
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
ABSTRACT
By means of a drainage and seepage tank, an experimental flow net system inside the body of a homogeneous earth embankment dam model, formed from Leighton Buzzard Silica sand, was developed and studied in this experimental research paper.
Water flow through dams is one of the basic problems for geotechnical engineers. Seepage analysis in an important factor to be considered in the proper design of many civil engineering structures. Seepage can occur in both through the structure itself as the case of earth dams and under foundations of an engineering structure. Successful seepage analysis is achieved on the proper and accurate construction of a flow net.
Amongst the various existing methods of seepage analysis, the “Finite Element Method” and the method of “Experimental Flow Nets” are the most widely used ones.
Construction of a flow net is mainly used for solving water flow problems through porous media where the geometry makes sometimes analytical solutions impractical. This method is usually used in soil mechanics, geotechnical or civil engineering as an initial check for problems of water flow under hydraulic structures like embankments or dams. As such, a grid obtained by drawing a series of equipotential lines and stream or flow lines is called a flow net. In this procedure the Laplace equation principles must be satisfied.
Hence, the construction of a flow net is an important tool in analysing twodimensional irrotational flow problems and provides an approximate solution to the flow problem by following simple rules, as initially set out by Forchheimer, 1900, and later refined by Casagrande,1937. It can also be very useful tool even for problems with complex geometries, as proven in this experimental research paper.
The objectives of this experimental research paper are:
• To determine the position and shape of the flow line representing the uppermost free water surface inside the body of a dam by using a drainage and seepage tank,
• To conceptualise the flow lines system and to demonstrate that each flow line starts perpendicular to the upstream slope of the dam and that that slope is a boundary equipotential line,
• To construct an experimental flow net and subsequently to verify and analyse it by the FEA method,
• To calculate the rate of seepage through the dam body, and
• To summarise the calculations and experimental findings in a concise and readable format.
In order to achieve these objectives, an experimental flow net system inside the body of a homogeneous earth embankment dam model was formulated by using a drainage and seepage tank.
From the constructed flow net in the present experimental research paper, an attempt has been made to analyze, determine and present the following parameters:
The pressure drop from one side of the embankment to the other,
The seepage flow rate in each flow “channel”,
The total seepage flow rate, and
The pore pressure ratio, ru, for the embankment.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment