TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of orthotropic double-skin plate
Upcoming SlideShare
Loading in...5
×
 

TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of orthotropic double-skin plate

on

  • 685 views

This example provides calculations on axial force of members based on Eurocode 9.

This example provides calculations on axial force of members based on Eurocode 9.

Statistics

Views

Total Views
685
Views on SlideShare
685
Embed Views
0

Actions

Likes
0
Downloads
19
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of orthotropic double-skin plate TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of orthotropic double-skin plate Document Transcript

  • TALAT Lecture 2301 Design of Members Axial Force Example 5.7 : Axial force resistance of orthotropic double-skin plate 9 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 5.7 1
  • Example 5.7. Axial force resistance of orthotropic double-skin plate N newton Input (highlighted) kN 1000 . N MPa 10 . Pa 6 Plate thickness t 5 . mm t1 t fo 240 . MPa Plate width b 300000 . mm fu 260 . MPa Plate length L 5000 . mm E 70000 . MPa w "Pitch" (2a or d) w 160 . mm a γ M1 1.1 2 If heat-treated alloy, then = 1 else ht = 0 ht cf 0 ht 1 a) Profiles with groove and tongue Half bottom flange a2 40 . mm Thickness of bottom flange t2 5 . mm Profile depth h 70 . mm Web thickness t3 5 . mm Half width of trapezoidal a1 80 . mm stiffener at the top Number of webs nw 4 2 2 Width of web a3 a1 a2 h a 3 = 80.6 mm TALAT 2301 – Example 5.7 2
  • Local buckling 0 a1 2 .a 2 a3 16 Internal elements β i β i β i β i= 1 t1 2 t2 3 t3 16 16.125 β max β i β = 16.1 250 . newton [1] Tab. 5.1 ε β 1 9 .ε β 1 9.186 = fo 2 mm β 2 13 . ε β 2 13.268 = β 3 18 . ε β 3 18.371 = class i if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class i = 3 No reduction for local buckling 50 0 50 100 100 50 0 50 100 Overall buckling, uniform compression nw Cross sectional area A 2 .t 1 .a 2 .t 2 .a 2 2 .t 3 .a 3 . A = 2.812 . 10 mm 3 2 2 h nw 2 .t 2 .a 2 .h 2 .t 3 .a 3 . . Gravity centre 2 2 e e = 30.022 mm A 2 h .n w 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 2.059 . 10 mm 2 2 6 4 Second moment of area IL 3 2 4. h. a 1 a 2 2 I T = 3.517 . 10 mm 6 4 Approx. torsional constant IT 2 .a 1 2 .a 2 a3 2. t1 t2 t3 Rigidities of orthotropic plate E .I L N . mm 2 B x = 9.007 . 10 8 Table 5.10 Bx ν 0.3 2 .a mm N . mm 2 E 0.001 . N . mm B y = 1 . 10 3 Table 5.10 By G 2 .( 1 ν) mm G .I T N . mm 2 H = 5.918 . 10 8 Table 5.10 H 2 .a mm TALAT 2301 – Example 5.7 3
  • Elastic buckling load 2 2 4 π . Bx L L Bx 2 .H B y. N cr = 1.067 . 10 kN 5 (5.77) N cr if < b 2 b b By L b 2 .π 2 (5.78) . B x .B y H otherwise b Buckling resistance A ef A A ef = 2.812 . 10 mm 3 2 A ef . f o (5.69) λ c N cr λ c 0.08 = α if ( ht > 0 , 0.2 , 0.32 ) λ 0 if ( ht > 0 , 0.1 , 0 ) α = 0.2 λ 0 0.1 = 0.5 . 1 α . λ c 2 φ λ 0 λ c φ = 0.501 1 (5.33) χ c χ c = 1.004 2 2 φ φ λ c fo (5.68) N cRd A ef . χ .c for one stiffener N cRd = 616.164 kN γ M1 TALAT 2301 – Example 5.7 4
  • b) Truss cross section a a Half bottom flange a2 a1 a = 80 mm 2 2 Stiffener depth h 70 . mm a 1 = 40 mm Thickness of bottom flange t2 5 . mm a 2 = 40 mm Web thickness t3 5 . mm 2 2 Width of web a3 a1 h a 3 = 80.623 mm Local buckling 0 2 .a 1 2 .a 2 a3 16 Internal elements β i β i β i β i= 1 t1 2 t2 3 t3 16 16.125 β max β i β = 16.1 250 . newton [1] Tab. 5.1 ε β 1 9 .ε β 1 9.186 = fo 2 mm β 2 13 . ε β 2 13.268 = β 3 18 . ε β 3 18.371 = class i if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class i = 3 No reduction for local buckling 50 0 50 100 100 50 0 50 100 TALAT 2301 – Example 5.7 5
  • Overall buckling, uniform compression 2 .t 1 .a 1 2 .t 2 .a 2 2 .t 3 .a 3 A = 1.606 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . 2 Gravity centre e e = 35 mm A 2 Second moment h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 1.309 . 10 mm 2 2 6 4 of area IL 3 4. h. a 1 a 2 2 I T = 1.952 . 10 mm 6 4 Torsion constant IT 2 .a 1 2 .a 2 a3 2. t1 t2 t3 Orthotropic plate constant E .I L N . mm 2 B x = 5.728 . 10 8 Table 5.10 Bx 2 .a mm E .t 1 .t 2 .h 2 N . mm 2 B y = 8.575 . 10 8 Table 5.10 By t1 t2 mm G .I T N . mm 2 H = 3.285 . 10 8 Table 5.10 H 2 .a mm Elastic buckling load 2 2 4 π . Bx L L Bx 2 .H B y. N cr = 6.786 . 10 kN 4 (5.77) N cr if < b 2 b b By L b 2 .π 2 (5.78) . B x .B y H otherwise b Buckling resistance A ef = 1.606 . 10 mm 3 2 A ef A A ef . f o λ c 0.08 = (5.69) λ c N cr α if ( ht > 0 , 0.2 , 0.32 ) λ 0 if ( ht > 0 , 0.1 , 0 ) α = 0.2 λ 0 0.1 = 0.5 . 1 α . λ c 2 φ λ 0 λ c φ = 0.5 1 (5.33) χ c χ c = 1.005 2 2 φ φ λ c fo (5.68) N cRd 2 . A ef . χ .c for two pitches N cRd = 704.4 kN γ M1 TALAT 2301 – Example 5.7 6
  • c) Frame cross section Half bottom flange a 37.5 . mm a1 a Stiffener depth h 70 . mm a2 a Thickness of top flange t1 5 . mm a 1 = 37.5 mm Thickness of bottom flange t2 5 . mm a 2 = 37.5 mm Web thickness t3 5 . mm Width of web a3 h a 3 = 70 mm Local buckling 0 2 .a 1 2 .a 2 a3 15 Internal elements β i β i β i β i= 1 t1 2 t2 3 t3 15 14 β max β i β = 15 250 . newton [1] Tab. 5.1 ε β 1 9 .ε β 1 9.186 = fo 2 mm β 2 13 . ε β 2 13.268 = β 3 18 . ε β 3 18.371 = class i if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class i = 3 No reduction for local buckling 50 0 50 100 100 50 0 50 100 TALAT 2301 – Example 5.7 7
  • Overall buckling, uniform compression 2 .t 1 .a 2 .t 2 .a 2 t 3 .a 3 A = 1.1 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h t 3 .a 3 . Gravity centre 2 e e = 35 mm A 2 Second moment h 2 .t 2 .a 2 .h t 3 .a 3 . A .e I L = 1.062 . 10 mm 2 2 6 4 of area IL 3 4. h. a 1 a 2 2 I T = 1.901 . 10 mm 6 4 Torsion constant IT 2 .a 1 2 .a 2 a3 2. t1 t2 t3 Orthotropic plate constant E .I L N . mm 2 B x = 9.909 . 10 8 (5.80d) Bx 2 .a mm a .t 2 t 3 3. 3 a .t 3 6 .h .t 2 3 3 E .t 1 3 3 2 . 2 t1 t (5.80a By . 10 b . . 1 12 . 1 ν 32 . a 3 .h .t 1 .t 2 L 2 2 2 3 3 2 a .t 3 2 .h . t 1 3 3 3 t2 a .t 3 3 N . mm 2 B y = 1.118 . 10 7 3 3 2 .E . t1 t2 mm (5.80b) H t3 6 .t 1 6 .t 2 N . mm 2 3. 1 H = 8.75 . 10 6 1 1 2 .a 2 .a t3 2 .a t3 mm Elastic buckling load 2 2 4 π . Bx L L Bx 2 .H B y. N cr = 1.174 . 10 kN 5 (5.77) N cr if < b 2 b b By L b 2 .π . 2 2 .π B x .B y 2 . H = 7.501 kN (5.78) B x .B y H otherwise b b A ef = 1.1 . 10 mm 3 2 Buckling resistance A ef A A ef . f o (5.69) λ c λ c 0.047 = N cr α if ( ht > 0 , 0.2 , 0.32 ) λ 0 if ( ht > 0 , 0.1 , 0 ) α = 0.2 0.5 . 1 α . λ c 2 φ λ 0 λ c λ 0 0.1 = φ = 0.496 1 (5.33) χ c 2 2 χ c = 1.011 φ φ λ c fo N cRd 2 . A ef . χ .c for two pitches N cRd = 485.112 kN (5.68) γ M1 TALAT 2301 – Example 5.7 8
  • Summary N Rd.a N A a = 2.812 . 10 mm 3 2 a) N Rd.a = 616.2 kN = 219.1 Aa 2 mm N Rd.b N A b = 3.212 . 10 mm 3 2 b) N Rd.b = 704.4 kN = 219.3 Ab 2 mm N Rd.c N A c = 2.2 . 10 mm 3 2 c) N Rd.c = 485.1 kN = 220.5 Ac 2 mm TALAT 2301 – Example 5.7 9