SlideShare a Scribd company logo
1 of 13
ENERGÍA SOLAR
Estrella luminosa, centro de nuestro sistema planetario.
Energía solar, energía radiante producida en el Sol como resultado de reacciones nucleares de fusión. Llega a la Tierra a través del espacio en cuantos de energía llamados fotones , que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar. Sin embargo, esta cantidad no es constante, en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera. Casa solar En esta casa solar en Corrales (Nuevo México, Estados Unidos) un colector solar de placa plana proporciona energía para calentar agua bombeada por el molino. El agua se almacena en grandes bidones.
TRANSFORMACIÓN NATURAL DE LA ENERGÍA SOLAR La recogida natural de energía solar se produce en la atmósfera, los océanos y las plantas de la Tierra. Las interacciones de la energía del Sol, los océanos y la atmósfera, por ejemplo, producen vientos, utilizados durante siglos para hacer girar los molinos. Los sistemas modernos de energía eólica utilizan hélices fuertes, ligeras, resistentes a la intemperie y con diseño aerodinámico que, cuando se unen a generadores, producen electricidad para usos locales y especializados o para alimentar la red eléctrica de una región o comunidad.
RECOGIDA DIRECTA DE ENERGÍA SOLAR   La recogida directa de energía solar requiere dispositivos artificiales llamados colectores solares, diseñados para recoger energía, a veces después de concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos térmicos o fotoeléctricos, o fotovoltaicos. En los procesos térmicos, la energía solar se utiliza para calentar un gas o un líquido que luego se almacena o se distribuye. En los procesos fotovoltaicos, la energía solar se convierte en energía eléctrica sin ningún dispositivo mecánico intermedio . Los colectores solares pueden ser de dos tipos principales: los de placa plana y los de concentración.
COLECTORES PLACA PLANA En los procesos térmicos los colectores de placa plana interceptan la radiación solar en una placa de absorción por la que pasa el llamado fluido portador. Éste, en estado líquido o gaseoso, se calienta al atravesar los canales por transferencia de calor desde la placa de absorción. La energía transferida por el fluido portador, dividida entre la energía solar que incide sobre el colector y expresada en porcentaje, se llama eficiencia instantánea del colector. Los colectores de placa plana tienen, en general, una o más placas cobertoras transparentes para intentar minimizar las pérdidas de calor de la placa de absorción en un esfuerzo para maximizar la eficiencia. Son capaces de calentar fluidos portadores hasta 82 °C y obtener entre el 40 y el 80% de eficiencia.
Calentamiento solar Las placas colectoras utilizan la energía del Sol para calentar un fluido portador que, a su vez, proporciona calor utilizable en una casa. El fluido portador, agua en este caso, fluye a través de tuberías de cobre en el colector solar, durante el proceso absorbe algo de la energía solar. Después, se mueve hasta un intercambiador de calor donde calienta el agua que se utilizará en la casa. Por último, una bomba lleva de nuevo el fluido hacia el colector solar para repetir el ciclo.
COLECTORES DE CONCENTRACIÓN   Para aplicaciones como el aire acondicionado y la generación central de energía y de calor para cubrir las grandes necesidades industriales, los colectores de placa plana no suministran, en términos generales, fluidos con temperaturas bastante elevadas como para ser eficaces. Se pueden usar en una primera fase, y después el fluido se trata con medios convencionales de calentamiento. Como alternativa, se pueden utilizar colectores de concentración más complejos y costosos. Son dispositivos que reflejan y concentran la energía solar incidente sobre un zona receptora pequeña. Como resultado de esta concentración, la intensidad de la energía solar se incrementa y las temperaturas del receptor (llamado ‘blanco’) pueden acercarse a varios cientos, o incluso miles, de grados Celsius. Los concentradores deben moverse para seguir al Sol si se quiere que actúen con eficacia; los dispositivos utilizados para ello se llaman heliostatos Los hornos solares son una aplicación importante de los concentradores de alta temperatura. El mayor, situado en Odeillo, en la parte francesa de los Pirineos, tiene 9.600 reflectores con una superficie total de unos 1.900 m2 para producir temperaturas de hasta 4.000 °C. Estos hornos son ideales para investigaciones, por ejemplo, en la investigación de materiales, que requieren temperaturas altas en entornos libres de contaminantes.
Enfriamiento solar   Se puede producir frío con el uso de energía solar como fuente de calor en un ciclo de enfriamiento por absorción. Uno de los componentes de los sistemas estándar de enfriamiento por absorción, llamado generador, necesita una fuente de calor. Puesto que, en general, se requieren temperaturas superiores a 150 °C para que los dispositivos de absorción trabajen con eficacia, los colectores de concentración son más apropiados que los de placa plana.
ELECTRICIDAD FOTOVOLTAICA   Las células solares hechas con obleas finas de silicio, arseniuro de galio u otro material semiconductor en estado cristalino, convierten la radiación en electricidad de forma directa. Ahora se dispone de células con eficiencias de conversión superiores al 30%. Por medio de la conexión de muchas de estas células en módulos, el coste de la electricidad fotovoltaica se ha reducido mucho. El uso actual de las células solares se limita a dispositivos de baja potencia, remotos y sin mantenimiento, como boyas y equipamiento de naves espaciales. ISES: Asociación Internacional de Energía Solar ASADES: Asociación Argentina de Energías renovables y ambiente ANES: Asociación Nacional de Energía Solar de México..
ENERGÍA SOLAR EN EL ESPACIO  Un proyecto futurista propuesto para producir energía a gran escala propone situar módulos solares en órbita alrededor de la Tierra. En ellos la energía concentrada de la luz solar se convertiría en microondas que se emitirían hacia antenas terrestres para su conversión en energía eléctrica. Para producir tanta potencia como cinco plantas grandes de energía nuclear (de mil millones de vatios cada una), tendrían que ser ensamblados en órbita varios kilómetros cuadrados de colectores, con un peso de más de 4000 t; se necesitaría una antena en tierra de 8 m de diámetro. Se podrían construir sistemas más pequeños para islas remotas, pero la economía de escala supone ventajas para un único sistema de gran capacidad  Mapa de densidad de la corona solar Un mapa de la atmósfera solar exterior, la corona, muestra densidades diferentes en las capas de gas caliente que rodean el Sol. Las regiones azules indican la densidad mayor, las amarillas son las áreas de densidad menor. El campo magnético del Sol interactúa con las capas de gas produciendo las extrañas curvas, rizos y protuberancias que se observan aquí. La corona se compone fundamentalmente de electrones y átomos ionizados con temperaturas de unos 2,2 millones de grados centígrados.
DISPOSITIVOS DE ALMACENAMIENTO DE ENERGÍA  SOLAR   Debido a la naturaleza intermitente de la radiación solar como fuente energética durante los periodos de baja demanda debe almacenarse el sobrante de energía solar para cubrir las necesidades cuando la disponibilidad sea insuficiente. Además de los sistemas sencillos de almacenamiento como el agua y la roca, se pueden usar, en particular en las aplicaciones de refrigeración, dispositivos más compactos que se basan en los cambios de fase característicos de las sales eutécticas (sales que se funden a bajas temperaturas). Los acumuladores pueden servir para almacenar el excedente de energía eléctrica producida por dispositivos eólicos o fotovoltaicos . Un concepto más global es la entrega del excedente de energía eléctrica a las redes existentes y el uso de éstas como fuentes suplementarias si la disponibilidad solar es insuficiente. Sin embargo, la economía y la fiabilidad de este proyecto plantea límites a esta alternativa. Acumulador de plomo Inventado en 1859 por Gaston Planté, el acumulador de plomo sigue utilizándose en automóviles, camiones y aviones. El acumulador contiene un grupo de células conectadas en serie. Cada célula consiste en una placa de plomo, otra de óxido de plomo, y una disolución electrolítica de ácido sulfúrico. Cuando estos acumuladores se descargan, pueden recargarse creándose una corriente en sentido opuesto a la que fluye cuando el acumulador está completamente cargado.
ENERGIA SOLAR SOL 4000 ºCºº Renovable heliostato fotoceldas Placa plana concentración almacenar colectores No daña el medio ambiente Se calienta a 82ºC potenciarla Funciona con gases Hornos solares La absorbe Evitar perdida de calor transparentes Tienen 1 o 2 placas colectoras ,[object Object],[object Object],[object Object],[object Object],Baterías o acumuladores industrias ,[object Object],[object Object],[object Object]

More Related Content

What's hot

Energias alternativas maquinas
Energias alternativas maquinasEnergias alternativas maquinas
Energias alternativas maquinasAlex Zurita
 
La ProduccióN De Energía
La ProduccióN De EnergíaLa ProduccióN De Energía
La ProduccióN De Energíaalejandro220794
 
Las Energías Alternativas
Las Energías AlternativasLas Energías Alternativas
Las Energías Alternativasguestc955fc
 
Nuevas fuentes de energía
Nuevas fuentes de energíaNuevas fuentes de energía
Nuevas fuentes de energíaRaul ElqTepone
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energiavanessa_94
 
Historia de la energía solar térmicaV (centrales con receptor central)
Historia de la energía solar térmicaV (centrales con receptor central)Historia de la energía solar térmicaV (centrales con receptor central)
Historia de la energía solar térmicaV (centrales con receptor central)geopaloma
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energiasalome_vk
 
La ProduccióN De EnergíA
La ProduccióN De EnergíALa ProduccióN De EnergíA
La ProduccióN De EnergíARaul Vera
 
La ProduccióN De EnergíA
La ProduccióN De EnergíALa ProduccióN De EnergíA
La ProduccióN De EnergíAAranchaa
 
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradora
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradoraenergia solar, energia eolica, celdas de hidrogeno y lampara ahorradora
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradorabbminina
 

What's hot (19)

Energias alternaticas
Energias alternaticasEnergias alternaticas
Energias alternaticas
 
Energía solar térmica.
Energía solar térmica.Energía solar térmica.
Energía solar térmica.
 
Energias alternaticas
Energias alternaticasEnergias alternaticas
Energias alternaticas
 
Energías
EnergíasEnergías
Energías
 
Trabajo energías renovables
Trabajo energías renovablesTrabajo energías renovables
Trabajo energías renovables
 
Energias alternativas maquinas
Energias alternativas maquinasEnergias alternativas maquinas
Energias alternativas maquinas
 
La ProduccióN De Energía
La ProduccióN De EnergíaLa ProduccióN De Energía
La ProduccióN De Energía
 
Las Energías Alternativas
Las Energías AlternativasLas Energías Alternativas
Las Energías Alternativas
 
La Produc..
La Produc..La Produc..
La Produc..
 
Ex po generacion
Ex po generacionEx po generacion
Ex po generacion
 
Nuevas fuentes de energía
Nuevas fuentes de energíaNuevas fuentes de energía
Nuevas fuentes de energía
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energia
 
Historia de la energía solar térmicaV (centrales con receptor central)
Historia de la energía solar térmicaV (centrales con receptor central)Historia de la energía solar térmicaV (centrales con receptor central)
Historia de la energía solar térmicaV (centrales con receptor central)
 
Energia solar
Energia solarEnergia solar
Energia solar
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energia
 
La ProduccióN De EnergíA
La ProduccióN De EnergíALa ProduccióN De EnergíA
La ProduccióN De EnergíA
 
La ProduccióN De EnergíA
La ProduccióN De EnergíALa ProduccióN De EnergíA
La ProduccióN De EnergíA
 
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradora
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradoraenergia solar, energia eolica, celdas de hidrogeno y lampara ahorradora
energia solar, energia eolica, celdas de hidrogeno y lampara ahorradora
 
Centrales termosolares
Centrales termosolaresCentrales termosolares
Centrales termosolares
 

Similar to Energia solar

Energias renovables y no renovables introduccion al tema
Energias renovables y no renovables introduccion al temaEnergias renovables y no renovables introduccion al tema
Energias renovables y no renovables introduccion al temaCristina Senn
 
Energía solar
Energía solarEnergía solar
Energía solarjorghess
 
Presentación Energía Solar Térmica
Presentación Energía Solar TérmicaPresentación Energía Solar Térmica
Presentación Energía Solar TérmicaGabriel Spinali
 
Trabajo de cameras 2
Trabajo de cameras 2Trabajo de cameras 2
Trabajo de cameras 2Jordanoz Folk
 
Las EnergíAs Renovables
Las EnergíAs RenovablesLas EnergíAs Renovables
Las EnergíAs RenovablesBoHr92
 
Fuentes de energías renovables
Fuentes de energías renovablesFuentes de energías renovables
Fuentes de energías renovablesjohancastro02
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De EnergiaPilar Galan
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De EnergiaPilar Galan
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De EnergiaPilar Galan
 
Energía solar hoy, un futuro mañana.
Energía solar hoy, un futuro mañana.Energía solar hoy, un futuro mañana.
Energía solar hoy, un futuro mañana.Aline Reynoso
 

Similar to Energia solar (20)

Energias renovables y no renovables introduccion al tema
Energias renovables y no renovables introduccion al temaEnergias renovables y no renovables introduccion al tema
Energias renovables y no renovables introduccion al tema
 
Naneyyy sassy 2010
Naneyyy sassy 2010Naneyyy sassy 2010
Naneyyy sassy 2010
 
Naneyyy sassy 2010
Naneyyy sassy 2010Naneyyy sassy 2010
Naneyyy sassy 2010
 
Clase 5
Clase 5Clase 5
Clase 5
 
Energía solar
Energía solarEnergía solar
Energía solar
 
Energía solar
Energía solarEnergía solar
Energía solar
 
Presentación Energía Solar Térmica
Presentación Energía Solar TérmicaPresentación Energía Solar Térmica
Presentación Energía Solar Térmica
 
Solar
SolarSolar
Solar
 
Trabajo de cameras 2
Trabajo de cameras 2Trabajo de cameras 2
Trabajo de cameras 2
 
Energía solar
Energía solarEnergía solar
Energía solar
 
Energía solar
Energía solar Energía solar
Energía solar
 
La energia solar
La energia solarLa energia solar
La energia solar
 
Las EnergíAs Renovables
Las EnergíAs RenovablesLas EnergíAs Renovables
Las EnergíAs Renovables
 
Solar
SolarSolar
Solar
 
Fuentes de energías renovables
Fuentes de energías renovablesFuentes de energías renovables
Fuentes de energías renovables
 
Energía Solar
Energía SolarEnergía Solar
Energía Solar
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energia
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energia
 
La Produccion De Energia
La Produccion De EnergiaLa Produccion De Energia
La Produccion De Energia
 
Energía solar hoy, un futuro mañana.
Energía solar hoy, un futuro mañana.Energía solar hoy, un futuro mañana.
Energía solar hoy, un futuro mañana.
 

Recently uploaded

La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalJonathanCovena1
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfGruberACaraballo
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfRosabel UA
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxroberthirigoinvasque
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...JAVIER SOLIS NOYOLA
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...jlorentemartos
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOluismii249
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxBeatrizQuijano2
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!CatalinaAlfaroChryso
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...Ars Erótica
 

Recently uploaded (20)

La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Novena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan EudesNovena de Pentecostés con textos de san Juan Eudes
Novena de Pentecostés con textos de san Juan Eudes
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 

Energia solar

  • 2. Estrella luminosa, centro de nuestro sistema planetario.
  • 3. Energía solar, energía radiante producida en el Sol como resultado de reacciones nucleares de fusión. Llega a la Tierra a través del espacio en cuantos de energía llamados fotones , que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar. Sin embargo, esta cantidad no es constante, en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera. Casa solar En esta casa solar en Corrales (Nuevo México, Estados Unidos) un colector solar de placa plana proporciona energía para calentar agua bombeada por el molino. El agua se almacena en grandes bidones.
  • 4. TRANSFORMACIÓN NATURAL DE LA ENERGÍA SOLAR La recogida natural de energía solar se produce en la atmósfera, los océanos y las plantas de la Tierra. Las interacciones de la energía del Sol, los océanos y la atmósfera, por ejemplo, producen vientos, utilizados durante siglos para hacer girar los molinos. Los sistemas modernos de energía eólica utilizan hélices fuertes, ligeras, resistentes a la intemperie y con diseño aerodinámico que, cuando se unen a generadores, producen electricidad para usos locales y especializados o para alimentar la red eléctrica de una región o comunidad.
  • 5. RECOGIDA DIRECTA DE ENERGÍA SOLAR La recogida directa de energía solar requiere dispositivos artificiales llamados colectores solares, diseñados para recoger energía, a veces después de concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos térmicos o fotoeléctricos, o fotovoltaicos. En los procesos térmicos, la energía solar se utiliza para calentar un gas o un líquido que luego se almacena o se distribuye. En los procesos fotovoltaicos, la energía solar se convierte en energía eléctrica sin ningún dispositivo mecánico intermedio . Los colectores solares pueden ser de dos tipos principales: los de placa plana y los de concentración.
  • 6. COLECTORES PLACA PLANA En los procesos térmicos los colectores de placa plana interceptan la radiación solar en una placa de absorción por la que pasa el llamado fluido portador. Éste, en estado líquido o gaseoso, se calienta al atravesar los canales por transferencia de calor desde la placa de absorción. La energía transferida por el fluido portador, dividida entre la energía solar que incide sobre el colector y expresada en porcentaje, se llama eficiencia instantánea del colector. Los colectores de placa plana tienen, en general, una o más placas cobertoras transparentes para intentar minimizar las pérdidas de calor de la placa de absorción en un esfuerzo para maximizar la eficiencia. Son capaces de calentar fluidos portadores hasta 82 °C y obtener entre el 40 y el 80% de eficiencia.
  • 7. Calentamiento solar Las placas colectoras utilizan la energía del Sol para calentar un fluido portador que, a su vez, proporciona calor utilizable en una casa. El fluido portador, agua en este caso, fluye a través de tuberías de cobre en el colector solar, durante el proceso absorbe algo de la energía solar. Después, se mueve hasta un intercambiador de calor donde calienta el agua que se utilizará en la casa. Por último, una bomba lleva de nuevo el fluido hacia el colector solar para repetir el ciclo.
  • 8. COLECTORES DE CONCENTRACIÓN Para aplicaciones como el aire acondicionado y la generación central de energía y de calor para cubrir las grandes necesidades industriales, los colectores de placa plana no suministran, en términos generales, fluidos con temperaturas bastante elevadas como para ser eficaces. Se pueden usar en una primera fase, y después el fluido se trata con medios convencionales de calentamiento. Como alternativa, se pueden utilizar colectores de concentración más complejos y costosos. Son dispositivos que reflejan y concentran la energía solar incidente sobre un zona receptora pequeña. Como resultado de esta concentración, la intensidad de la energía solar se incrementa y las temperaturas del receptor (llamado ‘blanco’) pueden acercarse a varios cientos, o incluso miles, de grados Celsius. Los concentradores deben moverse para seguir al Sol si se quiere que actúen con eficacia; los dispositivos utilizados para ello se llaman heliostatos Los hornos solares son una aplicación importante de los concentradores de alta temperatura. El mayor, situado en Odeillo, en la parte francesa de los Pirineos, tiene 9.600 reflectores con una superficie total de unos 1.900 m2 para producir temperaturas de hasta 4.000 °C. Estos hornos son ideales para investigaciones, por ejemplo, en la investigación de materiales, que requieren temperaturas altas en entornos libres de contaminantes.
  • 9. Enfriamiento solar Se puede producir frío con el uso de energía solar como fuente de calor en un ciclo de enfriamiento por absorción. Uno de los componentes de los sistemas estándar de enfriamiento por absorción, llamado generador, necesita una fuente de calor. Puesto que, en general, se requieren temperaturas superiores a 150 °C para que los dispositivos de absorción trabajen con eficacia, los colectores de concentración son más apropiados que los de placa plana.
  • 10. ELECTRICIDAD FOTOVOLTAICA Las células solares hechas con obleas finas de silicio, arseniuro de galio u otro material semiconductor en estado cristalino, convierten la radiación en electricidad de forma directa. Ahora se dispone de células con eficiencias de conversión superiores al 30%. Por medio de la conexión de muchas de estas células en módulos, el coste de la electricidad fotovoltaica se ha reducido mucho. El uso actual de las células solares se limita a dispositivos de baja potencia, remotos y sin mantenimiento, como boyas y equipamiento de naves espaciales. ISES: Asociación Internacional de Energía Solar ASADES: Asociación Argentina de Energías renovables y ambiente ANES: Asociación Nacional de Energía Solar de México..
  • 11. ENERGÍA SOLAR EN EL ESPACIO Un proyecto futurista propuesto para producir energía a gran escala propone situar módulos solares en órbita alrededor de la Tierra. En ellos la energía concentrada de la luz solar se convertiría en microondas que se emitirían hacia antenas terrestres para su conversión en energía eléctrica. Para producir tanta potencia como cinco plantas grandes de energía nuclear (de mil millones de vatios cada una), tendrían que ser ensamblados en órbita varios kilómetros cuadrados de colectores, con un peso de más de 4000 t; se necesitaría una antena en tierra de 8 m de diámetro. Se podrían construir sistemas más pequeños para islas remotas, pero la economía de escala supone ventajas para un único sistema de gran capacidad Mapa de densidad de la corona solar Un mapa de la atmósfera solar exterior, la corona, muestra densidades diferentes en las capas de gas caliente que rodean el Sol. Las regiones azules indican la densidad mayor, las amarillas son las áreas de densidad menor. El campo magnético del Sol interactúa con las capas de gas produciendo las extrañas curvas, rizos y protuberancias que se observan aquí. La corona se compone fundamentalmente de electrones y átomos ionizados con temperaturas de unos 2,2 millones de grados centígrados.
  • 12. DISPOSITIVOS DE ALMACENAMIENTO DE ENERGÍA SOLAR Debido a la naturaleza intermitente de la radiación solar como fuente energética durante los periodos de baja demanda debe almacenarse el sobrante de energía solar para cubrir las necesidades cuando la disponibilidad sea insuficiente. Además de los sistemas sencillos de almacenamiento como el agua y la roca, se pueden usar, en particular en las aplicaciones de refrigeración, dispositivos más compactos que se basan en los cambios de fase característicos de las sales eutécticas (sales que se funden a bajas temperaturas). Los acumuladores pueden servir para almacenar el excedente de energía eléctrica producida por dispositivos eólicos o fotovoltaicos . Un concepto más global es la entrega del excedente de energía eléctrica a las redes existentes y el uso de éstas como fuentes suplementarias si la disponibilidad solar es insuficiente. Sin embargo, la economía y la fiabilidad de este proyecto plantea límites a esta alternativa. Acumulador de plomo Inventado en 1859 por Gaston Planté, el acumulador de plomo sigue utilizándose en automóviles, camiones y aviones. El acumulador contiene un grupo de células conectadas en serie. Cada célula consiste en una placa de plomo, otra de óxido de plomo, y una disolución electrolítica de ácido sulfúrico. Cuando estos acumuladores se descargan, pueden recargarse creándose una corriente en sentido opuesto a la que fluye cuando el acumulador está completamente cargado.
  • 13.