Parabola lab day 1
Upcoming SlideShare
Loading in...5
×
 

Parabola lab day 1

on

  • 266 views

 

Statistics

Views

Total Views
266
Views on SlideShare
262
Embed Views
4

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 4

http://core3howard.wordpress.com 4

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Parabola lab day 1 Parabola lab day 1 Presentation Transcript

  • Sept 3rd Learning outcome: To discover what happens to a parabola’s graph when you change the numbers in the equation?  Launch:  1. Graph your table from last week’s pattern  2. Do you recall what this type of graph is called? x 0 1 2 3 4 n y 0 1 4 9 16 n2
  • Explore: Parabola Lab 1.What happens to a parabola’s graph when you change the numbers in the equation?  a. On graph paper, graph y = (x-2)(x-2). Labeling important points including the vertex (lowest point) and line of symmetry (line that cuts the graph in half).  b. Use your graphing calculator to find the equations of 2 parabolas with different graphs that also open upward and still have a vertex at (2, 0). Use 2 different colored pencils to add the sketches along with the equations to the graph from #1.
  • Explore: Parabola Lab  c. Use your calculator to find the equation of 2 different parabolas that open downward, each with its vertex on the x-axis at x = 2. Use 2 different colored pencils to add the sketches along with the equations to the graph from #1 a and b.  d. Use your calcuator to find the equation of a parabola that opens downward with a vertex of (-4, 0). What is the equation of your parabola’s line of symmetry?  e. Choose a new point on the x-axis and find at least 3 equations of parabolas that touch the x- axis only at that one point.
  • Explore: Parabola Lab part 2  2. Use your graph y = x2 from the launch to do the following:  a. Find a way to stretch y = x2 vertically (make it narrower), but the vertex stays in the same place. Use a colored pencils to add the sketch along with the equations to the graph from the launch.  b. Find a way to compress y = x2 vertically (make it flatter), but the vertex stays in the same place. Use a colored pencils to add the sketch along with the equations to the graph from the launch.  c. Find a way to open y = x2 downward, but the vertex stays in the same place and is the same shape as y = x2. Use a colored pencils to add the sketch along with the equations to the graph from 2a.
  • Explore: Parabola Lab part 2  2d. Find a way to move y = x2 5 units down (but remain the same shape and size and vertex at (0,5)). Use a colored pencils to add the sketch along with the equations to the graph from the launch.  2e. Find a way to move y = x2 3 units to the right (but remain the same shape and size and vertex at (3,0)). Use a colored pencils to add the sketch along with the equations to the graph from the launch.  2f. Find a way to move y = x2 3 units left and stretch vertically Use a colored pencils to add the sketch along with the equations to the graph from the launch.
  • Parabola Lab challenge  3. Find a way to change the equation y = x 2 parabola vertically compressed, open down, move six units up and move two unites to the left. Where is the vertex of your new parabola?
  • Summary  Now that you are a parabola expert can you write a general equation for a parabola that can be stretched or shifted any direction?