Future of Data - Big Data


Published on

Published in: Technology, Business
1 Like
  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Future of Data - Big Data

  1. 1. Future of Data : Big Data Shankar Radhakrishnan Cognizant
  2. 2. Topics How did we get here ? Data Explosion Big Data Big Data in an Enterprise Big Data Platform - Hadoop Big Data AdoptionQ&A
  3. 3. How did we get here?Familiar World Data Integration Problems  EDW  Datamarts Data Processing Problems  Familiar Problems Data warehouse Storage Management Performance Problems Limitations out of ComplexityNew World  Newer type of data to integrate  Increase in volume  Newer analytical requirements
  4. 4. Data Explosion
  5. 5. Newer Interests Social Intelligence  DBIM, Sentiment Analysis, Social Customer Care Predictive Analytics  Propensity, Price Elasticity, Anti-Fraud Analytics Segmentation Insights  Funnel Analysis, Behavioral Patterns, Cohort Analysis Mobile Analytics  Ad-Targeting, Geo-spatial Analytics
  6. 6. Categories Structured Data  Enterprise Data (CRM, ERP, Data Stores, Reference Data) Semi-structured Data  Machine Generated Data (Sensor Data, RFIDs) Unstructured Data  Social Data (Comments, Tweets), Blog posts
  7. 7. Big Data Volume Complexity Big Velocity Data Variety“Big Data” refers to high volume, velocity, variety and complex information assets thatdemand cost-effective, innovative forms of information processing for enhanced insightand decision making
  8. 8. Big Data Platforms• Data Integration o Informatica, Infosphere o talenD, Pentaho, Karmasphere, Apache Sqoop, Apache Flume• Database Framework o Hadoop (Distributions: Cloudera, Hortonworks, MapR) o Hbase o Hive• NoSQL Databases o MongoDB, CouchDB• Machine Data Processing o Splunk, Mahout• Text Analytics o Clarabridge, Lexanalytics
  9. 9. Big Data in an Enterprise Big Data Big Data ETL Sources Platform Datamarts ETL Analytical Datamarts Applications Datamarts Data ETL Data warehouse Sources
  10. 10. Hadoop - Ecosystem
  11. 11. Big Data : Adoption Drivers Cluster Distributed Platform Storage Scalable Process Availability Performance Data Augmented Integration Data Possibilities Processing TCO Ecosystem Actionable ROI Insights
  12. 12. Big Data – Adoption Scenarios Replatforming to Big Data (Hadoop, MapR) Archival Solution (Hadoop) Offloading Data warehouse, EDW (Hadoop, Hive) Social Media Integration Machine Data Analysis (Splunk, Mahout) Complex Analytical Requirements (Hbase)
  13. 13. Q&A
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.