Your SlideShare is downloading. ×
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of orthotropic plate. Open or closed stiffeners
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of orthotropic plate. Open or closed stiffeners

587
views

Published on

This example provides calculations on shear force of members based on Eurocode 9.

This example provides calculations on shear force of members based on Eurocode 9.

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
587
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. TALAT Lecture 2301 Design of Members Shear Force Example 6.7 : Shear force resistance of orthotropic plate. Open or closed stiffeners 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 6.7 1
  • 2. Example 6.7. Shear force resistance of orthotropicplate. Open or closed stiffeners Dimensions (highlighted) Plate thickness t 16.5 . mm t1 t fo 240 . MPa N newton Plate width b 1500 . mm fu 260 . MPa kN 1000 . newton 2200 . mm 70000 . MPa MPa 10 . Pa 6 Plate length L E w Stiffener pitch w 300 . mm a γ M1 1.1 2 If heat-treated alloy, then = 1 else ht = 0 ht ht 1 If cold formed (trapezoidal), then = 1 else cf. = 0 cf. cf 0 a) Open stiffeners Half stiffener pitch a = 150 mm Half bottom flange a2 50 . mm Thickness of bottom flange t2 10 . mm Stiffener depth h 160 . mm Half web thickness t3 4.4 . mm Half width of trapezoidal a1 0 . mm stiffener at the top Width of web a3 h a 3 = 160 mm Local buckling L L = 2.2 . 10 mm 3 Length of web panel a = 150 mm = 7.333 2 .a 2 .a 2 .a 2 2 L (5.97) kτ if > 1.00 , 5.34 4.00 . , 4.00 5.34 . k τ = 5.414 2 .a L L 0.81 . 2 . a . f o (5.96) λ w t E λ w 0.371 = kτ 0.48 Table 5.12 ρ v λ w ρ v = 1.295 fu Table 5.12 η 0.4 0.2 . η = 0.617 fo Table 5.12 ρ v if ρ v > η , η , ρ v ρ v= 0.617 fo ρ .b .t 1 . V w.Rd = 3.33 . 10 kN 3 (5.95) V w.Rd v γ M1 TALAT 2301 – Example 6.7 2
  • 3. 5.11.6 Overall buckling, shear force 2 .t 1 .a 2 .t 2 .a 2 2 .t 3 .a 3 2 .t 1 .a 1 A = 7.358 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . Gravity centre 2 e e = 37.054 mm A Second moment of area 2 h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 2.751 . 10 mm 2 2 7 4 IL 3 s if cf 1 , 2 . a 2 .a 3 . a 2 1 a2 , 2 .a s = 300 mm Rigidities of orthotropic plate E .I L ν 0.3 N . mm 2 B x = 6.42 . 10 9 Table 5.10 Bx 2 .a G E mm 2 .( 1 ν ) E .t N . mm 3 2 B y = 2.88 . 10 7 Table 5.10 By 12 . 1 2 mm ν G .t N . mm 3 2 H = 2.016 . 10 7 Table 5.10 H 6 mm Elastic buckling load 1 4 H L. B y η φ φ = 0.38 (5.83) (5.84) b Bx B x .B y η = 0.047 0.567 . φ 1.92 . φ 0.1 . φ 2.75 . φ .η 2 2 (5.82) kτ 3.25 1.95 k τ = 3.423 1 k τ .π 2 4 (5.81) V o.cr . B .B 3 V o.cr = 2.506 . 10 kN 3 b x y Buckling resistance b .t 1 .f o (5.120) λ ow λ ow 1.54 = V o.cr 0.6 (5.119) χ o χ o if χ o > 0.6 , 0.6 , χ o χ o 0.189 = 2 0.8 λ ow fo χ .o . t 1 . V o.Rd = 1.022 . 10 kN 3 (5.118) V o.Rd b γ M1 V Rd = 1.022 . 10 kN 3 V Rd if V w.Rd < V o.Rd , V w.Rd , V o.Rd TALAT 2301 – Example 6.7 3
  • 4. b) Closed stiffeners Half stiffener pitch a = 150 mm Plate thickness t 1 = 16.5 mm Half bottom flange a 2 = 50 mm Thickness of bottom flange t 2 = 10 mm Stiffener depth h = 160 mm Web thickness t3 9 . mm Half width of trapezoidal a1 80 . mm stiffener at the top 2 2 width of web a3 a1 a2 h a 3 = 162.8 mm a4 a a1 a 4 = 70 mm Local buckling L L = 2.2 . 10 mm 2 .a 2 .a 1 3 Length of web panel am a m = 140 mm = 15.714 am 2 2 L am am (5.97) kτ if > 1.00 , 5.34 4.00 . , 4.00 5.34 . am L L k τ = 5.356 0.81 . a m . f o (5.96) λ w t E λ w 0.174 = kτ 0.48 Table 5.12 ρ v λ w ρ v = 2.76 fu Table 5.12 η 0.4 0.2 . η = 0.617 fo Table 5.12 ρ v if ρ v > η , η , ρ v ρ v= 0.617 fo ρ .b .t 1 . V w.Rd = 3.33 . 10 kN 3 (5.95) V w.Rd v γ M1 TALAT 2301 – Example 6.7 4
  • 5. 5.11.6 Overall buckling, shear force 2 .t 1 .a 2 .t 2 .a 2 2 .t 3 .a 3 A = 8.88 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . Gravity centre 2 e e = 44.415 mm A 2 h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 3.309 . 10 mm 2 2 7 4 Second moment IL of area 3 4. h. a 1 a 2 2 I T = 3.097 . 10 mm 7 4 Torsion constant IT 2 .a 1 2 .a 2 a3 2. t1 t2 t3 t2 4. 1 ν . a2 a 3 .a 1 .a 4 .h . 2 2 2 2 (5.79c) C1 C 1 = 3.076 . 10 mm 9 4 3 .a .t 1 3 E .t 3 B = 2.88 . 10 N . mm 7 B (5.79d) 12 . 1 2 ν a1 a2 2 a 4. a 1 a 2 .a 1 .a 4 . 1 2 a 1 .a 3 t 2 3 a2 a1 (5.79e) C2 . C 2 = 4.851 a 2 . 3 .a 3 4 .a 2 3 t1 Rigidities of orthotropic plate E .I L E N . mm 2 B x = 7.72 . 10 9 Table 5.10 Bx ν 0.3 G 2 .a 2 .( 1 ν ) mm 2 . B. a (5.79a) By 2 .a 1 .a 3 .t 1 . 4 .a 2 .t 3 a 3 .t 2 3 3 3 2 .a 4 a 3 .t 1 . 4 .a 2 .t 3 a 3 .t 2 a 1 . t 3 . 12 . a 2 . t 3 4 .a 3 .t 2 3 3 3 3 3 3 G .I T N . mm 2 B y = 3.929 . 10 7 6 .a mm (5.79b) H 2 .B 1.6 . G . I T . a 4 2 N . mm 1 2 1 . 1 H = 7.305 . 10 8 L .a .B 2 C1 mm π . 4 C2 4 L Elastic buckling load 1 4 H L. B y η φ φ = 0.392 (5.83) (5.84) b Bx B x .B y η = 1.326 0.567 . φ 1.92 . φ 0.1 . φ 2.75 . φ .η 2 2 (5.82) kτ 3.25 1.95 k τ = 6.52 1 k τ .π 2 4 (5.81) V o.cr . B .B 3 V o.cr = 6.311 . 10 kN 3 b x y TALAT 2301 – Example 6.7 5
  • 6. TALAT 2301 – Example 6.7 6
  • 7. Buckling resistance b .t 1 .f o (5.120) λ ow λ ow 0.97 = V o.cr 0.6 (5.119) χ o χ o if χ o > 0.6 , 0.6 , χ o χ o 0.345 = 2 0.8 λ ow fo χ .o . t 1 . V o.Rd = 1.861 . 10 kN 3 (5.118) V o.Rd b γ M1 TALAT 2301 – Example 6.7 7