TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of orthotropic plate. Open or closed stiffeners
Upcoming SlideShare
Loading in...5
×
 

TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of orthotropic plate. Open or closed stiffeners

on

  • 920 views

This example provides calculations on axial force of members based on Eurocode 9.

This example provides calculations on axial force of members based on Eurocode 9.

Statistics

Views

Total Views
920
Views on SlideShare
920
Embed Views
0

Actions

Likes
0
Downloads
20
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of orthotropic plate. Open or closed stiffeners TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of orthotropic plate. Open or closed stiffeners Document Transcript

  • TALAT Lecture 2301 Design of Members Axial Force Example 5.6 : Axial force resistance of orthotropic plate. Open or closed stiffeners 5 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 5.6 1
  • Example 5.6. Axial force resistance of orthotropicplate. Open or closed stiffeners Dimensions (highlighted) Plate thickness t 16.5 . mm t1 t fo 240 . MPa N newton Plate width b 1500 . mm fu 260 . MPa kN 1000 . newton 2200 . mm 70000 . MPa MPa 10 . Pa 6 Plate length L E w Stiffener pitch w 300 . mm a γ M1 1.1 2 If heat-treated alloy, then = 1 else ht = 0 ht ht 1 If cold formed (trapezoidal), then = 1 else cf. = 0 cf. cf 0 a) Open stiffeners Half stiffener pitch a = 150 mm Half bottom flange a2 50 . mm Thickness of bottom flange t2 10 . mm Stiffener depth h 160 . mm Half web thickness t3 4.4 . mm Half width of trapezoidal a1 0 . mm stiffener at the top Width of web a3 h a 3 = 160 mm Local buckling 2 .a a3 18.182 Internal elements β i β i β = β max β i β = 18.182 2 .t 3 t1 i 1 2 18.182 250 . MPa [1] Tab. 5.1 ε β 1 9 .ε β 1 9.186 = fo β 2 11 . ε β 2 11.227 = β 3 18 . ε β 3 18.371 = class i if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class i = 3 a2 Outstand β β 1 2.5 . ε β 1 2.552 = t2 β 2 4 .ε β 2 4.082 = [1] Tab. 5.1 β =5 β 3 5 .ε β 3 5.103 = class o if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class o = 3 class if class o > class i , class o , class i class = 3 No reduction for local buckling TALAT 2301 – Example 5.6 2
  • 5.11.6 Overall buckling, uniform compression 2 .t 1 .a 2 .t 2 .a 2 2 .t 3 .a 3 2 .t 1 .a 1 A = 7.358 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . Gravity centre 2 e e = 37.054 mm A Second moment of area 2 h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 2.751 . 10 mm 2 2 7 4 IL 3 s if cf 1 , 2 . a 2 .a 3 . a 2 1 a2 , 2 .a s = 300 mm Rigidities of orthotropic plate E .I L ν 0.3 N . mm 2 B x = 6.42 . 10 9 Table 5.10 Bx 2 .a G E mm 2 .( 1 ν ) 2 .a . E .t N . mm 3 2 B y = 2.88 . 10 7 Table 5.10 By s 12 . 1 ν 2 mm 2 .a . G .t N . mm 3 2 H = 2.016 . 10 7 Table 5.10 H s 6 mm Elastic buckling load 2 2 4 π . Bx L L Bx 2 .H B y. N cr = 2.031 . 10 kN 4 (5.77) N cr if < b 2 b b By L b 2 .π 2 (5.78) . B x .B y H otherwise b Buckling resistance A ef = 7.358 . 10 mm 3 2 A ef A A ef . f o (5.69) λ c λ c 0.295 = N cr α if ( ht > 0 , 0.2 , 0.32 ) λ 0 if ( ht > 0 , 0.1 , 0 ) α = 0.2 Table 5.6 λ 0 0.1 = 0.5 . 1 α . λ c 2 φ λ 0 λ c φ = 0.563 1 (5.33) χ c 2 2 χ c = 0.959 φ φ λ c fo A ef . χ .c N cRd = 1.54 . 10 kN 3 (5.68) N cRd for one stiffener γ M1 TALAT 2301 – Example 5.6 3
  • b) Closed stiffeners Half stiffener pitch a = 150 mm Plate thickness t 1 = 16.5 mm Half bottom flange a 2 = 50 mm Thickness of bottom flange t 2 = 10 mm Stiffener depth h = 160 mm Web thickness t3 9 . mm Half width of trapezoidal a1 80 . mm stiffener at the top 2 2 width of web a3 a1 a2 h a 3 = 162.8 mm a4 a a1 a 4 = 70 mm Local buckling 9.697 2 .a 1 2 .a 2 a3 2 .a 4 10 Internal elements β i β i β i β i β = i 1 t1 2 t2 3 t3 4 t1 18.088 β max β i β = 18.1 8.485 250 . newton [1] Tab. 5.1 ε β 1 9 .ε β 1 9.186 = fo 2 mm β 2 13 . ε β 2 13.268 = β 3 18 . ε β 3 18.371 = class i if β > β 1 , if β > β 2 , if β > β 3 , 4 , 3 , 2 , 1 class i = 3 No reduction for local buckling 2 .t 1 .a 2 .t 2 .a 2 2 .t 3 .a 3 A = 8.88 . 10 mm 3 2 Cross sectional area A h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . Gravity centre 2 e e = 44.415 mm A 2 h 2 .t 2 .a 2 .h 2 .t 3 .a 3 . A .e I L = 3.309 . 10 mm 2 2 7 4 Second moment IL of area 3 4. h. a 1 a 2 2 I T = 3.097 . 10 mm 7 4 Torsion constant IT 2 .a 1 2 .a 2 a3 2. t1 t2 t3 t2 4. 1 ν . a2 a 3 .a 1 .a 4 .h . 2 2 2 2 (5.79c) C1 C 1 = 3.076 . 10 mm 9 4 3 .a .t 1 3 E .t 3 B = 2.88 . 10 N . mm 7 B (5.79d) 12 . 1 2 ν TALAT 2301 – Example 5.6 4
  • a1 a2 2 a 4. a 1 a 2 .a 1 .a 4 . 1 2 a 1 .a 3 t 2 3 a2 a1 (5.79e) C2 . C 2 = 4.851 a 2 . 3 .a 3 4 .a 2 3 t1 Rigidities of orthotropic plate E .I L E N . mm 2 B x = 7.72 . 10 9 Table 5.10 Bx ν 0.3 G 2 .a 2 .( 1 ν ) mm 2 . B. a (5.79a) By 2 .a 1 .a 3 .t 1 . 4 .a 2 .t 3 a 3 .t 2 3 3 3 2 .a 4 a 3 .t 1 . 4 .a 2 .t 3 a 3 .t 2 a 1 . t 3 . 12 . a 2 . t 3 4 .a 3 .t 2 3 3 3 3 3 3 G .I T N . mm 2 B y = 3.929 . 10 7 6 .a mm (5.79b) H 2 .B 1.6 . G . I T . a 4 2 N . mm 1 2 1 . 1 H = 7.305 . 10 8 L .a .B 2 C1 mm π . 4 C2 4 L Elastic buckling load 2 2 4 π . Bx L L Bx 2 .H B y. N cr = 3.378 . 10 kN 4 (5.77) N cr if < b 2 b b By L b 2 .π 2 (5.78) . B x .B y H otherwise b Buckling resistance A ef = 8.88 . 10 mm 3 2 A ef A A ef . f o (5.69) λ c λ c 0.251 = N cr α if ( ht > 0 , 0.2 , 0.32 ) λ 0 if ( ht > 0 , 0.1 , 0 ) α = 0.2 λ 0 0.1 = 0.5 . 1 α . λ c 2 φ λ 0 λ c φ = 0.547 1 (5.33) χ c χ c = 0.969 2 2 φ φ λ c fo A ef . χ .c N cRd = 1.877 . 10 kN 3 (5.68) N cRd for one stiffener γ M1 TALAT 2301 – Example 5.6 5