7th circle installation_v02c

218 views
190 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
218
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

7th circle installation_v02c

  1. 1. Static calculation of the 7th Circle Installation
  2. 2. Table of Content <ul><li>Task and approach </li></ul><ul><li>The models </li></ul><ul><ul><li>Geometry </li></ul></ul><ul><ul><li>Boundary conditions </li></ul></ul><ul><ul><li>Material data </li></ul></ul><ul><ul><li>Mesh </li></ul></ul><ul><li>The load cases </li></ul><ul><ul><li>Gravity </li></ul></ul><ul><ul><li>Gravity and Constant wind pressure in different directions </li></ul></ul><ul><li>Results </li></ul><ul><li>Conclusion </li></ul><ul><li>Our suggestions </li></ul>
  3. 3. Task and approach <ul><li>Investigation of the structure of the recent geometry, which is designed from bronze plane shell with steel pillars and braces. </li></ul><ul><li>A static calculation was made as an approach of the structure, and will be introduced with a 3D FE model. </li></ul><ul><li>The simulations were done with a given geometry, sections and wall thickness. </li></ul><ul><li>The constant wind load is assumed and substituted with a 600 N/m2 pressure. </li></ul>
  4. 4. The Model <ul><li>The geometry </li></ul><ul><li>Steel structure: </li></ul><ul><li>Sections: SHS 40x40x2.5: base pilars </li></ul><ul><li> L60x60x5: first horizontal braces (at 2000 mm) </li></ul><ul><li> L50x50x4: the rest of the horizontal braces </li></ul><ul><li> diagonal braces </li></ul><ul><li> side braces </li></ul><ul><li> </li></ul><ul><li>The bronze shells were modeled without the motives cut out. </li></ul><ul><li>The wall thickness of the shell: 20 mm </li></ul><ul><li>For a better overview, the calculation was done without the steel structure as well. In those models the wall thickness of the shell is 40 mm. </li></ul><ul><li>Total height: 12650 mm </li></ul><ul><li>Mass of the steel structure: 8713.2 kg </li></ul><ul><li>Mass of the bronze shell (20mm thickness): 222276.8 kg </li></ul><ul><li>Total mass: 230990 kg </li></ul><ul><li>Mass of the bronze shell (40 mm thickness): 444550 t </li></ul>
  5. 5. The Model <ul><li>The geometry </li></ul>Inner column
  6. 6. The Model <ul><li>2. Boundary conditions </li></ul><ul><li>Fixed supports at the base pilars ground level </li></ul><ul><li>Global Gravity: 9.81 m/s 2 </li></ul><ul><li>Material data </li></ul><ul><li>Mesh </li></ul><ul><li>Number of elements: 9057 </li></ul><ul><li>Number of nodes: 7025 </li></ul><ul><li>Number of shell elements: 7488 </li></ul>Steel Bronze Density [kg/m 3 ] 7850 8800 Elastic Modulus[MPa] 210000 110000 Poisson Ratio 0.3 0.3
  7. 7. Load Cases <ul><li>Gravity </li></ul><ul><li>Gravity + Constant Wind Dir1 perpendicular to Face 1 </li></ul><ul><li>Gravity + Constant Wind Dir2 perpendicular to Face 2 and 3 </li></ul><ul><li>Gravity + Constant Wind Dir3: perpendicular to Face 1, 2, 3 inner and Face 7 </li></ul><ul><li>Gravity + Constant Wind Dir4: perpendicular to Face1 inner and Face7 </li></ul><ul><li>(See figures on the next page.) </li></ul><ul><li>The constant wind load is assumed and substituted with a 600 N/m2 pressure. </li></ul>
  8. 8. Load Cases 2nd load case Perpendiculat to Face 1 3rd load case Perpendiculat to Face 2 and 3 4th load case Perpendicular to Face 1, 2, 3 inner and Face 7 5th load case
  9. 9. Results: 1. Gravity Displacement [mm] Total displacement: 41.45 mm Deformation scale: 20x Original model Wall thickness of the shell: 20 mm Model without steel structure Wall thickness of the shell: 40 mm Total displacement: 10.283 mm Deformation scale: 20x X Y Z min -0.348 -0.015 -1.694 max 2.97 9.86 0.026 X Y Z min -1.011 -0.047 -6.328 max 15.039 41.148 0.1
  10. 10. Results: 1. Gravity <ul><li>Equivalent stress max: 78.996 MPa </li></ul><ul><li>Deformation scale: 20x </li></ul>
  11. 11. Results: 2. Gravity + Constant Wind Dir1 Displacement [mm] Total displacement: 7.303 mm Deformation scale: 20 x Original model Wall thickness of the shell: 20 mm Model without steel structure Wall thickness of the shell: 40 mm Total displacement: 10.023 mm Deformation scale: 20 x X Y Z min -0.144 -2.098 -1.241 max 2.207 6.851 0.1805 X Y Z min -0.5308 -1.76 -1.67 max 3.61 9.19 0.13
  12. 12. Results: 2. Gravity + Constant Wind Dir1 <ul><li>Equivalent stress max: 63.474 MPa </li></ul><ul><li>Deformation scale: 20x </li></ul>
  13. 13. Results: 3. Gravity + Constant Wind Dir2 Displacement [mm] Total displacement: 24.814 mm Deformation scale: 20 x Original model Wall thickness of the shell: 20 mm Model without steel structure Wall thickness of the shell: 40 mm Total displacement: 62.064 mm Deformation scale: 20 x X Y Z min -0.376 -0.051 -4.083 max 8.01 23.603 0.052 X Y Z min -0.81 -0.072 -9.69 max 23.141 61.589 0.15
  14. 14. Results: 3. Gravity + Constant Wind Dir2 <ul><li>Equivalent stress max: 207.662 MPa </li></ul><ul><li>Deformation scale: 20x </li></ul>
  15. 15. Results: 4. Gravity + Constant Wind Dir3 Displacement [mm] Total displacement: 5.17 mm Deformation scale: 50 x Original model Wall thickness of the shell: 20 mm X Y Z min -2.091 -4.689 -0.745 max 0.16 4.59 0.972
  16. 16. Results: 4. Gravity + Constant Wind Dir3 Displacement [mm] Total displacement: 55.031 mm Deformation scale: 50 x Model without steel structure Wall thickness of the shell: 40 mm X Y Z min -0.938 -0.058 -7.355 max 17.47 54.627 0.11
  17. 17. Results: 4. Gravity + Constant Wind Dir3 <ul><li>Equivalent stress max: 173.595 MPa </li></ul><ul><li>Deformation scale: 50x </li></ul>
  18. 18. Results: 5. Gravity + Constant Wind Dir4 Displacement [mm] Total displacement: 14.581 mm Deformation scale: 20 x Original model Wall thickness of the shell: 20 mm Model without steel structure Wall thickness of the shell: 40 mm Total displacement: 75.63 mm Deformation scale: 20 x X Y Z min -0.599 -0.016 -2.266 max 3.702 13.785 0.0651 X Y Z min -1.12 -0.078 -10.809 max 25.875 75.078 0.18
  19. 19. Results: 5. Gravity + Constant Wind Dir4 <ul><li>Equivalent stress max: 128.541 MPa </li></ul><ul><li>Deformation scale: 50x </li></ul>
  20. 20. Conclusion <ul><li>The Gravity causes a total deformation of over 40 mm if the steel structure is not included, even with the wall thickness of 40 mm. </li></ul><ul><li>The steel structure can be seen behind the bronze shell if the motives are cut out. </li></ul><ul><li>The wind pressure in the calculation is a rough approach, the loads coming from the weather (e.g. wind blows, heat), should be examineed more detaled. </li></ul><ul><li>The mode shapes and the vibration should be taken into consideration. </li></ul>
  21. 21. Our suggestions <ul><li>A composite material could substitute the bronze shell. </li></ul><ul><li>Advantages of the use of composite material: </li></ul><ul><ul><li>The composite material has lower density than the bronze, therefore the weight of the shell would be significantly less. </li></ul></ul><ul><ul><li>The visible steel structure would not be necessary to use in the monument. </li></ul></ul><ul><ul><li>The surface can be treated, so the visual effect would be similar as the original idea. </li></ul></ul><ul><ul><li>Useing metal blowing technology causes a special visual effect: the color seems to be different from the different angle of view. </li></ul></ul><ul><ul><li>The wall thickness of the composite shell can be changeable (thicker at ground level), therefore the monument would be stiffer. </li></ul></ul><ul><ul><li>The manufacturing tool can be formed as the motives are already cut out while produceing the shell parts. </li></ul></ul><ul><ul><li>The composite material is weather resistant. </li></ul></ul><ul><li>For a more punctual offer, we would need a fully dimensioned 3D model. </li></ul>

×