HBaseCon 2012 | Building Mobile Infrastructure with HBase

2,357 views

Published on

In this session you will learn the common mistakes made when deploying a high write environment when building an analytics database in HBase, as well as tips on how to diagnose and debug performance bottlenecks, and an overview of an open source monitoring utility developed at Urban Airship for finding HBase hotspots. This session will also present a case study on how Urban Airship replaced a tag system running on a highly sharded PostgreSQL cluster to HBase, the options explored to create a high throughput Boolean tag system and how it was ultimately built on HBase.

Published in: Technology, Business
2 Comments
1 Like
Statistics
Notes
No Downloads
Views
Total views
2,357
On SlideShare
0
From Embeds
0
Number of Embeds
164
Actions
Shares
0
Downloads
82
Comments
2
Likes
1
Embeds 0
No embeds

No notes for slide
  • EC2 is slow and unpredictable
  • Tried keeping a custom patch set for a while, not a good idea. Let Cloudera do that for you.
  • xaxis is, y axis
  • psql compare scales down case, first record time. Net throughput in parallel
  • HBaseCon 2012 | Building Mobile Infrastructure with HBase

    1. 1. B il gM ben at c r ud in o ilIrs u t e f r uwh B s it H aeMy 02 a 21N t P ta a un m e
    2. 2. A ot e buM• C r D t a dA a ts1ya) oe a n n lic ( er a y• Peio s E g er t iv S f ae4yas rv ul n in e a J e o wr ( er y t )• C nr uo t H aeZ o ep r o t tro B s/o ke e ib
    3. 3. Itis an h Tlk• A o t ra A sip b u Ub n irh• W a is o ilin at c r? h t m be f s u t e r r u• Cm o mt e o m n is ks a• P r r a c tn ga dm noin ef m n e u in n o itrg o• T gss mue ae a yt s cs e• Q etn us s io
    4. 4. W a is n ra A sip h t a Ub n ir ? h• H s gf m be ev e ta d vl es h u n t ud ot o o ilsr s h t ee p r so l o b il in r ic o d te sl s hme ev• U ifdA I r ev e ars p t r s nie P f sr s cos lf m o ic ao• S A f tru h u, le c L so ho g p ta n y r t
    5. 5. B Te u br y h N m es• H n rd o mln d v e u de s f il s eics io• Fo t n A Iut s h ua d o rq et p r rn e d P ss in to sn s fe u s e a s sc n eo d• Mln o A do d v e o le lh t e il s f n rid eics n a te im io in l• 6m nh f te o p n t d le 1 m sa e, o tso h c m a yo e r M esg s r iv h n rdmln l a a n w u de il p s d y o . io u
    6. 6. M ben at c r ? o ilIrs u t e f r u• S il sr e a a yag wb it ima ev s s n l e e se r ic r . • I nit d t e y • M sa in esg g • R pr g e ot in • S g e t io e m na n t• W s t e ws b t r l e utm r at im , at a ey o c s es e e t , s o
    7. 7. M ben at c r ? o ilIrs u t e f r u
    8. 8. Mt e is ks a• D n h v a y a o pep rn e m t e wr m d . id ’t ae n H d o x eie c, is ks ee a e a• G t E D , X A IC M G eR A Y M S S O I ! N
    9. 9. Mt e is ks a X A :) MS
    10. 10. Mt e is ks a• N tu in O o tn g S • XS F • D a ls a isb wp e • L re a e u p r ag p g sp ot
    11. 11. Mt e is ks a
    12. 12. Mt e is ks aU in R I o vta e d k s g AD r ir l d iss u iz
    13. 13. Mt e is ks aN t s gCo d r o uin l ea u
    14. 14. Mt e is ks a• N tu in H d o o tn g a o p • ds a n d .m x c vr f t o e a.xiees .d a • R p a n atr el t f o ic io c • N m e o m p es u br f apr
    15. 15. Mt e is ks a• N tu in H ae o tn g B s • H n l cut ad r o n e • R g n iz e io S e • Bo k ah l C ce c • H ilb c s e Fe l k iz o
    16. 16. Mt e is ks a• C d ga a s H ae o in g int B s • U eig te h acs ( h cA d u, eis ) s lhwig t cesc ek n P t x t s • H ae etg t y get B sT s Uil is ra in it • B t in *o* c n urn y a h g r o cr c c e
    17. 17. Mt e is ks a
    18. 18. Mt e is ks a• S hm ce a • N n is ib t ky o d t ue es r d • T om n c l n a ils o a y o m f ie u m • C m rsio o pes n • Vr n es s io
    19. 19. Mt e is ks a• H w oyu e ifo re io s e ae o d o d o tl yu rg n izs r g o ? l• H w oyu e ifo r p s r g o ? o d o tl yu s l ae o d l it• ht:/ o c p l d o /l /0 20 /rp in - b s- p s t / b o e n .c mb g2 1 /4ga h gh aes l / p b a o it
    20. 20. Mt e is ks a
    21. 21. Mt e is ks a
    22. 22. Mt e is ks a
    23. 23. P r r a c M noin ef m n e o itrg o• E p ss a m r e ic ao n H ae ln cl. x oe Y m e m t s ru d B s c t as r ie l• Wit n y d v_rvl r e b @ ae ee t l• S p ine rtn it yu eis gJv c d im l t a wh o r x t aa o e e g io in
    24. 24. P r r a c M noin ef m n e o itrg o
    25. 25. P r r a c M noin ef m n e o itrg o
    26. 26. P r r a c M noin ef m n e o itrg ohts /itu .c mub n ir ips t t l t :/ h b o /ra as / a ha e p g h ts b
    27. 27. Tg Ss m a s yt e • G e n b c o e r oe iv a o j t n o m r e a ss le ia • A il t q ey ae o toe bit o u r b sd n h s y a ss le ia
    28. 28. T gS s m a yt e• H r o rlio d t ae ad n e tn a b ss a a • L re a st ae pedo t n is ag d t e r s ra u o d k a s • Q ey l cn a b c t fl b sa u r p n a flak o u t l cn a l la e • L n ra s ut te p r o te yt o g ed h roh r at fh ss m s e
    29. 29. T gS s m a yt e
    30. 30. T gS s m a yt e• L g c ss mrn in o P s rs e ay yt u n g n ot e e g• S ad dd t e a d gn w h rs t io s h re a st d in e sad is e u a , d• N e e sm tin ta wso le c h h ho g p t ed d o e g h t a l a n y ig tru h u h w t• S p oto go p g a d o, n t u p rf ru in , n , r o r
    31. 31. T gS s m a yt e• B k o b ten B s a dL cn ae f e e H ae n u e e f w• H ae o b cue f p rtn lae n ko n B s wn ea s o o ea aes a d n w io sa bitc aat is s cl il h rc rt a y e ic
    32. 32. T gS s m a yt e• M t cn e r fl w r e a h a rt n u r o ky c u lo• O ltu h is we n csay n o c d k h n eesr y• Bue oc, f ts p rt f e a , im l r s e
    33. 33. T gS s m a yt e
    34. 34. T gS s m a yt e• Go od • F s 3n d e2~ 0 ksc ~ sc n s of teu at o e c 2 0 / , .5 eo d t ir rsl , e s t • 3 mln e dt e erae 9 .5 il sn im d cesd x io • S a s ail cl esy e• Bd a • K y at n cn b c a g d e p r io s a ’t e h n e it • I f ie t te cl d w cs n f n in h sa d o n ae eic e
    35. 35. T a k! h ns• H ae Bs• Ub n ir ipht:/ w .ub n ir ip o ra A sh t / w ra as .c m p w h• W ’r hin ! ht:/ ra asip o /o p n/ b / e e irg t / b n ir .c mc m a yo s p u h j• @ a p ta n t un m e
    36. 36. Q etn? us s io

    ×