Blackman Tuckey method
Upcoming SlideShare
Loading in...5
×
 

Blackman Tuckey method

on

  • 2,040 views

 

Statistics

Views

Total Views
2,040
Views on SlideShare
2,040
Embed Views
0

Actions

Likes
0
Downloads
29
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Blackman Tuckey method Blackman Tuckey method Presentation Transcript

  • BLACKMAN –TUKEYMETHOD BY:Sarbjeet Singh M.E(ECE) 1ST YEAR,1ST SEM NITTTR- Chandigarh
  • OBJECTIVEIntroductionProcedure of the methodComparision
  • INTRODUCTION  Used for power spectrum estimation  Non parametric method  Smoothen the periodgram
  • PROCEDURE To calculate the autocorrelation function of the data. To apply a suitable window function to the data. To compute the FFT of the resulting data to obtain the power density spectrum
  • METHOD  The Blackman -Tukey estimate is M−1 Pxx ( f ) = BT ∑ m =−( M −1) rxx (m) w(m)e − j 2π fm Where w(m) has length 2 M − 1 and is zero for m ≥ M
  • CONTD.Extending the limit on the sum to(-∞,∞)Hence 1/ 2 Pxx ( f ) = ∫ Pxx (α)W ( f − α) d α BT −1/ 2The Expected value of Blackman-Tukey power spectrum estimation is 1/ 2 E[ Pxx ( f )] = ∫ E[ Pxx (α W ( f −α d α BT )] ) − 2 1/where 1/ 2 E[ p xx (α = )] − 2 1/ ∫ xx (θ)WB (α−θ) dθ
  • CONTD. Where WB ( f ) is the Fourier transform of the Bartlett window We get 1/ 2 1/ 2 E[ Pxx ( f )] = ∫ ∫  xx (θ )WB (α − θ )W ( f − α)d αdθ BT −1/ 2 −1/ 2 Hence 1/ 2 E[ Pxx ( f )] ≈ ∫ xx (θ)W ( f −θ) dθ BT − 2 1/
  • CONTD.The variance of the Blackman-Tukey power Spectrum Estimate isvar[ Pxx ( f )] = E{[ Pxx ( f ) 2 ]} −{E[ Pxx ( f )]}2 BT BT BTTherefore 1/ 2 1 var[ Pxx ( f )] ≈ 2 ( f )[ ∫ W 2 (θ) dθ] BT xx N − 2 1/ M−1 1 ≈ ( f )[ 2 xx N ∑ m= ( M − − 1) w2 ( m)
  • PERFORMANCE COMPARISION 1/ 2 Mean: E[ Pxx ( f )] ≈ BT ∫ xx (θ )W ( f −θ ) dθ −1/ 2 Variance: M−1 1 ∑ BT var[ P ( f )] xx ≈ ( f )[ 2 xx w2 ( m ) N m= ( M − − 1)Quality factor: {E[ Pxx ( f )]}2 BT Bt var[ Pxx ( f )]
  • CONTD For rectangular & Bartlett window we have M −1 1 M (rectangular) N ∑ −( M −1) W 2 ( m) = 2 N 2M = (triangular) 3N N QBT = 1.5 M
  • PERFORMANCE COMPARISION Estimate Quality Factor Bartlett 1.11NΔf Welch(50% overlap) 1.39NΔf Blackman-Tukey 2.34NΔf
  • COMPUTATIONAL PERFORMANCE Estimate Number of computationsBartlett N 0.9 (log 2 ) 2 ∆fWelch(50% overlap) 5.12 N (log 2 ) ∆fBlackman-Tukey 1.28 N (log 2 ) ∆f
  • REFERENCESProakis & ManolakisJervis