NLP for Robotics

2,073 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,073
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

NLP for Robotics

  1. 1. Processing Natural Language in Robotics Applications<br />01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111 01110010 01101100 01100100 00100001 00100000<br />Alan Shen<br />
  2. 2. Related work<br />Wubble Voice Command Demo (Gazebo Simulation)<br />Arizona Robotics Research Group - University of Arizona<br />http://www.youtube.com/watch?v=atB9mh6u1Ng<br />http://ua-ros-pkg.googlecode.com<br />
  3. 3. Related work<br />Humanoid robot speech recognition and object tracking<br />http://www.youtube.com/watch?v=0jW9LgtiiM8<br />
  4. 4. Goals<br />Implement sentence recognition in text form (console/gui)<br />Provided some basis for speech processing <br />β€œPick up the blue cup”<br />Pick up the blue cup<br />
  5. 5. Existing tools<br />Possible python library implementation<br />Open Rave<br />Text Processing<br />Speech Processing<br />Robot Action<br />Prairie Dog Libraries<br />Python Tagging Libraries <br />(eg: NLTK)<br />
  6. 6. Parsing orders<br />Ambiguous interpretations (robot command sentences may suffer less from this)<br /> β€œRobot, make her duck”<br /> β€œGet the elevator”<br />Mapping verbs to targets: β€œFollow that person” β€œGet in the elevator” β€œPick up that object”<br />
  7. 7. Parts of speech tagging<br />Given a word, what is its part of speech?<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯: 𝑃(π‘‡π‘Žπ‘”π‘ |π‘Šπ‘œπ‘Ÿπ‘‘π‘ )<br />Β <br />
  8. 8. Parts of speech tagging<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯: 𝑃(π‘‡π‘Žπ‘”π‘ |π‘Šπ‘œπ‘Ÿπ‘‘π‘ )<br />Given a known corpus, maybe it’s easier to predict a word given a tag:<br />Bayes: 𝑃𝐴𝐡=𝑃𝐡𝐴𝑃(𝐴)𝑃(𝐡)<br />Β <br />
  9. 9. Parts of speech tagging<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯: 𝑃(π‘‡π‘Žπ‘”π‘ |π‘Šπ‘œπ‘Ÿπ‘‘π‘ )<br />Bayes: 𝑃𝐴𝐡=𝑃𝐡𝐴𝑃(𝐴)𝑃(𝐡)<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯:Β π‘ƒπ‘Šπ‘œπ‘Ÿπ‘‘π‘ π‘‡π‘Žπ‘”π‘ π‘ƒ(π‘‡π‘Žπ‘”π‘ )𝑃(π‘Šπ‘œπ‘Ÿπ‘‘π‘ )<br />Don’t need to normalize…<br />Β <br />
  10. 10. Parts of speech tagging<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯: 𝑃(π‘‡π‘Žπ‘”π‘ |π‘Šπ‘œπ‘Ÿπ‘‘π‘ )<br />Bayes: 𝑃𝐴𝐡=𝑃𝐡𝐴𝑃(𝐴)𝑃(𝐡)<br />π΄π‘Ÿπ‘”π‘€π‘Žπ‘₯:π‘ƒπ‘Šπ‘œπ‘Ÿπ‘‘π‘ π‘‡π‘Žπ‘”π‘ π‘ƒπ‘‡π‘Žπ‘”π‘ <br />Β <br />
  11. 11. Calculating ArgMax and likely tags<br />Speech and Language Processing - Jurafsky and Martin <br />
  12. 12. Further work<br />Once actions and their targets are mapped, generate actions<br />Directly executing OpenRave commands in sequence?<br />Commands ignored if OpenRave is busy<br />Determine method of controllingPrairieDog movement<br />Need to ensure that text command interfaceis compatible with both arm and wheel controls<br />Populate objects in robot’s word dictionary<br />Eg: block, door, elevator, person<br />
  13. 13. Questions?<br />Thank you!<br />

Γ—