kN/m;

Reinforcement provided;

8 mm dia. bars at 250 mm centres

Area provided;

Asy_d = 201 mm /m

2

Effective depth;

dy_d = h - cnom_b - φx_p - φy_d / 2 = ;166.0; mm

Effective depth factor;

k = min(2.0, 1 + (200 mm / dy_d) ) = 2.000

Reinforcement ratio;

ρl = min(0.02, Asy_d / (b × dy_d)) = 0.0012

Minimum shear resistance;

VRd,c_min = 0.035 N/mm × k

0.5

2

1.5

2 0.5

× (fck / 1 N/mm )

×

b × dy_d
VRd,c_min = 82.2 kN/m
2

Shear resistance;
2

N/mm ))

0.333

VRd,c_y_d = max(VRd,c_min, 0.18 N/mm / γC × k × (100 × ρl × (fck/1

× b × dy_d)
VRd,c_y_d = 82.2 kN/m
PASS - Shear capacity is adequate (0.570)

Basic span-to-depth deflection ratio check (cl. 7.4.2)
2 0.5

Reference reinforcement ratio;

ρ0 = (fck / 1 N/mm )

/ 1000 = 0.0050

Required tension reinforcement ratio;

ρ = max(0.0035, Asx_p_req / (b × dx_p)) = 0.0035

Required compression reinforcement ratio;

ρ’ = Ascx_p_req / (b × dx_p) = 0.0000

Stuctural system factor (Table 7.4N);

Kδ = 1.3
2 0.5

Basic limit span-to-depth ratio; ratiolim_x_bas = Kδ × [11 +1.5×(fck/1 N/mm ) ×ρ0/ρ + 3.2×(fck/1
2 0.5

1.5

N/mm ) ×(ρ0/ρ -1) ]
(Exp. 7.16);

ratiolim_x_bas = 34.06

Modified limit span-to-eff. depth ratio;

ratiolim_x = min(1.5, (500 N/mm /fyk)×( Asx_p/Asx_p_m))

2

× ratiolim_x_bas = 36.63
Actual span-to-eff. depth ratio;

ratioact_x = lx / dx_p = 34.29
PASS - Actual span-to-effective depth ratio is acceptable

Reinforcement summary
Midspan in short span direction;

10 mm dia. bars at 200 mm centres B1

Midspan in long span direction;

10 mm dia. bars at 250 mm centres B2

Continuous support in short span direction;

12 mm dia. bars at 200 mm centres T1

Continuous support in long span direction;

10 mm dia. bars at 200 mm centres T2

Discontinuous support in short span direction;

8 mm dia. bars at 200 mm centres B1

Discontinuous support in long span direction;

8 mm dia. bars at 250 mm centres B2

Reinforcement sketch
The following sketch is indicative only. Note that additional reinforcement may be required in
accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.
Project

Job Ref.

Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004)
Section

Sheet no./rev.

Civil & Geotechnical Engineering
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

-

8mm bars @ 250 ctrs B2

10mm bars @ 250 ctrs B2

10mm bars @ 200 ctrs T2

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Date

1
App'd by

Date

More Related Content

What's hot

Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Dr.Costas Sachpazis
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...Hossam Shafiq II
 
4th 2 lecture shear and moment diagram structure i
4th 2  lecture shear and moment diagram structure i4th 2  lecture shear and moment diagram structure i
4th 2 lecture shear and moment diagram structure imuhand mousa
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Mohammed Zakaria
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wallAchuthan Karnnan
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Dr.Costas Sachpazis
 
04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulsslsluantvconst
 
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...Hossam Shafiq II
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sirSHAMJITH KM
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...Hossam Shafiq II
 

What's hot (20)

Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
 
Design of pile cap
Design of pile capDesign of pile cap
Design of pile cap
 
4th 2 lecture shear and moment diagram structure i
4th 2  lecture shear and moment diagram structure i4th 2  lecture shear and moment diagram structure i
4th 2 lecture shear and moment diagram structure i
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wall
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2
 
04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls
 
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Steel warehouse design report
Steel warehouse design reportSteel warehouse design report
Steel warehouse design report
 
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
18-Beam Column Strength (Steel Structural Design & Prof. Shehab Mourad)
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
17-Examples of Beams (Steel Structural Design & Prof. Shehab Mourad)
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
 

Similar to Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example

Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and designKingsley Aboagye
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxDP NITHIN
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Structural Design
Structural DesignStructural Design
Structural DesignVj NiroSh
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsMagdel Kotze
 
Сalculation of the сentral node
Сalculation of the сentral nodeСalculation of the сentral node
Сalculation of the сentral nodeDmitriy Semenov
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatasWalther Castro
 

Similar to Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example (20)

Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
KUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdfKUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdf
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
 
Сalculation of the сentral node
Сalculation of the сentral nodeСalculation of the сentral node
Сalculation of the сentral node
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 

More from Dr.Costas Sachpazis

Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 

More from Dr.Costas Sachpazis (20)

Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 

Recently uploaded

world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbpreetirao780
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptJIT KUMAR GUPTA
 
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道yrolcks
 
10 must-have Chrome extensions for designers
10 must-have Chrome extensions for designers10 must-have Chrome extensions for designers
10 must-have Chrome extensions for designersPixeldarts
 
Iconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic global solution
 
Pearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxPearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxDanielTamiru4
 
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxUnit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxNitish292041
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppNadaMohammed714321
 
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Associazione Digital Days
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024digital learning point
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks CharlottePulte
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxmarckustrevion
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssNadaMohammed714321
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppNadaMohammed714321
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfLucyBonelli
 

Recently uploaded (20)

world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbb
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
 
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道
怎么办理英国Newcastle毕业证纽卡斯尔大学学位证书一手渠道
 
10 must-have Chrome extensions for designers
10 must-have Chrome extensions for designers10 must-have Chrome extensions for designers
10 must-have Chrome extensions for designers
 
Iconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing services
 
Pearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptxPearl Disrtrict urban analyusis study pptx
Pearl Disrtrict urban analyusis study pptx
 
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxUnit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 ppppppppppppppp
 
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
Giulio Michelon, Founder di @Belka – “Oltre le Stime: Sviluppare una Mentalit...
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptx
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssss
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 ppppppppppppppp
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
 

Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example

  • 1. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Chk'd by Date Dr.C.Sachpazis 23/05/2013 Date 1 App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info RC SLAB DESIGN In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the recommended values 7200 Slab definition ; Type of slab; Two way spanning with restrained edges Overall slab depth; h = 200 mm Shorter effective span of panel; lx = 6000 mm Longer effective span of panel; ly = 7200 mm Support conditions; Two adjacent edges discontinuous Top outer layer of reinforcement; Short span direction
  • 2. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Chk'd by Date Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Bottom outer layer of reinforcement; Short span direction Loading Characteristic permanent action; Gk = 6.0 kN/m 2 Characteristic variable action; Qk = 5.0 kN/m 2 Partial factor for permanent action; γG = 1.35 Partial factor for variable action; γQ = 1.50 Quasi-permanent value of variable action; ψ2 = 0.30 Design ultimate load; q = γG × Gk + γQ × Qk = 15.6 kN/m Quasi-permanent load; qSLS = 1.0 × Gk + ψ2 × Qk = 7.5 kN/m 2 2 Concrete properties Concrete strength class; C25/30 Characteristic cylinder strength; fck = 25 N/mm Partial factor (Table 2.1N); γC = 1.50 2 Compressive strength factor (cl. 3.1.6); αcc = 1.00 Design compressive strength (cl. 3.1.6); fcd = 16.7 N/mm Mean axial tensile strength (Table 3.1); fctm = 0.30 N/mm × (fck / 1 N/mm ) Maximum aggregate size; dg = 20 mm 2 2 2 2/3 = 2.6 N/mm 2 Reinforcement properties Characteristic yield strength; fyk = 500 N/mm 2 Partial factor (Table 2.1N); γS = 1.15 Design yield strength (fig. 3.8); fyd = fyk / γS = 434.8 N/mm 2 Concrete cover to reinforcement Nominal cover to outer top reinforcement; cnom_t = 25 mm Nominal cover to outer bottom reinforcement; cnom_b = 20 mm Fire resistance period to top of slab; Rtop = 60 min Fire resistance period to bottom of slab; Rbtm = 60 min Axia distance to top reinft (Table 5.8); afi_t = 10 mm Axia distance to bottom reinft (Table 5.8); afi_b = 10 mm Min. top cover requirement with regard to bond; cmin,b_t = 12 mm Min. btm cover requirement with regard to bond; cmin,b_b = 10 mm Reinforcement fabrication; Subject to QA system Cover allowance for deviation; ∆cdev = 5 mm Min. required nominal cover to top reinft; cnom_t_min = 17.0 mm Min. required nominal cover to bottom reinft; cnom_b_min = 15.0 mm PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement Reinforcement design at midspan in short span direction (cl.6.1) Bending moment coefficient; βsx_p = 0.0470 Design bending moment; Mx_p = βsx_p × q × lx = 26.4 kNm/m Reinforcement provided; 10 mm dia. bars at 200 mm centres 2
  • 3. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Chk'd by Date Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info 2 Area provided; Asx_p = 393 mm /m Effective depth to tension reinforcement; dx_p = h - cnom_b - φx_p / 2 = 175.0 mm K factor; K = Mx_p / (b × dx_p × fck) = 0.034 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208 2 2 K < K' - Compression reinforcement is not required 0.5 Lever arm; z = min(0.95 × dx_p, dx_p/2 × (1 + (1 - 3.53×K) )) = 166.3 mm 2 Area of reinforcement required for bending; Asx_p_m = Mx_p / (fyd × z) = 365 mm /m Minimum area of reinforcement required; Asx_p_min = max(0.26 × (fctm/fyk) × b × dx_p, 2 0.0013×b×dx_p) = 233 mm /m 2 Asx_p_req = max(Asx_p_m, Asx_p_min) = 365 mm /m Area of reinforcement required; PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; = 194.4 N/mm σsx_p = (fyk / γS) × min((Asx_p_m/Asx_p), 1.0) × qSLS / q 2 Maximum allowable spacing (Table 7.3N); Actual bar spacing; smax_x_p = 257 mm sx_p = 200 mm PASS - The reinforcement spacing is acceptable Reinforcement design at midspan in long span direction (cl.6.1) Bending moment coefficient; βsy_p = 0.0340 Design bending moment; My_p = βsy_p × q × lx = 19.1 kNm/m 2 Reinforcement provided; 10 mm dia. bars at 250 mm centres Area provided; Asy_p = 314 mm /m 2 Effective depth to tension reinforcement; dy_p = h - cnom_b - φx_p - φy_p / 2 = 165.0 mm K factor; K = My_p / (b × dy_p × fck) = 0.028 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208 2 2 K < K' - Compression reinforcement is not required 0.5 Lever arm; z = min(0.95 × dy_p, dy_p/2 × (1 + (1 - 3.53×K) )) = 156.8 mm 2 Area of reinforcement required for bending; Asy_p_m = My_p / (fyd × z) = 280 mm /m Minimum area of reinforcement required; Asy_p_min = max(0.26 × (fctm/fyk) × b × dy_p, 2 0.0013×b×dy_p) = 220 mm /m 2 Area of reinforcement required; Asy_p_req = max(Asy_p_m, Asy_p_min) = 280 mm /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; = 186.4 N/mm σsy_p = (fyk / γS) × min((Asy_p_m/Asy_p), 1.0) × qSLS / q 2 Maximum allowable spacing (Table 7.3N); smax_y_p = 267 mm
  • 4. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Chk'd by Date Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Actual bar spacing; sy_p = 250 mm PASS - The reinforcement spacing is acceptable Reinforcement design at continuous support in short span direction (cl.6.1) Bending moment coefficient; βsx_n = 0.0630 Design bending moment; Mx_n = βsx_n × q × lx = 35.4 kNm/m Reinforcement provided; 12 mm dia. bars at 200 mm centres Area provided; Asx_n = 565 mm /m Effective depth to tension reinforcement; dx_n = h - cnom_t - φx_n / 2 = 169.0 mm K factor; K = Mx_n / (b × dx_n × fck) = 0.050 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208 2 2 2 2 K < K' - Compression reinforcement is not required 0.5 Lever arm; z = min(0.95 × dx_n, dx_n/2 × (1 + (1 - 3.53×K) )) = 160.5 mm 2 Area of reinforcement required for bending; Asx_n_m = Mx_n / (fyd × z) = 507 mm /m Minimum area of reinforcement required; Asx_n_min = max(0.26 × (fctm/fyk) × b × dx_n, 2 0.0013×b×dx_n) = 225 mm /m 2 Area of reinforcement required; Asx_n_req = max(Asx_n_m, Asx_n_min) = 507 mm /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; = 187.4 N/mm σsx_n = (fyk / γS) × min((Asx_n_m/Asx_n), 1.0) × qSLS / q 2 Maximum allowable spacing (Table 7.3N); Actual bar spacing; smax_x_n = 266 mm sx_n = 200 mm PASS - The reinforcement spacing is acceptable Reinforcement design at continuous support in long span direction (cl.6.1) Bending moment coefficient; βsy_n = 0.0450 Design bending moment; My_n = βsy_n × q × lx = 25.3 kNm/m 2 Reinforcement provided; 10 mm dia. bars at 200 mm centres Area provided; Asy_n = 393 mm /m 2 Effective depth to tension reinforcement; dy_n = h - cnom_t - φx_n - φy_n / 2 = 158.0 mm K factor; K = My_n / (b × dy_n × fck) = 0.040 Redistribution ratio; δ = 1.0 K’ factor; K’ = 0.598 × δ - 0.18 × δ - 0.21 = 0.208 2 2 K < K' - Compression reinforcement is not required 0.5 Lever arm; z = min(0.95 × dy_n, dy_n/2 × (1 + (1 - 3.53×K) )) = 150.1 mm 2 Area of reinforcement required for bending; Asy_n_m = My_n / (fyd × z) = 387 mm /m Minimum area of reinforcement required; Asy_n_min = max(0.26 × (fctm/fyk) × b × dy_n, 2 0.0013×b×dy_n) = 211 mm /m
  • 5. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info 2 Area of reinforcement required; Asy_n_req = max(Asy_n_m, Asy_n_min) = 387 mm /m PASS - Area of reinforcement provided exceeds area required Check reinforcement spacing Reinforcement service stress; = 206.1 N/mm σsy_n = (fyk / γS) × min((Asy_n_m/Asy_n), 1.0) × qSLS / q 2 Maximum allowable spacing (Table 7.3N); smax_y_n = 242 mm Actual bar spacing; sy_n = 200 mm PASS - The reinforcement spacing is acceptable Shear capacity check at short span continuous support Shear force; Vx_n = q × lx / 2 + Mx_n / lx = 52.7 kN/m Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dx_n) ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asx_n / (b × dx_n)) = 0.0033 Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm × k 0.5 2 1.5 2 0.5 × (fck / 1 N/mm ) × b × dx_n VRd,c_min = 83.7 kN/m Shear resistance (Exp. 6.2a); 2 N/mm )) 0.333 2 VRd,c_x_n = max(VRd,c_min, (0.18 N/mm / γC) × k × (100 × ρl × (fck / 1 × b × dx_n) VRd,c_x_n = 83.7 kN/m PASS - Shear capacity is adequate Shear capacity check at long span continuous support Shear force; Vy_n = q × lx / 2 + My_n / ly = 50.3 kN/m Effective depth factor (cl. 6.2.2); k = min(2.0, 1 + (200 mm / dy_n) ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asy_n / (b × dy_n)) = 0.0025 Minimum shear resistance (Exp. 6.3N); VRd,c_min = 0.035 N/mm × k 0.5 2 1.5 2 0.5 × (fck / 1 N/mm ) × b × dy_n VRd,c_min = 78.2 kN/m Shear resistance (Exp. 6.2a); 2 N/mm )) 0.333 2 VRd,c_y_n = max(VRd,c_min, (0.18 N/mm / γC) × k × (100 × ρl × (fck / 1 × b × dy_n) VRd,c_y_n = 78.2 kN/m PASS - Shear capacity is adequate Shear capacity check at short span discontinuous support Shear force; Vx_d = q × lx / 2 = ;46.8; kN/m; Reinforcement provided; 8 mm dia. bars at 200 mm centres Area provided; Asx_d = 251 mm /m Effective depth; dx_d = h - cnom_b - φx_d / 2 = ;176.0; mm Effective depth factor; k = min(2.0, 1 + (200 mm / dx_d) ) = 2.000 2 0.5 Reinforcement ratio; ρl = min(0.02, Asx_d / (b × dx_d)) = 0.0014 Minimum shear resistance; VRd,c_min = 0.035 N/mm × k 2 b × dx_d VRd,c_min = 87.1 kN/m 1.5 2 0.5 × (fck / 1 N/mm ) ×
  • 6. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Chk'd by Date Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info 2 Shear resistance; 2 N/mm )) 0.333 VRd,c_x_d = max(VRd,c_min, 0.18 N/mm / γC × k × (100 × ρl × (fck/1 × b × dx_d) VRd,c_x_d = 87.1 kN/m PASS - Shear capacity is adequate (0.537) Shear capacity check at long span discontinuous support Shear force; Vy_d = q × lx / 2 = ;46.8; kN/m; Reinforcement provided; 8 mm dia. bars at 250 mm centres Area provided; Asy_d = 201 mm /m 2 Effective depth; dy_d = h - cnom_b - φx_p - φy_d / 2 = ;166.0; mm Effective depth factor; k = min(2.0, 1 + (200 mm / dy_d) ) = 2.000 Reinforcement ratio; ρl = min(0.02, Asy_d / (b × dy_d)) = 0.0012 Minimum shear resistance; VRd,c_min = 0.035 N/mm × k 0.5 2 1.5 2 0.5 × (fck / 1 N/mm ) × b × dy_d VRd,c_min = 82.2 kN/m 2 Shear resistance; 2 N/mm )) 0.333 VRd,c_y_d = max(VRd,c_min, 0.18 N/mm / γC × k × (100 × ρl × (fck/1 × b × dy_d) VRd,c_y_d = 82.2 kN/m PASS - Shear capacity is adequate (0.570) Basic span-to-depth deflection ratio check (cl. 7.4.2) 2 0.5 Reference reinforcement ratio; ρ0 = (fck / 1 N/mm ) / 1000 = 0.0050 Required tension reinforcement ratio; ρ = max(0.0035, Asx_p_req / (b × dx_p)) = 0.0035 Required compression reinforcement ratio; ρ’ = Ascx_p_req / (b × dx_p) = 0.0000 Stuctural system factor (Table 7.4N); Kδ = 1.3 2 0.5 Basic limit span-to-depth ratio; ratiolim_x_bas = Kδ × [11 +1.5×(fck/1 N/mm ) ×ρ0/ρ + 3.2×(fck/1 2 0.5 1.5 N/mm ) ×(ρ0/ρ -1) ] (Exp. 7.16); ratiolim_x_bas = 34.06 Modified limit span-to-eff. depth ratio; ratiolim_x = min(1.5, (500 N/mm /fyk)×( Asx_p/Asx_p_m)) 2 × ratiolim_x_bas = 36.63 Actual span-to-eff. depth ratio; ratioact_x = lx / dx_p = 34.29 PASS - Actual span-to-effective depth ratio is acceptable Reinforcement summary Midspan in short span direction; 10 mm dia. bars at 200 mm centres B1 Midspan in long span direction; 10 mm dia. bars at 250 mm centres B2 Continuous support in short span direction; 12 mm dia. bars at 200 mm centres T1 Continuous support in long span direction; 10 mm dia. bars at 200 mm centres T2 Discontinuous support in short span direction; 8 mm dia. bars at 200 mm centres B1 Discontinuous support in long span direction; 8 mm dia. bars at 250 mm centres B2 Reinforcement sketch The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.
  • 7. Project Job Ref. Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) Section Sheet no./rev. Civil & Geotechnical Engineering GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by - 8mm bars @ 250 ctrs B2 10mm bars @ 250 ctrs B2 10mm bars @ 200 ctrs T2 Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Date 1 App'd by Date