Your SlideShare is downloading. ×
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance of welded hollow section with outstands. Class 2 cross section

1,096

Published on

This example provides calculations on bending moment of members based on Eurocode 9.

This example provides calculations on bending moment of members based on Eurocode 9.

Published in: Education
1 Comment
1 Like
Statistics
Notes
No Downloads
Views
Total Views
1,096
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
45
Comments
1
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. TALAT Lecture 2301 Design of Members Bending Moment Example 4.3 : Bending moment resistance of welded hollow section with outstands. Class 2 cross section 10 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 4.3 1
  • 2. Example 4.3. Bending moment resistance of welded hollow section with outstands. Class 2 cross section Half top flange a 150 . mm Half hollow width c 96 . mm fo 200 . MPa Half bottom flange b 66 . mm Width of HAZ haz 30 . mm γ M1 1.1 99 . mm MPa 10 . Pa 6 Section dept h HAZ reduction ρ haz 0.8 Flange thickness d 15 . mm haz .( c bz c b) Web thickness w 18 . mm 2 2 (c b) h Bottom flange t. t 18 . mm Type of element haz .h hz - Internal element: T = 0 2 2 - Outstand: T > 0 (c b) h o 0 . mm Nodes, co-ordinates (y, z), thickness (t) and types (T) 0 a o o 0 Comments: 1 c haz o d 1 Node 10 and 13 indicate shift in neutral axis. 2 c o d 1 Element 1-2, 2-3, 4-5, 5-6, 8-9 3 c haz o d 0 and 14-15 define HAZs. 4 c haz o d 0 5 c o d 0 This solution of the example is 6 c haz o d 1 comprehensive because: 1. Calculations are shown in every 7 a o d 1 detail i y z t T 8 c o o 0 2. It covers all classes of cross section 9 bz hz w 0 3. The possibility to increase the 10 0.5 . ( c b) 0.5 . h w 0 effective thickness for elements not fully stressed is shown. The iteration 11 b h w 0 procedure is then mandatory. 12 b h t 0 However, in this example, the result is almost exactly the same as if a 13 0.5 .( c b) 0.5 . h w 0 simplified method was used, that's because there is no reduction of the 14 bz hz w 0 web thickness due to local buckling. 15 c o w 0 The beam is composed by two extrusions. The weld is close to the neutral axis why HAZ softening does not 0 influence the moment resistance. Nodes i 1 .. rows ( y ) 1 rows ( y ) = 16 Area of cross ti . 2 2 100 section dAi yi yi 1 zi zi 1 150 100 50 0 50 100 150 elements Cross rows ( y ) 1 section A dAi area A = 1.06 . 10 mm 4 2 i =1 TALAT 2301 – Example 4.3 2
  • 3. First rows ( y ) 1 dAi Sy moment Sy zi zi 1 . z gc of area 2 A Gravity centre i =1 z gc = 39.581 mm z gc.gr z gc Second rows ( y ) 1 dAi zi . zi 1 . A . z gc moment 2 2 2 Iy zi zi 1 Iy Iy of area 3 i =1 I y = 1.885 . 10 mm 7 4 I y.gr Iy Elastic section Iy Iy modulus W el if max z z gc > min z z gc , , max z z gc min z z gc W el = 3.172 . 10 mm 5 3 Torsion rows ( y ) 1 2 ti dAi . I tu = 9.963 . 10 mm constant for 5 4 I tu open parts 3 i =1 Hollow part, (nodes 2, 5, 11, 12 and 15) y2 z2 t1 96 0 15 y5 z5 t4 96 0 15 yh y11 y h = 66 mm zh z11 zh = 99 mm th t 11 t h = 18 mm y12 66 z12 99 t 12 18 96 0 18 y15 z15 t 14 rows y h 1 Area within 0.5 . y h . z A tu = 1.604 . 10 mm 4 2 mid-line A tu yh hi zh i i 1 i 1 i =1 Sum of l/t rows y h 1 2 2 yh yh zh zh i i 1 i i 1 22 Dn if t i > 0 , , 10 Dn = 31.627 th i =1 i 4 .A 2 Torsion constant tu I t = 3.253 . 10 mm 7 4 for closed part It Dn Torsion constant I t = 3.353 . 10 mm 7 4 whole section It It I tu Torsion 2 . A tu . min t h W v = 4.811 . 10 mm 5 3 resistance Wv min t h = 15 mm z gc = 39.581 mm TALAT 2301 – Example 4.3 3
  • 4. Effective cross section. First iteration z8 z gc zd zi z gc 5.4.3 (1) ψ i 1 j 9 .. 11 ψj ψ j 4 ψ j i z11 z gc max z max z d 0.8 (5.7 or 5.8) gi if ψ i > 1 , 0.7 0.30 . ψ i , Outstand gi if Ti > 0 , 1 , gi 1 ψ i Figure 5.2 y2 y0 0.5 . t 13 5.4.3 (1) c) k 1 .. 2 βk βk 5 β k t2 y5 y2 t 13 l 3 .. 5 βl t4 2 2 y11 y8 z11 z8 β j if t 11> 0 , gj. ,1 βj 4 β j t 11 250 . MPa max z 5.4.4 (5) ε o εi ε o. εi if zi z gc . zi 1 z gc , ε i , 99 ε o 1.118 = fo z gc 5.4.5 (3) 2 2 a) or c) β ε ε β ε ε > 4 , 8. 16 . > 15 , 25 . 150 . i i i i i i non heat ρ c if Ti > 0 , if , 1.0 , if , 1.0 i ε β β ε β β treated, welded i i i i i i Effective thickness t eff ρ .c t TALAT 2301 – Example 4.3 4
  • 5. Heat Affected Zone Flange t haz.f .t ρ haz 2 t haz.f = 12 mm Web .t t haz.w ρ haz 9 t haz.w = 14.4 mm n 2 .. 3 t eff if t eff > t haz.f , t haz.f , t eff t eff t eff n n n 8 n n t eff if t eff > t haz.w , t haz.w , t eff t eff t eff 9 9 9 15 9 βi t eff = i ε ρ c= = ψi = gi = βi = εi = i i mm 1 1 3 1.37 2.19 1 15 1 1 3 1.37 2.19 1 12 Comment: 1 1 11.6 1.37 8.468 1 12 εi was given a large value (99) 1 1 11.6 1.37 8.468 1 15 for elements entirely on 1 1 11.6 1.37 8.468 1 12 the tension side 1 1 3 1.37 2.19 1 12 1 1 3 1.37 2.19 1 15 1 1 0 1.37 0 1 0 -0.666 0.5 2.874 1.37 2.098 1 14.4 -0.666 0.5 2.874 99 0.029 1 18 -0.666 0.5 2.874 99 0.029 1 18 Area of effective 1 1 0 99 0 1 18 thickness -0.666 0.5 2.874 99 0.029 1 18 t eff . elements 2 2 dAi yi yi 1 zi zi 1 -0.666 0.5 2.874 99 0.029 1 18 i -0.666 0.5 2.874 1.37 2.098 1 14.4 Cross rows ( y ) 1 section A eff dAi A = 1.06 . 10 mm 4 2 area i =1 A eff = 1.002 . 10 mm 4 2 First moment rows ( y ) 1 dAi of area Sy zi zi 1 . Sy 2 z gc z gc = 41.546 mm i =1 A eff Gravity centre TALAT 2301 – Example 4.3 5
  • 6. Effective cross section. Second iteration Node 10 and 13 is moved to the neutral z10 z gc 0.01 . mm z13 z gc 0.01 . mm axis from the first iteration z10 y10 y5 . y y11 y13 y10 5 z11 z8 z gc zd zi z gc 5.4.3 (1) ψi 1 j 9 .. 11 ψj ψ j 4 ψ j i z11 z gc max z max z d 0.8 (5.7 or 5.8) gi if ψ i > 1 , 0.7 0.30 . ψ i , Outstand gi if Ti > 0 , 1 , gi 1 ψ i Figure 5.2 y2 y0 0.5 . t 13 y5 y2 t 13 5.4.3 (1) c) k 1 .. 2 βk βk 5 β k l 3 .. 5 βl t2 t4 2 2 y11 y8 z11 z8 β j if t 11> 0 , gj. ,1 βj 4 β j t 11 250 . MPa max z 5.4.4 (5) ε o εi ε o. εi if zi z gc . zi 1 z gc , ε i , 99 ε o 1.118 = fo z gc 5.4.5 (3) 2 2 a) or c) β ε ε β ε ε > 4 , 8. 16 . > 15 , 25 . 150 . i i i i i i non heat ρ c if Ti > 0 , if , 1.0 , if , 1.0 i ε β β ε β β treated, welded i i i i i i Effective thickness t eff ρ .c t TALAT 2301 – Example 4.3 6
  • 7. Heat Affected Zone t eff if t eff > t haz.f , t haz.f , t eff t eff t eff n n n 8 n n t eff if t eff > t haz.w , t haz.w , t eff t eff t eff 9 9 9 15 9 βi t eff = i ε ρ c= = ψ i = Ti = i = gi = βi = εi = i i mm 1 1 1 1 3 1.315 2.282 1 15 2 1 1 1 3 1.315 2.282 1 12 3 0 1 1 11.6 1.315 8.823 1 12 4 0 1 1 11.6 1.315 8.823 1 15 5 0 1 1 11.6 1.315 8.823 1 12 6 1 1 1 3 1.315 2.282 1 12 7 1 1 1 3 1.315 2.282 1 15 8 0 1 1 0 1.315 0 1 0 9 0 -0.723 0.483 2.776 1.315 2.112 1 14.4 10 0 -0.723 0.483 2.776 1.315 2.112 1 18 11 0 -0.723 0.483 2.776 99 0.028 1 18 β i Max slender- β e if Ti > 0 , 0 , 12 0 1 1 0 99 0 1 18 ness i ε i 13 0 -0.723 0.483 2.776 99 0.028 1 18 - Internal 14 0 -0.723 0.483 2.776 1.315 2.112 1 18 elements β Imax max β e 15 0 -0.723 0.483 2.776 1.315 2.112 1 14.4 β Imax = 8.823 β i Max slender- β e if Ti > 0 , ,0 ness i ε i - Outstands β Omax max β e β Omax = 2.282 Cross section class I if β Imax 7 , 1 , if β Imax 11 , 2 , if β Imax 15 , 3 , 4 class I = 2 class class O if β Omax 2 , 1 , if β Omax 3 , 2 , if β Omax 4 , 3 , 4 class O = 2 (5.15) class if class I > class O , class I , class O class = 2 Area of effective t eff . thickness 2 2 dAi yi yi 1 zi zi 1 elements i rows ( y ) 1 Area of A eff dAi A = 1.06 . 10 mm effective 4 2 cross section i =1 A eff = 1.002 . 10 mm 4 2 First rows ( y ) 1 moment dAi Sy of area. Sy zi zi 1 . z gc 2 A eff Gravity centre i =1 z gc = 41.546 mm TALAT 2301 – Example 4.3 7
  • 8. Second rows ( y ) 1 moment of dAi zi . zi 1 . A eff . z gc 2 2 2 area of effective Iy zi zi 1 I eff Iy 3 cross section i =1 I eff = 1.809 . 10 mm 7 4 Section I eff W eff = 3.149 . 10 mm 5 3 modulus zd zi z gc max z.eff max z d W eff i max z.eff Compare I y.gr W gr = 3.172 . 10 mm 5 3 gross zd zi z gc.gr max z.gr max z d W gr i max z.gr section Heat Affected Zone Reduced thickness in HAZ h 2 .. 3 th .t ρ haz h th 3 th t9 .t ρ haz h t 15 .t ρ haz h ti . 2 2 Area dAi yi yi 1 zi zi 1 rows ( y ) 1 Area of A ele dAi A = 1.06 . 10 mm effective 4 2 cross section i =1 A ele = 9.736 . 10 mm 3 2 First rows ( y ) 1 moment dAi Sy of area. Sy zi zi 1 . z gc.e 2 A ele Gravity centre i =1 z gc.e = 42.351 mm Second rows ( y ) 1 moment of dAi zi . zi 1 . A ele. z gc.e 2 2 2 area of effective Iy zi zi 1 I ele Iy 3 cross section i =1 I ele = 1.785 . 10 mm 7 4 I ele W ele = 3.151 . 10 mm 5 3 Section zd zi z gc.e max z.ele max z d W ele modulus i max z.ele W el = 3.172 . 10 mm 5 3 Plastic section modulus A = 1.06 . 10 mm 4 2 rows ( y ) 1 Area of ti . 2 2 A pl yi yi 1 zi zi 1 A pl = 9.736 . 10 mm effective 3 2 cross section i =1 Cross section 7 ti . 2 . t9. area of upper 2 2 2 2 A up yi yi 1 zi zi 1 y9 y8 z9 z8 part i =1 A up = 4.716 . 10 mm 3 2 A z9 = 28.711 mm Move node 8 A up 2 to plastic z10 z9 z13 z10 z10 = 44.934 mm neutral axis t 11 t 13 z10 y10 y5 . y y11 y13 y10 y10 = 82.384 mm 5 z11 TALAT 2301 – Example 4.3 8
  • 9. rows ( y ) 1 Plastic section zi zi 1 W ple . t. yi yi 1 2 zi zi 1 2 W ple = 4.123 . 10 mm 5 3 modulus 2 i i =1 W ple = 1.3 W el Shape factor W ele 15 β Imax W ple W ele 4 β Omax W ple (5.15) α 3I . 1 . 1 α 3O . 1 . 1 W el 15 11 W ele W el 4 3 W ele α 3I 1.467 = α 3O 1.52 = α 3 if α 3I < α 3O , α 3I , α 3O α 3 1.467 = W ple W eff α if class< 3 , , if class< 4 , α 3 , class = 2 α = 1.3 W el W el 0 50 100 200 150 100 50 0 50 100 150 200 Elastic neutral axis: - first iteration dashed-dotted line - second iteration dashed line Plastic neutral axis dotted line TALAT 2301 – Example 4.3 9
  • 10. Bending moment resistance fo W el = 3.172 . 10 mm 5 3 (5.14) M y.Rd α . W el. γ M1 W ple = 4.123 . 10 mm 5 3 M y.Rd = 75 kN . m Cross section class = 2 α = 1.3 class A eff = 1.002 . 10 mm 4 2 I eff = 1.809 . 10 mm 7 4 0 50 100 150 100 50 0 50 100 150 TALAT 2301 – Example 4.3 10

×