Your SlideShare is downloading. ×
Soil fertility and crop management
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Soil fertility and crop management

557

Published on

Seminar - Andreas Oswald - June 3, 2010

Seminar - Andreas Oswald - June 3, 2010

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
557
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Soil fertility and crop management June, 3rd, 2010 A. Oswald, J. Sanchez, G. Quispe, M. Rojas, P. Calvo, J. Caycho
  • 2. MIE Semillas Integración de componentes MIP Suelo Integración socio- económica Introduction
  • 3. Introduction Goals: Contribute to the development of integrative research approaches in division 4 and CIP; Establish soil fertility and cropping systems management as a component of ICM in division 4 ; Contribute to an intensification of collaborative activities among divisions and partner programs; Support NARES in capacity building and soil fertility research; Extent activities to other CIP-regions;
  • 4. Integrative Research Contribute to the development of integrative research approaches in division 4; - time consuming task; - depending on the effort and attitude of scientists involved; - requires leadership and commitment; - eventually removed from the priority activities;
  • 5. Collaborative activities Contribute to an intensification of collaborative activities among divisions and partner programs; - collaborative activities division 3 and 5; - Papa Andina, ALTAGRO, Urban Harvest, CONDESAN; With other institutions – NARS, NGOs etc.;
  • 6. Support capacity strengthening Support NARES in capacity building and soil fertility research; - INIA, INIAP - PROINPA; - CEDEPAS, YANAPAI conclusions: need for basic training and standardization - design, implementation, evaluation and statistical analysis; - time series - locations participatory approaches; development of training approaches; feed-back – robustness of methods and technologies – scaling out
  • 7. Soil fertility & crop management research Establish soil fertility and cropping systems management as a component of ICM in division 4; Soil fertility and fertilizer use organic amendments manure, compost, biol inorganic amendments fertilizer use, types, efficiency Crop management minimum tillage and use of mulch in the Andes in China traditional potato production technologies development of a concept of sustainable agricultural systems and evaluation of technologies Biological amendments PGPR crop production and protection seed production Mycorrhiza crop production
  • 8. Soil fertility and fertilizer use I. Present situation Duration of fallow period in years Altiplano Aramachay 0 35.0 10.0 1 7.5 26.6 2 27.5 39.3 3 12.5 21.3 4 15.0 2.7 5 2.5 -- Location Average area cultivated with potato in ha manure in kg ha-1 OM* in kg ha-1 N in kg ha-1 P in kg ha-1 K in kg ha-1 Aymara n=20 1.50 ± 0.47 4070 ± 1132 1741 ± 609 76 ± 23 44 ± 12 107 ± 30 Choppcas n=25 0.74 ± 0.58 3637 ± 3110 1642 ± 1525 58 ± 52 35 ± 32 59 ± 49 Marcavalle n=35 0.45 ± 0.33 4240 ± 2370 2014 ± 1012 85 ± 41 42 ± 34 47 ± 45 Aramachay n=50 0.46 ± 0.25 10076 ± 6611 3869 ± 2539 147 ± 83 118 ± 67 374 ± 212 Altiplano n=214 0.55 ± 0.55 5365 ± 2455 2441 ± 1117 86 ± 39 45 ± 21 96 ± 44 Location % of farmers appl. fertilizer N in kg ha-1 P in kg ha-1 K in kg ha-1 Aymara n=20 100 160 ± 46 209 ± 44 186 ± 53 Choppcas n=25 22 26 ± 18* 9 ± 7 22 ± 16 Marcavalle n=35 97 195 ± 110 144 ± 61 117 ± 72 Aramachay n=33 100 133 ± 77 156 ± 113 107 ± 41 Altiplano n=214 21 55 ± 45* 0 0
  • 9. y = 0.0224x + 75.99 R 2 = 0.316* 0 100 200 300 0 1,000 2,000 3,000 4,000 5,000 6,000 Organic matter in kg/ha Nfertilizerinkg/ha y = -0.0027x + 209.32 R 2 = 0.287* 0 100 200 300 0 10000 20000 30000 40000 50000 Tuber yield in kg/ha Nfertilizerinkg/ha 0 2,000 4,000 6,000 0 10000 20000 30000 Tuber yield in kg/ha Organicmatterinkg/ha 0 2,000 4,000 6,000 0 10000 20000 30000 40000 50000 Tuber yield in kg/ha Organicmatterinkg/ha Soil fertility management Relation of OM applications and tuber yield in Aramachay and Aymara Relation of OM applications and tuber yield in Choppcas and the Altiplano Relation of N and OM applications in Aramachay and Aymara Relation of N applications and tuber yield in Aramachay and Aymara
  • 10. 0 100 200 300 400 500 Output Input Output Input Output Input Output Input Fertilizer N Manure N (50%) Soil N Potato N Aymara Aramachay Choppcas Altiplano N input – output relationship in farmers‘ fields of communities in the Central Andes - 21 t/ha - 27 t/ha - 13 t/ha - 11 t/ha
  • 11. 0 100 200 300 400 500 600 Output Input Output Input Output Input Output Input Fertilizer N Manure N Soil N Potato N Barley N Oats N Aymara Aramachay Choppcas Altiplano N input – output relationship in farmers‘ fields of communities in the Central Andes
  • 12. Soil fertility and fertilizer use I. Organic amendments - home made - abundant availability - produced based on robust, easy processes - nutrient source - increase nutrient use efficiency - improve plant recovery after stress events
  • 13. Biodigestores (tratamientos) Ingredientes 1 2 31 4 5 6 7 8 9 10 11 121 Agua (l) 90 90 90 90 90 90 90 90 90 90 90 90 Estierco (kg) 2 15+5 0+20 15+5 15+5 15+5 15+5 0+20 0+20 0+20 0+20 15+15 15+5 Melaza (kg) 2.5 2.5 2.5 2.5 2.5 5 5 5 5 2.5 Leguminosa (kg) 1 1 1 1 2 1 Leche (l) 1.5 1.5 1.5 3 1.5 Ceniza (kg) 0.5 0.5 0.5 1 1 0.5 Levadura (kg) 0.25 0.25 0.25 0.25 0.25 0.5 0.25 Nitrógeno (kg) 0.9 0.9 0.9 Fósforo (kg) 0.9 0.9 Capacidad en l 120 120 120 120 120 120 120 120 120 120 120 120 1 = tratamientos 3 y 12 tienen los mismos ingredientes, pero tratamiento 12 fue removido 2 veces al día; Organic amendments – Biol / manure tea
  • 14. Figura 1: Lectura de pH de los Bioles (7 noviembre 2008 - 9 marzo 2009) 0.00 2.00 4.00 6.00 8.00 1 2 3 4 5 6 7 8 9 10 11 12 Tratamientos pH 18 dias 36 dias 58 dias 72 dias 92 dias 107 dias 120 dias 0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 N P K Ca Mg Na Macroelementos mg/L Basicos Acidos 0.00 20.00 40.00 60.00 80.00 100.00 120.00 Cu Zn Mn Fe B Microelementos mg/L Basicos Acidos Grupos Peso fresco promedio (g/maceta) Básicos 8.2 Ácidos 12.0 Fertilizante foliar (20-20-20) 14.3 Sin aplicación 9.8 Organic amendments – Biol / manure tea
  • 15. Compost: -C/N – 25:1 -pathogen free -low or no ammonium -activates soil life -slow release of nutrients -improves soil structure – aeration, moisture holding capacity, CEC Organic amendments – compost 0 10 20 30 40 50 g/planta 10 g/maceta 20g/maceta Compost-llama Compost-cow Compost-chickenControl 0 3 6 9 12 15 Control 10 t/ha m anure NPK 120-120-120Llam a 1:1 fLlam a 2:1 f Llam a 2:1 Cow 1:1 f Cow 2:1 f Cow 2:1Chicken 1:1 f Chicken 2:1 fChicken 2:1 Pot trial Field trial
  • 16. Rendimiento comercial y total en t/ha 0 5 10 15 20 25 30 Marcavalle t/ha Ñuñunhuayo Tingo 0 2 4 6 8 Control 8 t/ha 16 t/ha 24 t/ha 80 N 160N 8t/ha + 80 N 8t/ha + 160 N Soil fertility and fertilizer use
  • 17. Soil fertility and fertilizer use 0 5 10 15 20 Huamantanga Camotillo Peruanita Yana Huayro 16t manure 24t manure NPK 80-100-100 NPK 160-100-100
  • 18. Crop management I. Minimum tillage I. Andes ChiwaChaqmeoBarbecho
  • 19. Crop management I. Minimum tillage I. Andes 5 10 15 20 organic inorganic 3755m asl 4102m asl 4144m asl 5 10 15 20 Barbecho Chacmeo Chiwa 3755m asl 4102m asl 4144m asl Oswald et al. 2009. The complexity of simple tillage systems. Journal of Agricultural Sciences, 147, 399-410
  • 20. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec winter potato winter potato early rice late rice spring potato summer rice rapeseed, vetch rapeseed, vetch barley, wheat barley, Potentials and opportunities new short duration rice varieties increase winter fallow period; temperatures adequate for potato production; winter potato intensifies land-use-system; II. Minimum tillage - China Oswald et al. 2009. Minimum tillage systems with potato in winter cropping regions of subtropical China. Tropentag – Biophysical and socio-economic frame conditions for sustainable management of natural resources. 06-08.10.2009, Hamburg, Germany
  • 21. Winter potato cropping system farmers’ innovation; often as minimum tillage system on heavy rice soils; several types according to climatic or soil conditions;
  • 22. Soil fertility and fertilizer use Biological amendments - Plant Growth Promoting Bacteria - PGPR - Mycorrhiza - PGPR - Laboratory tests - Greenhouse experiments - Field trials
  • 23. Variedad Canchan Control 0 10 20 30 C1 C2 B1 B2 B3 B4 B5 B6 B7 B8 Tuber Plant 0 10 20 30 C1 C2 B9 B10 B11 B12 B13 B14 B15 B16 Tuber Plant Yungay Canchan control control B1C2 B9C2 Pot trials Oswald et al., 2010 Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield of potato. Annals of Applied Biology (in press).
  • 24. 0 20 40 60 80 100 120 Acelga Rabanito Espinaca Maiz Control Bac 22 Act 16M2 Azo 16M2 8 semanas 10 semanas 11 semanas 11 semanas Bac17M9 Azo16M2 Act16M2Control Control Bac17M9 Azo16M2 Act16M2 g/plant - all crops showed increments in fresh and dry matter - plant weight increased between 40% - 140% Crop diversity
  • 25. PGPR use in different production systems I. Aeroponics Tubers production from inoculated plants better growth of inoculated plants; the growth period of inoculated plants was extended by up to 30 days; adequate bacteria populations could be maintained in the irrigation water and on potato roots;1.00E+00 1.00E+02 1.00E+04 1.00E+06 1.00E+08 1.00E+10 Inocul. Water Water Water Canchan Inocul. Non- inoc. Total bacteria Bacillus Azotobacter Planting 30 days 60 days 60 days 60 days cfu Variety Peruanita with PGPR Variety Peruanita without PGPR
  • 26. Aeroponics 0 20 40 60 80 100 Des Revo Cruza Conde Unica Capiro Perri Yun Can Number of tubers/plant 0 100 200 300 400 500 Des Revo Cruza Conde Unica Capiro Perri Yun Can Tuber yield in g/plant 0 2 4 6 8 Des Revo Cruza Conde Unica Capiro Perri Yun Can Mean tuber weight in g with bacteria without bacteria (315) (78) (20) (83) (4) (126) (63) (38) (6) (665) (72) (-12) (82) (-1) (133) (42) (-5) (-14) inoculated plants produce more tubers and often greater tuber weights; tuber size is similar or greater with non-inoculated plants
  • 27. Farmers’ greenhouse Location Palermo Yacari 1 Yacari 2 Bacteria control A1-15/06 control B1-22/06 control A3-30/06 Chard 3.28 + 60% 4.69 + 41% 4.88 + 60% Spinach 3.63 + 14% 3.44 + 2% 3.88 + 29% Beetroot 4.38 + 3% 4.69 + 3% 7.81 - 20% Radish -- -- 4.38 - 13% 5.31 - 29% Pumkin -- -- 1.62 + 42% -- -- Yields in kg/m2 of horticultural crops in 3 greenhouses in Puno, Peru
  • 28. Yield increase of coriander or beetroot inoculated with PGPR strains over control without bacteria at farmers’ fields in Huachipa, Lima. Farmers’ fields – horticultural crops -30 -15 0 15 30 45 60 A1-22/06 A1-17/06 B1-22/06 B1-27/06 A3-25/06 A3-27/06 Coriander Beetroot
  • 29. Field evaluation: cultivars, agro-ecologíes, crops Trials implemented: Lima (0 m asl), Huancayo (3,300m asl); Aymara (3,900m asl), Puno (3,900m asl) Varieties: Única, Revolución, Yungay, Amarillis, Ccompis, Amarillo del Centro, Andina, Queccorani Crops: potato and maize 2007 – 2009 14 trials with and potato and 1 trial with maize 64 strains used: 21 Bacillus, 8 Azospirillum,13 Azotobacter, 8 Pseudomonas, 14 Actinomycetes 13 positive strains: 4 Bacillus 19% 1 Azospirillum 13% 4 Azotobacter 31% 3 Actinomycetes 21% 1 Pseudomonas 13% Field trials with potato
  • 30. Strain Number of field trials Positive yield response % increase A1-30/06 Actinomycetes 10 3 11-30 A1-30/08 2 1 19 A1-45/08 1 1 16 A2-18/08 Azospirillum 1 1 10 A3-15/06 Azotobacter 5 2 10 A3-16/08 3 2 9-13 A3-39/08 3 2 10-23 B1-04/06 Bacillus 2 1 14 B1-05/06 2 1 8 B1-21/06 8 1 38 B1-22/06 5 2 11-17 B1-29/06 3 1 28 B1-35/06 4 1 18 P1-20/08 Pseudomonas 2 1 16 B1-35/06+P1-20/08 1 1 9 Results of fields trials 2006-2009
  • 31. 0 3 6 9 12 4.5 5.6 6.8 7.8 pH drytuberweighting P1-20/08 B1-35/06 A2-20/08 A3-19/08 Control Pot trial using bacterial strains to inoculate potato plants growing in substrate with different pH
  • 32. 0 5 10 15 20 tuberculosing/plant 0 50 100 150 200 % ControlP1-20/08 P1-20/08 B1-35/06 B1-35/06 A2-19/08 A2-19/08 A3-19/08 A3-19/08 A1-19/08 A1-19/08 Peso seco de tuberculos in g de plantas de papa inoculadas con rhizobacterias en substratos con diferentes texturas Incrementos en % del peso seco de tuberculos de plantas de papa inoculadas con rhizobacterias en substratos con diferentes texturas Arena Musgo Tierra 100 0 0 80 20 0 60 40 0 40 60 0 0 10 90 0 25 75 0 50 50 20 40 40
  • 33. -20 -10 0 10 20 30 40 % increase/reduction over control A1-30/06 A1-30/08 A3-16/08 A3-39/08 A2-01/08 B1-21/06 P1-08/08 Control Salcedo Tahuaco 17.2 t/ha 4.2 t/ha Results of fields trials
  • 34. Future activities I. Fertilizer use efficiency I. Improving the efficiency of organic inputs for low-input systems; II. Improving the efficiency of inorganic fertilizers for high input systems; II. Minimum tillage I. Developing minimum tillage systems for tuber crops; II. Developing MT options for marginal environments; III. Biological amendments I. Use in pre-basic seed production; II. Use in marginal environments and low-input systems; III. Improve the quality and efficiency of organic fertilizers; IV. Nutrient management I. Farm nutrient inventories; II. Capacity building in nutrient management – NARS and farmers V. Genetic improvement I. Screening for fertilizer use efficiency; II. and/or nutrient appropiation capacity;
  • 35. gracias

×