Introduction to RoboticsLocomotion<br />CSCI 4830/7000<br />August 30, 2010<br />NikolausCorrell<br />
Last Lecture<br />Robots<br />Sense<br />Compute<br />Actuate<br />Communicate<br />If they don’t they are just automatons...
Last week’s exercise<br />Intro to Webots<br />How to create a wall<br />What you see / what the robot sees<br />Sensors: ...
What is locomotion?<br />Latin: moving from place to place<br />Crawling<br />Sliding<br />Running<br />Jumping<br />Walki...
Other forms of locomotion<br />Swimming<br />Gliding<br />Flying<br />Propulsion<br />
Locomotion relationships<br />Swimming to walking<br />Walking to rolling<br />Gliding to flying<br />Running to jumping<b...
Nature vs. Technology<br />Robots become more and more capable of imitating natural locomotion schemes<br />Nature did not...
Walking vs. rolling<br />If the terrain allows, rolling is more efficient<br />Walking requires more<br />Structural compl...
Characterization of locomotion<br />Stability<br />Number of contact points<br />Center of gravity<br />Static/Dynamic Sta...
Walking<br />2-DOF<br />4-DOF<br />6-DOF<br />How many DOF are needed?<br />
		Gait<br />Sequence of event sequence<br />Event: leg up or down<br />Possible number of gaits N=(2k-1)!<br />Most effici...
Horse Gait (Gallop)<br />167 different gaits observed in a horse!<br />
Industry<br />2-legged locomotion<br />popular because suited to human environment<br />hardest to control<br />Commercial...
Wheeled locomotion<br />Most appropriate for most applications<br />Stable with at least 3 wheels<br />Steered wheels make...
Wheel suspension<br />Suspension consists of a spring and damper<br />The damper absorbs shock<br />The spring counteracts...
Omni-Directional Drive<br />Swedish Wheel<br />Rotation around wheel axle<br />Rotation around the rollers<br />Rotation a...
Climbing with wheels<br />Friction-based<br />Center-of-gravity<br />based<br />Suspension-based<br />
Dynamic Stability<br />The system has to move in order not to fall over<br />Active balance<br />Inertia is used to overco...
Design<br />Lets design robots that<br />Crawl<br />Slide<br />Gallop<br />Jump<br />Walk<br />Roll<br />Crawling<br />Sli...
Crawling<br />Mechanics of Soft Materials Laboratory<br />http://ase.tufts.edu/msml/researchInchBot.asp<br />
Sliding<br />Gavin Miller<br />Hirose-Fukushima lab<br />http://www-robot.mes.titech.ac.jp/robot_e.html<br />
Running<br />Scout II, McGill University<br />
Jumping<br />Laboratory of Intelligent Systems, EPFL<br />http://lis.epfl.ch/?content=research/projects/SelfDeployingMicro...
Rolling<br />http://modlabupenn.org<br />
Homework<br />Chapter 3<br />Required for exercise in Week 4<br />Read till September 13<br />No class next week!<br />Hin...
Next exercise<br />Locomotion (Wednesday)<br />Play with different locomotion concepts in Webots<br />Understand various g...
Upcoming SlideShare
Loading in...5
×

Lecture 02: Locomotion

454

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
454
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Lecture 02: Locomotion"

  1. 1. Introduction to RoboticsLocomotion<br />CSCI 4830/7000<br />August 30, 2010<br />NikolausCorrell<br />
  2. 2. Last Lecture<br />Robots<br />Sense<br />Compute<br />Actuate<br />Communicate<br />If they don’t they are just automatons (but the boundary is vague)<br />
  3. 3. Last week’s exercise<br />Intro to Webots<br />How to create a wall<br />What you see / what the robot sees<br />Sensors: distance & camera<br />Physics<br />
  4. 4. What is locomotion?<br />Latin: moving from place to place<br />Crawling<br />Sliding<br />Running<br />Jumping<br />Walking<br />Rolling<br />
  5. 5. Other forms of locomotion<br />Swimming<br />Gliding<br />Flying<br />Propulsion<br />
  6. 6. Locomotion relationships<br />Swimming to walking<br />Walking to rolling<br />Gliding to flying<br />Running to jumping<br />A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 9 March 2007, Vol. 315. no. 5817, pp. 1416 - 1420, 2007.<br />
  7. 7. Nature vs. Technology<br />Robots become more and more capable of imitating natural locomotion schemes<br />Nature did not evolve rotating shafts / rotational joints<br />Hinge joint<br />Ball and socket joint<br />
  8. 8. Walking vs. rolling<br />If the terrain allows, rolling is more efficient<br />Walking requires more<br />Structural complexity<br />Joints<br />Control<br />
  9. 9. Characterization of locomotion<br />Stability<br />Number of contact points<br />Center of gravity<br />Static/Dynamic Stabilization<br />Inclination of terrain<br />Contact<br />Point vs. Area<br />Friction vs. grasp<br />3-Point rule<br />3 legs : static stability<br />6 legs : static walking<br />
  10. 10. Walking<br />2-DOF<br />4-DOF<br />6-DOF<br />How many DOF are needed?<br />
  11. 11. Gait<br />Sequence of event sequence<br />Event: leg up or down<br />Possible number of gaits N=(2k-1)!<br />Most efficient gait is a function of speed!<br />
  12. 12. Horse Gait (Gallop)<br />167 different gaits observed in a horse!<br />
  13. 13. Industry<br />2-legged locomotion<br />popular because suited to human environment<br />hardest to control<br />Commercial prototypes<br />4-legged locomotion<br />Not statically stable<br />Commercial prototypes<br />6-legged locomotion<br />Statically stable<br />Forestry<br />http://www.youtube.com/watch?v=FAcgSi6pzv4<br />http://www.youtube.com/watch?v=CD2V8GFqk_Y<br />
  14. 14. Wheeled locomotion<br />Most appropriate for most applications<br />Stable with at least 3 wheels<br />Steered wheels make control more complex pretty quickly<br />Stable zone<br />
  15. 15. Wheel suspension<br />Suspension consists of a spring and damper<br />The damper absorbs shock<br />The spring counteracts the shock<br />Result: <br />wheel remains on ground<br />Better traction<br />Better control<br />
  16. 16. Omni-Directional Drive<br />Swedish Wheel<br />Rotation around wheel axle<br />Rotation around the rollers<br />Rotation around contact point<br />Uranus, CMU<br />
  17. 17. Climbing with wheels<br />Friction-based<br />Center-of-gravity<br />based<br />Suspension-based<br />
  18. 18. Dynamic Stability<br />The system has to move in order not to fall over<br />Active balance<br />Inertia is used to overcome unstable states<br />Examples are<br />Running<br />Getting up<br />Inverted Pendulum<br />
  19. 19. Design<br />Lets design robots that<br />Crawl<br />Slide<br />Gallop<br />Jump<br />Walk<br />Roll<br />Crawling<br />Sliding<br />Running<br />Jumping<br />Walking<br />Rolling<br />
  20. 20.
  21. 21. Crawling<br />Mechanics of Soft Materials Laboratory<br />http://ase.tufts.edu/msml/researchInchBot.asp<br />
  22. 22. Sliding<br />Gavin Miller<br />Hirose-Fukushima lab<br />http://www-robot.mes.titech.ac.jp/robot_e.html<br />
  23. 23. Running<br />Scout II, McGill University<br />
  24. 24. Jumping<br />Laboratory of Intelligent Systems, EPFL<br />http://lis.epfl.ch/?content=research/projects/SelfDeployingMicroglider/<br />
  25. 25. Rolling<br />http://modlabupenn.org<br />
  26. 26. Homework<br />Chapter 3<br />Required for exercise in Week 4<br />Read till September 13<br />No class next week!<br />Hints<br />read the questions first<br />Skip: 3.2.3.4-5<br />Skim: 3.2.4-3.3.3<br />Understand what Maneuverability (Mobility and Steerability is) conceptionally<br />Goal: determine the speed of your robot’s motors so that it can follow a desired trajectory<br />
  27. 27. Next exercise<br />Locomotion (Wednesday)<br />Play with different locomotion concepts in Webots<br />Understand various gaits and implement your own<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×