• Like
2013 09 17_video_imageanalysis_lecture_01
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

2013 09 17_video_imageanalysis_lecture_01

  • 4,876 views
Published

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
4,876
On SlideShare
0
From Embeds
0
Number of Embeds
6

Actions

Shares
Downloads
45
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Анализ изображений и видео Лекция 1: Введение в анализ изображений Наталья Васильева nvassilieva@hp.com HP Labs Russia 17 сентября 2013, Computer Science Center
  • 2. 2 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. План лекции • Введение в анализ изображений • Зачем нужен анализ изображений? • Почему это сложно? • Организация и программа курса • Зрение человека и цифровое представление изображений • Зрительное восприятие человека • Модели цвета • Цифровые изображения
  • 3. 3 © Copyright 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Откуда берутся цифровые изображения?
  • 4. 4 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Слайд K. Grauman
  • 5. 5 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Что полезного можно узнать из картинок?
  • 6. 6 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Медицина • Выявление аномалий • Диагностика заболеваний • Моделирование организма и предсказание последствий лечения
  • 7. 7 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Системы безопасности • Записи видеонаблюдений • Отпечатки пальцев, снимки сетчатки глаза, изображения лиц • Обнаружение «подозрительных» предметов • Идентификация лиц, находящихся «в розыске» • Авторизация доступа по отпечаткам пальцев
  • 8. 8 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. В промышленности Визуальный контроль качества (a) (б) (в) (г) (д) (а) CD-ROM контроллер – все детали на месте? (б) Все таблетки на месте? (в) Контроль за уровнем жидкости в бутылках (г) Контроль за качеством пластика (д) Контроль за качеством кукурузных хлопьев!
  • 9. 9 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Индексирование и поиск изображений • Персональные коллекции (тысячи фотографий) • Коллекции профессиональных фото (миллионы фотографий) • Коллекции репродуций (миллионы фотографий) • Навигация • Поиск дубликатов • Выбор «лучшей» фотографии • Автоматическое создание коллажей (http://www.snapfishlab.com/) • Защита авторских прав
  • 10. 10 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Еще приложения Военная промышленность • Системы слежения и целенаведения Кино, компьютерные игры, виртуальная реальность • Моделирование, 3D-реконструкция Автомобилестроение • Автоматическое управление автомобилем http://www.pauldebevec.com/
  • 11. 11 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. И еще... Робототехника • Зрение роботов Обработка сенсорных данных • Зондирование земной поверхности Оцифровка печатных документов • Обнаружение и распознавание текста NAO Word lens
  • 12. 12 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как?
  • 13. 13 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Мы бы хотели... • чтобы компьютер «понимал» семантику сцены на изображении • автоматически распознавать что и где изображено • категоризировать и идентифицировать объекты, определять их свойства и отношения Slide credit: M. Everingham
  • 14. 14 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как «видит» изображение компьютер? Растровое изображение
  • 15. 15 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как видим изображение мы?
  • 16. 16 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как видим изображение мы?
  • 17. 17 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Слайд K. Grauman
  • 18. 18 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Семантический разрыв Объекты (область изображения) Текстура (окрестность пикселя) Цвет, яркость (один пиксель) семантика низкоуровневые признаки семантический разрыв Уровнисодержанияизображения Характеристики объектов
  • 19. 19 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как компьютеру «понять» изображение?
  • 20. 20 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
  • 21. 21 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Как компьютеру «понять» изображение? Не надо понимать все. Можно решать конкретную задачу.
  • 22. 22 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Распознавание лиц Распознавание позы Распознавание действия Выделение текстуры Выделение областей, однородных по цвету Распознавание объектов Сегментация изображений Классификация изображений Поиск изображений Обнаружение и распознавание текста Примеры задач
  • 23. 23 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Что такое анализ изображений? Анализ изображений – извлечение значимой информации из изображений • “Computing properties of the 3D world from one or more digital images” (Trucco and Veri) • “Make useful decisions about real physical objects and scenes based on sensed images” (Shapiro) • “The construction of explicit, meaningful description of physical objects from images” (Ballard and Brown)
  • 24. 24 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Опишите фотографию словами Что такое анализ изображений? Маленькая девочка ест мороженое на улице. Одета в джинсы и футболку с длинным рукавом. На заднем фоне панельные дома. Один из них голубого цвета в белую клетку. Распознавание лиц Распознавание позы Распознавание действия Выделение текстуры Выделение областей, однородных по цвету Распознавание объектов
  • 25. 25 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Связь с другими дисциплинами Обработка изображений Image Processing Анализ изображений Image Analysis Компьютерное зрение Computer vision Компьютерная графика Computer graphics Изображение Изображение Вектор признаков, модель Изображение Распознавание образов (Pattern recognition) Машинное обучение (Machine learning) Анализ данных (Data mining) Обработка сигналов (Signal processing) Искусственный интеллект (Artificial intelligence) Статистика Нейропсихология
  • 26. 26 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. План лекции • Введение в анализ изображений • Зачем нужен анализ изображений? • Почему это сложно? • Организация и программа курса • Зрение человека и цифровое представление изображений • Зрительное восприятие человека • Модели цвета • Цифровые изображения
  • 27. 27 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Организация курса • Годовой курс • Лекции и семинары • В начале семинаров возможны короткие тесты (коэф. 0.2) • Решение задач во время семинаров (коэф. 0.3) • Практические задания на дом (индивидуальные и групповые) (коэф. 0.4) • Чтение статей (факультативно) (коэф. 0.4) • Тесты в конце каждого семестра (коэф. 0.5)
  • 28. 28 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Ассистенты Валерия ЧерненкоВадим Лебедев Студент 5 курса астрономического отделения мат-меха СПбГУ, работает в Яндексе. Мечтает вырастить искусственные мозги методами deep learning и заменить всех людей на роботов. Студентка 4 курса кафедры прикладной математики СПбГПУ, работает в Яндексе. Интересуется анализом изображений, потому что это наукоемкая область, которая постоянно применяется на практике и можно увидеть результат.
  • 29. 29 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Программа курса • Пространственная и частотная обработка изображений • Математическая морфология • Построение признаков и сравнение изображений • Поиск по подобию, поиск нечетких дубликатов • Классификация изображений и распознавание объектов • Сегментация изображений • Обнаружение и распознавание лиц • Обнаружение текста • Основы обработки видео • Распознавание событий в видео
  • 30. 30 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. План лекции • Введение в анализ изображений • Зачем нужен анализ изображений? • Почему это сложно? • Организация и программа курса • Зрение человека и цифровое представление изображений • Зрительное восприятие человека • Модели цвета • Цифровые изображения
  • 31. 31 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Несколько фактов о нашем зрительном восприятии Наш мозг часто «достраивает» картинку и добавляет семантику (Мы все можем узнать «что-то» или «кого-то» в очертании облака) Зрительная система самообучается • Европейцу сложно различать лица азиатов • Мы ищем знакомые образы в картинке
  • 32. 32 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Несколько фактов о нашем зрительном восприятии − Мы ищем знакомые образы, мозг «достраивает» картинку Известные оптические иллюзии
  • 33. 33 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Несколько фактов о нашем зрительном восприятии От того, где мы выросли, зависит, как мы «видим» мир вокруг нас Ступеньки вверх или вниз? • Арабы ответят «сверху вниз»
  • 34. 34 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Яркостная адаптация и контрастная чувствительность − Зрительная система способна адаптироваться к диапазону значений яркости порядка1010 − Субъективная яркость – логарифмическая функция от физической яркости
  • 35. 35 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Яркостная адаптация и контрастная чувствительность − Зрительная система не способна работать во всем диапазоне одновременно Диапазон субъективной яркости при адаптации к уровню Ba Уровни яркости ниже Bb субъективно воспринимаются как черные
  • 36. 36 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Отношение Вебера I Ic∆ – Отношение Вебера ∆Ic – приращение аркости, различимое в 50% случаев на фоне яркости I Контрастная чувствительность – отношение Вебера Зависимость отношения Вебера, как функции яркости Низкая контрастная чувствительность Высокая контрастная чувствительность
  • 37. 37 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Воспринимаемая яркость как функция истинной яркости Полосы Маха
  • 38. 38 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Воспринимаемая яркость как функция истинной яркости Одновременный контраст
  • 39. 39 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Восприятие цвета Спектральная чувствительность колбочек трех групп Три группы колбочек, различающихся чувствительностью к свету с различной длиной волны: • S-колбочки: короткие волны (blue) • M-колбочки: средние волны (green) • L-колбочки: длинные волны (red)
  • 40. 40 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Восприятие цвета − Человек воспринимает цвета, как различные сочетания «первичных» цветов: красного, зеленого и синего. − Сочетание первичных цветов дает вторичные: пурпурный (R+B), голубой (G + B) и желтый (R + G). − Для красителей – первичный цвет поглощает один первичный основной цвет светового источника. Аддитивные первичные цвета (световые источники) Первичные и вторичные цвета Субтрактивные первичные цвета (красители)
  • 41. 41 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Светлота, цветовой тон и насыщенность − Светлота связана со зрительным ощущением интенсивности − Цветовой тон характеризует доминирующий цвет − Насыщенность связана с относительной белизной цвета − Цветовой тон и насыщенность вместе называют цветностью
  • 42. 42 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. От координат цвета к координатам цветности − Величины красного, синего и зеленого, необходимые для получения некоторого цвета называются координатами цвета и обозначаются как X, Y, and Z − Цветовой тон и насыщенность можно выразить в координатах цветности: 1=++ zyx , ZYX X x ++ = , ZYX Y y ++ = ZYX Z z ++ =
  • 43. 43 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Диаграмма цветности Диаграмма цветности МКО CIE xy Chromaticity Diagram − Создана Международной Коммиссией по Освещению (МКО) в 1931. − Функция от x (red) и y (green) : z = 1 – (x + y). − Вдоль границы – цвета спектра. − (x,y) = (1/3, 1/3) - опорный белый цвет стандарта МКО, точка равной энергии. − Любая точка на границе имеет максимальную насыщенность. − Граница → точка равной энергии: насыщенность → 0The CIE 1931 chromaticity diagram.
  • 44. 44 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Цветовой охват Color Gamut Gamut of the CIE RGB primaries and location of primaries on the CIE 1931 xy chromaticity diagram. Typical gamuts of a monitor and of a printing device. printing device color gamut RGB monitor color gamut
  • 45. 45 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Цветовые пространства • Назначение цветового пространства (цветовой модели, системы цветов) – стандартизация описания цвета • Цветовая модель определяет систему координат и подпространство внутри этой системы, в котором каждый цвет представлен единственной точкой • Распространенные цветовые пространства: − RGB (мониторы, видеокамеры), − CMY/CMYK (принтеры), − HSI/HSV/HSL/HSB (обработка изображений), − CIE Lab (обработка изображений).
  • 46. 46 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. RGB Если R,G, и B задаются 8 битами (24- битное RGB изображение), то число цветов (28)3=16,777,216
  • 47. 47 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Цветовая система Манселла − Разработана профессором Альбертом Манселлом в начале 20 века − Координаты: цветовой тон светлота (значение), насыщенность (хрома).
  • 48. 48 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Цветовые пространства HSI/HSL/HSV/HSB − RGB, CMY/CMYK ориентированы на устройства цветовоспроизведения (мониторы, принтеры) − HSI/… (Hue, Saturation, Intensity/Lightness/ Value/Brightness) соответствуют цветовосприятию человека − Позволяют отделить цветность (H+S) от яркости (I).
  • 49. 49 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 3 BGR I ++ = 2 ),,min(),,max( BGRBGR L + = ),,max( BGRV = Graphical depiction of HSV (cylinder and cone) http://www.easyrgb.com/index.php?X=MATH Graphical depiction of HSL Цветовые пространства HSI/HSL/HSV/HSB
  • 50. 50 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Модель CIE L*a*b − Аппаратно-независимая и зрительно однородная цветовая модель. − Позволяет соотносить цветовые охваты мониторов и принтеров − Компоненты L*a*b* задаются так: Lightness 75% Lightness 25%
  • 51. 51 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Пространство HCL CIE Lab color space HCL color space
  • 52. 52 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Представление цифровых изображений Растровое изображение 255typicallyand,),(0 =≤≤ LLyxf
  • 53. 53 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Представление цифровых изображений Цветное растровое изображение:
  • 54. 54 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Параметры растрового изображения Размерность (Raster dimensions) Разрешение (Resolution - ppi) Число уровней (обычно 2k) Фиксированная размерность, изменяем разрешение Фиксированное разрешение, изменяем размерность
  • 55. 55 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Параметры растрового изображения Одно изображение с различным числом уровней: 16 levels 8 levels 4 levels 2 levels Распространено: 8 bit (256 уровней), 16 bit – png, tiff
  • 56. 56 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Заключение • Что такое и зачем нужен анализ изображений? – Медицина, промышленность, киноиндустрия, поиск и индексирование коллекций • Основные сложности – Семантический разрыв, устойчивость к различиям в освещенности, позе, смене точки съемки, перекрыванию объектов (occlusion), внутривидовому разнообразию • Познакомились со структурой курса – Первые домашние задания – после семинара • Зрительное восприятие человека – Основные факты • Представление цвета – Рассмотрели различные цветовые пространства • Цифровое представление изображений – Растровые изображений