SlideShare a Scribd company logo
1 of 13
Download to read offline
INSTITUTO TECNOLÓGICO DE LA LAGUNA
Vibraciones mecánicas:
Transformada de Laplace
Ecuaciones Diferenciales
MCJ Agustín Flores Ávila
Rodolfo Javier Cayetano Salazar - 11130612
Oscar Adrián González Medina - 11130676
Héctor Ricardo García Fernández - 11130740
28/05/2013
2
1. Prólogo
En el siguiente trabajo plantearemos un problema de vibraciones en el que el funcionamiento
deficiente de un sistema se convierte en un problema, cosa que hay que resolver. También se
verá un ejemplo de la aplicación de la transformada de Laplace para resolver ecuaciones
diferenciales de un sistema Masa- Resorte-Amortiguador y la forma en que se amortigua éste al
aplicarle una señal.
2. Problema
Las instalaciones de “El Siglo de Torreón” se encuentra divididas por sectores: producción,
publicidad, bodega y gerencia. En el área de producción se encuentra un almacén que alberga
rollos de papel para prensa (más de 150kg de peso), botes de tintas y varios suministros para esta
área. Está ubicado en la primera planta, exactamente arriba de los túneles bajo tierra que
comunican toda la instalación de El Siglo de Torreón (para darle un movimiento más libre a las
personas que van de un lado al otro de la instalación). En estos túneles, se han dado reportes de
pequeñas grietas en las pare des que no estaban hace 5 meses.
Al analizar la causa de estas grietas, se llegó hasta el compresor de 12 HP que se encuentra en
el almacén de producción. Este compresor suministra de aire a presión a toda el área de
producción, el cual es usado primordialmente para soplar residuos de papel y manchas de polvo
en los rodillos de las prensas.
Este compresor, que antes no se escuchaba en los alrededores del almacén, presenta
vibraciones de grandes magnitudes, que son resentidas en el piso de concreto del almacén, lo que
ha provocado las grietas en los túneles.
3. Justificación
Ya que las vibraciones en el compresor, que antes no ocurrían, se han dado tan rápidamente y
con consecuencias estructurales (el agrietamiento de ciertas áreas en el techo de los túneles de
acceso), es muy necesario resolver ese problema para evitar daños más graves, pérdida de tiempo
para la producción o hasta cobro de vidas en el caso de un derrumbe.
3
4. Marco Teórico
4.1 Física
4.1.1 2ª Ley de Newton
La segunda ley de Newton es descrita como sigue:
Si la fuerza resultante que actúa en una partícula es diferente de cero, la partícula tendrá
una aceleración proporcional a la magnitud de tal resultante y en su misma dirección.
Si una partícula es sometida a fuerzas de diferentes magnitudes, una tras otra; provocaran
diferentes aceleraciones, entonces:
‫ܨ‬ଵ
ܽଵ
=
‫ܨ‬ଶ
ܽଶ
=
‫ܨ‬ଷ
ܽଷ
= ܿ‫݁ݐ݊ܽݐݏ݊݋‬i
Esta constante es la masa de la partícula. Por esto, la 2ª ley de Newton se simplifica a:
‫ܨ‬ = ݉ ∗ ܽ
Con “F” como la fuerza resultante de todas las fuerzas en la partícula, “m” la masa de la
partícula y “a” la aceleración que experimenta.
4.1.2 Principio de d’Alambert
Jean Le Rond d’Alambert, matemático francés, propuso una ampliación del sistema de fuerzas
para los problemas de dinámicaii
Siendo la 2ª ley de Newton: ܴ = ∑ ‫ܨ‬ = ݉ ∗ ܽீ, d’Alambert propuso una fuerza de inercia para
obtener un sistema en equilibrio. Esta fuerza está dada por:
‫ܨ‬௜௡ =	−݉ ∗ ܽீ
Esto nos da un sistema de fuerzas en equilibrio de la forma
ܴ + ‫ܨ‬௜௡ = 0
Estas fuerzas de inercia son solo fuerzas imaginarias para simplificar el cálculo de fuerzas y
reacciones en un sistema dinámico. Para resolver el sistema solo se aplican las ecuaciones
básicas de estática: ∑ ‫ܨ‬ = 0 y ∑ ‫ܯ‬ = 0
Este procedimiento es más comúnmente usado en el movimiento de un cuerpo rígido de manera
lineal. Al existir movimiento angular, el proceso se hace muy complicado.
4
4.1.3 Ley de Hooke
Los resortes tienen un límite hasta el cual pueden ser estirados este límite se conoce como límite
de elasticidad, si el resorte es estirado hasta un punto antes de llegar a dicho límite y luego se
retira la fuerza el resorte vuelve a su estado original, en cambio, si lo estiramos hasta un punto
después del límite de elasticidad el resorte queda permanentemente deformado y jamás regresa a
su estado original. Si el resorte es estirado dentro del límite de elasticidad el resorte obedece la
ley de Hooke que enuncia “la tensión de un resorte es directamente proporcional a su extensión.
T =-k*x”iii
Donde
x es la deformación que sufre del resorte
k es la constante de restitución del resorte y se define como la proporcionalidad que existe entre
la fuerza y la deformación
El signo negativo nos indica que la fuerza del resorte se opone a la fuerza externa que lo está
estirando.
Si el resorte se estira más allá de su límite de elasticidad deja de obedecer la ley de Hooke.
4.1.4 Ley de amortiguamiento
Sean cuales sean los procesos físicos siempre existe alguna perdida, pues, no existe el
movimiento continuo, y en este caso se producen por el amortiguamiento de este movimiento
vibratorio armónico simple:
“El amortiguamiento se comporta como una fuerza proporcional a la velocidad, como lo son las
fuerzas de rozamiento con fluidos (aire, agua...) y por ello la fórmula es la misma. C es un
coeficiente de rozamiento viscoso.” iv
F=c*v = c*x'
4.2 Matemáticas
4.2.1 Ecuaciones Diferenciales
Las ecuaciones diferenciales se definen como “una ecuación que contiene derivadas o
diferenciales”v
este tipo de ecuaciones se utilizan para modelar sistemas es los que está presente
el cambio, este cambio se representa con la derivada contenida en la ecuación.
El orden de una ecuación diferencial es el mismo que el orden máximo de las derivadas que
aparecen.
5
El grado de una ecuación está dado por el máximo exponente que aparezca en la derivada
“Una solución de una ecuación diferencial de orden n en un intervalo I es una función definida
en dicho intervalo que puede derivarse al menos n veces y que, al sustituirse junto con sus
derivadas, satisface a la ED”vi
esto quiere decir que una vez que tenemos la solución a la
ecuación la derivamos el número de veces de la mayor derivada de la ecuación y sustituimos el
valor, si la ecuación se satisface la solución en correcta. Podemos encontrar entre tres tipos de
soluciones los cuales son:
o Solución general: la solución general de una ecuación diferencial de grado n dada
por F(x,y,y’,y’’,…,yn
)=0 es una función ϕ=(x,C1,C2,…,Cn) que depende de n
constantes de modo que ϕ satisface la ecuación para todos los valores de las
constantes.
o Solución particular: una solución particular es la que se obtiene de la solución
general para valores concretos de las constantes. Una curva integral es la gráfica
de la solución particular
o Solución singular: es una función que satisface la ecuación diferencial y que no se
obtiene de la solución general.
Las condiciones iniciales son los valores que se tienen inicialmente cuando t = 0, estos valores
deberían conocerse si se busca una solución única. Normalmente se presentan con el subíndice 0,
por ejemplo: v0 es la velocidad inicial, m0 la masa inicial, T0 la temperatura inicial, etcétera.
4.2.2 Transformada de Laplace
La transformada de Laplace es un método por el cual se transforma una ecuación diferencial
(típicamente) para simplificarla.
La transformada de Laplace de una f(t) con t>0 es:
‫ܨ‬ሺ‫ݏ‬ሻ = න ݁ି௦௧
݂ሺ‫ݐ‬ሻ݀‫ݐ‬
∞
଴
vii
Para conseguir la transformada es más común usar tablas con fórmulas ya definidas de
transformadas comunes, simplificando mucho el método.
De esta manera también es fácil conseguir la transformada inversa.
La transformada es de uso muy común para resolver ecuaciones diferenciales difíciles, pues al
transformar la función, el problema solo recae en despejes algebraicos y regresar al dominio del
tiempo (transformada inversa de Laplace).
Ejemplo:
Tenemos la función
4e
2− t
sin 4t( )
6
Aplicando la fórmula correspondiente, en este caso:
e
at
sin kt( )
k
s a−( )
2
k
2
+
Nos queda la transformada de Laplace que es:
16
s 2−( )
2
16+
5. Enunciado del problema
Se tiene un sistema Masa-Resorte-Amortiguador con M=2, D=2 y K=5. A éste sistema se le
aplica una fuerza como la mostrada en la figura; considerando que X(0) = X’(0) = 0 determine:
a) El desplazamiento máximo en amplitud y en tiempo.
b) Número de ciclos del desplazamiento antes de llegar a cero, considerando cero el 5% de
la amplitud máxima.
c) Clasifique su sistema, es decir si es sobre, sub ó críticamente amortiguado.
d) Determine coeficiente de amortiguamiento, frecuencia angular (rad/seg), período y
frecuencia (CPS).
e) La posición para t=1 seg, t=3 seg y t=5 seg.
g t( ) 1 1 t≤ 2≤if
0 otherwise
:=f t( ) Φ t 1−( ) Φ t 2−( )−:=
1− 0 1 2 3
0.5−
0.5
1
1.5
1
f t( )
g t( )
1 2
t
7
f(0) = f'(0) = 0
2x'' + 2x' + 5x = u(t-1) - u(t-2)
Aplicamos Laplace a la ecuación inicial con la señal de entrada:
2[ x(s) + x(0) + x'(0)] + 2[ x(s) -x(0) ] +5[x(s)] =
Obtuvimos la siguiente expresión, factorizamos y despejamos para x(s)
2[ x(s)] + 2[ x(s)] +5[x(s)] =
Con los valores de masa, resorte y amortiguador obtuvimos la H(s)
H t( ) Es la transformada inversa de Laplace de
Aplicamos el escalón a H(t):
s
2
s s
e
s−
e
2− s
−
s
s
2
s
e
s−
e
2− s
−
s
x s( )
e
s−
e
2− s
−
s 2s
2
2s+ 5+( )
M 2:= D 2:= K 5:=
H s( )
1
M s
D
2M
+






2
K
M
D
2
4M
2
−






+






⋅
:= H s( )
1
2 s
1
2
+






2
⋅
9
2
+
→
H s( )
H1 t( ) H t( ) Φ t( ):=
x s( ) 2s
2
2s+ 5+( ) e
s−
e
2− s
−
s
→
H t( )
1
2 s
1
2
+






2
⋅
9
2
+
invlaplace
sin
3 t⋅
2






e
t
2
−
⋅
3
→:=
8
Usamos la transformada inversa de Laplace e integramos x(s) para obtener x(t):
Representa una integral de la transformada inversa de Laplace
e
s−
e
2− s
−
2s
2
2s+ 5+
invlaplace
e
1
2
t
2
−
sin
3 t⋅
2
3
2
−






⋅ Φ t 1−( )⋅
3
e
1
t
2
−
sin
3 t⋅
2
3−






⋅ Φ t 2−( )⋅
3
−→
X t( )
e
1
2
t
2
−
sin
3 t⋅
2
3
2
−






⋅ Φ t 1−( )⋅
3
e
1
t
2
−
sin
3 t⋅
2
3−






⋅ Φ t 2−( )⋅
3
−:=
1
s
x t( )
0
t
τX τ( )
⌠

⌡
d:=
1− 0.182 1.364 2.545 3.727 4.909 6.091 7.273 8.455 9.636 10.818 12
0.1−
0.1
0.2
0.18766
0.20852
H1 t( )
x t( )
t
V t( )
t
x t( )
d
d
:=
9
Revisamos que se cumplan las condiciones iniciales:
Un ciclo completo para la función senoidal se completa en 2π, por lo tanto, si la frecuencia de
nuestra función es 1.5 (como se demostrará más abajo), conseguimos cuando cumple un ciclo
esta función senoidal de la siguiente manera:
a) Usando "trace" obtuvimos los desplazamientos máximos (prácticos) de amplitud y tiempo:
Para
Para
b) 5% de la amplitud para:
Ciclos de h(t) =
c) Clasificación del sistema: Sub-amortiguado
d) Coeficiente de amortiguamiento, frecuencia angular, período y frecuencia.
Como se vio en el inciso C), el coeficiente de amortiguamiento es
Esta está dada en
Esta está en unidades de tiempo (segundos).
H t( ) Ampmax 0.20852 Tiempomax.aproximado 10.2
x t( ) Ampmax 0.18766 Tiempomax.aproximado 10
hamp t( ) 0.010426:= xamp t( ) 0.009383:=
10.2
Frecuencia
2.435=
ξ
D
2 M⋅
0.5=:=
ξ 0.5=
Frecuencia angular
K
M
ξ
2
− 1.5=:=
Rad
s
Periodo
2π
Frecuenciaangular
4.189=:=
V 0( ) 0= x 0( ) 0=
Frecuencia
2π
1.5
4.189=:=
10
Esta frecuencia se obtiene dividiendo la cantidad de ciclos en el tiempo que toma llegar a esos
ciclos. Sus unidades, por supuesto, son
Finalmente graficamos la velocidad:
Frecuencia ciclos
2.435
10.2
0.239=:=
ciclos
s
e) Posición para t=1, 3 y 5 seg.
x 1( ) 0=
x 3( ) 0.118=
x 5( ) 0.047−=
11
6. Análisis de resultados
• Después del proceso de resolución del problema se llegó a una señal muy parecida a la
original, solo que amortiguada y con un período menor.
• Las condiciones iniciales se cumplen.
• Se trata de un sistema sub-amortiguado.
• Siendo un sistema sub-amortiguado, la oscilación que genera después de quitar la fuerza
es relativamente poca, pero si este sistema fuera usado en sistemas como automóviles
máquinas de producción en serie, esta oscilación sería muy mala para estabilizarla.
• A pesar de que la magnitud de la señal de entrada (Puerta, en este caso) fuese más grande
que 1, la amortiguación daría una gráfica muy parecida, sin variar mucho la cantidad de
ciclos que hace.
• Como lo dice la señal de entrada, la fuerza es aplicada en t = 1, por lo que x(t) comienza
en 1 y es impulsada durante 1 segundo, lo que provoca que en el tiempo mayor a 2
empiece a oscilar pero de manera amortiguada.
7. Conclusiones y observaciones
Como vimos en todo el desarrollo del problema, la función fue evolucionando desde lo más
simple (el planteamiento de una ecuación diferencial de 2o orden) a lo más complicado (la
resolución particular del sistema con una señal de entrada determinada). Esta es la forma más
fácil de resolver cualquier problema, pues es necesario comprenderlo en todo sentido para luego
agregar dificultad.
En este caso, primero definimos las leyes que usaríamos, como la 2a ley de Newton, para luego
dar pie a resolver nuestro problema de vibraciones mecánicas.
La primera parte sobre el planteamiento del problema se ve cómo será aplicada la señal de
entrada y la forma de la ecuación diferencial. Al experimentar con esta señal de entrada nos
dimos cuenta que mientras mayor sea la magnitud de la puerta, mayor será la amplitud de la
gráfica arrojada por la solución de la ecuación. Esto también aplica para magnitudes negativas.
El desarrollo del problema fue muy sencillo gracias a la transformada de Laplace, la cual se
puede hacer de varias maneras para este caso.
MathCad tiene un buen motor para transformar directamente e inversamente la ecuación, lo que
simplifica mucho las cosas. Sin embargo, optamos por usar las propiedades de las transformadas
para dejar un trabajo más simple y rápido para MathCad.
12
Obtuvimos la x(t), la respuesta particular, con una convolución de la h(t) con la señal de entrada.
Solo está planteada porque la evaluación simbólica de esta operación usa muchos recursos de
MathCad, necesitando mucho tiempo para procesar. Como podemos graficar sin necesidad de
evaluar simbólicamente, decidimos solo poner la gráfica. Esta gráfica arroja los datos necesarios
para obtener las respuestas al problema.
Para hacer más práctica la toma de datos, tomamos como el 0 absoluto un 5% del valor de la
amplitud normal. Gracias a esto, el tiempo de oscilación de las funciones no rebasa los 12
segundos (con estos valores de masa, resorte y amortiguador), lo cual es un tiempo un poco largo
para automóviles y otros medios de transporte, siendo este tipo de sistemas inconvenientes para
dichos vehículos.
Por último, al graficar la velocidad (es decir, la derivada de x(t)) nos percatamos sobre unas
discontinuidades de la función (las varias "rayas" en la gráfica sinusoidal de la velocidad). Esto
se debe a la repentina aplicación de una fuerza constante (la señal de entrada: una puerta) en el
sistema.
13
8. Referencias Bibliográficas
i
Beer, Ferdinand; Johnston, E. Russell, 2010, 9a
ed. Vector mechanics for engineers: Dynamic.
McGraw-Hill.
ii
Franklin Riley, William, 2005. Ingeniería mecánica: Dinámica. Reverté S.A.. España
iii
Silva, Anabelle, 2007. Ley de Hooke. Recuperado de:
http://fismat.uia.mx/fismat/PAGINA/HTML/Mec%C3%A1nica%20%C3%8Dndice/Mov
imiento%20arm%C3%B3nico%20simple%20en%20un%20resorte%20y%20la%20ley%
20de%20Hooke/Movimiento%20arm%C3%B3nico%20simple%20en%20un%20resorte
%20y%20la%20ley%20de%20Hooke.html
iv
Pcpaudio. (s.f). Vibración, amortiguamiento y resonancia. Recuperado de:
http://www.pcpaudio.com/pcpfiles/doc_altavoces/amortiguamiento/amortiguamiento.html
v
, William, 2011. Cálculo diferencial e integral. México: Limusa
vi
Soluciones a ecuaciones diferenciales, 2010, Recuperado de:
http://canek.uam.mx/Ecuaciones/Teoria/1.ConceptosBasicos/ImpSoluciones.pdf
vii
Murray, 1994. 3ª ed. Ecuaciones diferenciales aplicadas. Prentice Hall

More Related Content

What's hot

Sistemas de primer , segundo y orden superior
Sistemas de primer , segundo y orden superiorSistemas de primer , segundo y orden superior
Sistemas de primer , segundo y orden superiorgenesisromero24
 
Matlab tutorial control
Matlab tutorial controlMatlab tutorial control
Matlab tutorial controlGugui Maguna
 
Respuesta en el tiempo
Respuesta en el tiempoRespuesta en el tiempo
Respuesta en el tiempoBryan Barriga
 
Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Noe Limon
 
Criterios de estabilidad Controles Automáticos
Criterios de estabilidad  Controles Automáticos Criterios de estabilidad  Controles Automáticos
Criterios de estabilidad Controles Automáticos Deivis Montilla
 
Dinamica structural
Dinamica structuralDinamica structural
Dinamica structuralYaoskSant
 
Bryan quintana sistemas de orden
Bryan quintana sistemas de ordenBryan quintana sistemas de orden
Bryan quintana sistemas de ordenBryanQuintana8
 
Sistemas de 1er 2do y Orden superior
Sistemas de 1er 2do y Orden superiorSistemas de 1er 2do y Orden superior
Sistemas de 1er 2do y Orden superiorJLEONARDOjosel
 
Análisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo ordenAnálisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo ordenjeickson sulbaran
 
Caracteristicas dinamicas de
Caracteristicas dinamicas deCaracteristicas dinamicas de
Caracteristicas dinamicas deRikardo Toledo
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorLeandroCasaisRevern
 
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...SANTIAGO PABLO ALBERTO
 
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...Academia de Ingeniería de México
 

What's hot (18)

Sistemas de primer , segundo y orden superior
Sistemas de primer , segundo y orden superiorSistemas de primer , segundo y orden superior
Sistemas de primer , segundo y orden superior
 
estabilidad
estabilidadestabilidad
estabilidad
 
Matlab tutorial control
Matlab tutorial controlMatlab tutorial control
Matlab tutorial control
 
Respuesta en el tiempo
Respuesta en el tiempoRespuesta en el tiempo
Respuesta en el tiempo
 
Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire
 
Criterios de estabilidad Controles Automáticos
Criterios de estabilidad  Controles Automáticos Criterios de estabilidad  Controles Automáticos
Criterios de estabilidad Controles Automáticos
 
Dinamica structural
Dinamica structuralDinamica structural
Dinamica structural
 
Dinamica Estructural_Saez
Dinamica Estructural_SaezDinamica Estructural_Saez
Dinamica Estructural_Saez
 
Unidad iii. contenido teórico
Unidad iii. contenido teóricoUnidad iii. contenido teórico
Unidad iii. contenido teórico
 
Bryan quintana sistemas de orden
Bryan quintana sistemas de ordenBryan quintana sistemas de orden
Bryan quintana sistemas de orden
 
Sistemas de 1er 2do y Orden superior
Sistemas de 1er 2do y Orden superiorSistemas de 1er 2do y Orden superior
Sistemas de 1er 2do y Orden superior
 
Análisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo ordenAnálisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo orden
 
Caracteristicas dinamicas de
Caracteristicas dinamicas deCaracteristicas dinamicas de
Caracteristicas dinamicas de
 
Análisis de la respuesta del sistema
Análisis de la respuesta del sistemaAnálisis de la respuesta del sistema
Análisis de la respuesta del sistema
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superior
 
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...
Practica 1 de ingeniería de control: Análisis de la respuesta transitoria de ...
 
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...
Algunas consideraciones sobre el análisis de sistemas sometidos a perturbacio...
 
S04+(rta.+tiempo)
S04+(rta.+tiempo)S04+(rta.+tiempo)
S04+(rta.+tiempo)
 

Viewers also liked

Pere calders contes
Pere calders contesPere calders contes
Pere calders contesmonicarb2
 
Ciudades latinoamericanas urbana
Ciudades latinoamericanas urbanaCiudades latinoamericanas urbana
Ciudades latinoamericanas urbanaPercy Lopez
 
Q5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucQ5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucmariavarey
 
Acordes mayores para Guitarra
Acordes mayores para GuitarraAcordes mayores para Guitarra
Acordes mayores para GuitarraRoberto Mendoza
 
Guia de emsamble y desemsamble impresora
Guia de emsamble y desemsamble impresoraGuia de emsamble y desemsamble impresora
Guia de emsamble y desemsamble impresoraxpollox
 
Evolución del modelo atómico
Evolución del modelo atómicoEvolución del modelo atómico
Evolución del modelo atómicoElard Cruz Miranda
 
Factores que influyen en la búsqueda de nuestra vocación 2do medio
Factores que influyen en la búsqueda de nuestra vocación 2do medioFactores que influyen en la búsqueda de nuestra vocación 2do medio
Factores que influyen en la búsqueda de nuestra vocación 2do medioJocelyn Leposte
 
01 tema3 gramática
01 tema3 gramática01 tema3 gramática
01 tema3 gramáticamitizamagica
 
Manual inspeccion 2011 adm ley leonardo lmata
Manual inspeccion 2011 adm ley leonardo lmataManual inspeccion 2011 adm ley leonardo lmata
Manual inspeccion 2011 adm ley leonardo lmataAlex Cordova Velazquez
 
Tipos de personalidad1
Tipos de personalidad1Tipos de personalidad1
Tipos de personalidad1Uriel Lopez
 
Utilidades maléficas de la ciencia
Utilidades maléficas de la cienciaUtilidades maléficas de la ciencia
Utilidades maléficas de la cienciaguillermo-navarro
 

Viewers also liked (20)

Pere calders contes
Pere calders contesPere calders contes
Pere calders contes
 
Ciudades latinoamericanas urbana
Ciudades latinoamericanas urbanaCiudades latinoamericanas urbana
Ciudades latinoamericanas urbana
 
Contenido
ContenidoContenido
Contenido
 
Bauhaus
BauhausBauhaus
Bauhaus
 
Q5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucQ5 pau-equilibrio-soluc
Q5 pau-equilibrio-soluc
 
Acordes mayores para Guitarra
Acordes mayores para GuitarraAcordes mayores para Guitarra
Acordes mayores para Guitarra
 
Conferencia fundacion2
Conferencia fundacion2Conferencia fundacion2
Conferencia fundacion2
 
Informe de producciones
Informe de produccionesInforme de producciones
Informe de producciones
 
Guia de emsamble y desemsamble impresora
Guia de emsamble y desemsamble impresoraGuia de emsamble y desemsamble impresora
Guia de emsamble y desemsamble impresora
 
Evolución del modelo atómico
Evolución del modelo atómicoEvolución del modelo atómico
Evolución del modelo atómico
 
Factores que influyen en la búsqueda de nuestra vocación 2do medio
Factores que influyen en la búsqueda de nuestra vocación 2do medioFactores que influyen en la búsqueda de nuestra vocación 2do medio
Factores que influyen en la búsqueda de nuestra vocación 2do medio
 
Bitacoras de la 1 17
Bitacoras de la 1 17Bitacoras de la 1 17
Bitacoras de la 1 17
 
Viaje a pirineos
Viaje a pirineosViaje a pirineos
Viaje a pirineos
 
01 tema3 gramática
01 tema3 gramática01 tema3 gramática
01 tema3 gramática
 
Tribus urbanas
Tribus urbanasTribus urbanas
Tribus urbanas
 
La prehistoria
La prehistoriaLa prehistoria
La prehistoria
 
Manual inspeccion 2011 adm ley leonardo lmata
Manual inspeccion 2011 adm ley leonardo lmataManual inspeccion 2011 adm ley leonardo lmata
Manual inspeccion 2011 adm ley leonardo lmata
 
Power point 1
Power point 1Power point 1
Power point 1
 
Tipos de personalidad1
Tipos de personalidad1Tipos de personalidad1
Tipos de personalidad1
 
Utilidades maléficas de la ciencia
Utilidades maléficas de la cienciaUtilidades maléficas de la ciencia
Utilidades maléficas de la ciencia
 

Similar to Transformada de Laplace resuelve vibraciones mecánicas

Reporte del.Equipo Cuatro
Reporte del.Equipo CuatroReporte del.Equipo Cuatro
Reporte del.Equipo Cuatrocidde2010
 
Vibraciones Mecánicas, Resumido así nomás.pptx
Vibraciones Mecánicas, Resumido así nomás.pptxVibraciones Mecánicas, Resumido así nomás.pptx
Vibraciones Mecánicas, Resumido así nomás.pptxAllanEfrainSantosMac1
 
Sistemas+masa+ +resorte+movimiento+libre+amortiguado
Sistemas+masa+ +resorte+movimiento+libre+amortiguadoSistemas+masa+ +resorte+movimiento+libre+amortiguado
Sistemas+masa+ +resorte+movimiento+libre+amortiguadoVentas Chiclayo
 
control1_compress.pdf
control1_compress.pdfcontrol1_compress.pdf
control1_compress.pdfeloy villca
 
Oviedo control final
Oviedo control finalOviedo control final
Oviedo control finalGerman Daza
 
9Amortiguamiento.pptx
9Amortiguamiento.pptx9Amortiguamiento.pptx
9Amortiguamiento.pptxBryan Vera
 
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORSISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORrainvicc
 
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdf
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdfDAVID_JOU_FISICA_CIENCIAS_VIDA.pdf
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdfTMICSAS
 
Libro tema 2 Modelado y representación de sistemas dinámicos
Libro tema 2 Modelado y representación de sistemas dinámicosLibro tema 2 Modelado y representación de sistemas dinámicos
Libro tema 2 Modelado y representación de sistemas dinámicosvaraauco
 
Capitulo 7 Mecánica de Sólidos Udec
Capitulo 7 Mecánica de Sólidos UdecCapitulo 7 Mecánica de Sólidos Udec
Capitulo 7 Mecánica de Sólidos UdecGerar P. Miranda
 

Similar to Transformada de Laplace resuelve vibraciones mecánicas (20)

Reporte del.Equipo Cuatro
Reporte del.Equipo CuatroReporte del.Equipo Cuatro
Reporte del.Equipo Cuatro
 
Ppt casi final sin conclusiones
Ppt casi final sin conclusionesPpt casi final sin conclusiones
Ppt casi final sin conclusiones
 
Vibraciones Mecánicas, Resumido así nomás.pptx
Vibraciones Mecánicas, Resumido así nomás.pptxVibraciones Mecánicas, Resumido así nomás.pptx
Vibraciones Mecánicas, Resumido así nomás.pptx
 
Sistemas+masa+ +resorte+movimiento+libre+amortiguado
Sistemas+masa+ +resorte+movimiento+libre+amortiguadoSistemas+masa+ +resorte+movimiento+libre+amortiguado
Sistemas+masa+ +resorte+movimiento+libre+amortiguado
 
Me4701
Me4701Me4701
Me4701
 
Vibraciones mecanicas
Vibraciones mecanicasVibraciones mecanicas
Vibraciones mecanicas
 
control1_compress.pdf
control1_compress.pdfcontrol1_compress.pdf
control1_compress.pdf
 
Oviedo control final
Oviedo control finalOviedo control final
Oviedo control final
 
Aplicaciones a las ED primer orden
Aplicaciones a las ED primer ordenAplicaciones a las ED primer orden
Aplicaciones a las ED primer orden
 
9Amortiguamiento.pptx
9Amortiguamiento.pptx9Amortiguamiento.pptx
9Amortiguamiento.pptx
 
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORSISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
 
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdf
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdfDAVID_JOU_FISICA_CIENCIAS_VIDA.pdf
DAVID_JOU_FISICA_CIENCIAS_VIDA.pdf
 
Libro tema 2 Modelado y representación de sistemas dinámicos
Libro tema 2 Modelado y representación de sistemas dinámicosLibro tema 2 Modelado y representación de sistemas dinámicos
Libro tema 2 Modelado y representación de sistemas dinámicos
 
Informe aplica 2
Informe aplica 2Informe aplica 2
Informe aplica 2
 
Capitulo 7 Mecánica de Sólidos Udec
Capitulo 7 Mecánica de Sólidos UdecCapitulo 7 Mecánica de Sólidos Udec
Capitulo 7 Mecánica de Sólidos Udec
 
Choques impulso
Choques impulsoChoques impulso
Choques impulso
 
Tema 1
Tema 1Tema 1
Tema 1
 
Revista ing
Revista ingRevista ing
Revista ing
 
Revista ing
Revista ingRevista ing
Revista ing
 
Trabajo y energia
Trabajo y energiaTrabajo y energia
Trabajo y energia
 

More from cidde2010

Trabajo en Equipos
Trabajo en EquiposTrabajo en Equipos
Trabajo en Equiposcidde2010
 
ANALISIS DE FOURIER
ANALISIS DE FOURIERANALISIS DE FOURIER
ANALISIS DE FOURIERcidde2010
 
Las matematicas y las tic's
Las matematicas y las tic'sLas matematicas y las tic's
Las matematicas y las tic'scidde2010
 
6. ponencia.corr
6.  ponencia.corr6.  ponencia.corr
6. ponencia.corrcidde2010
 
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...cidde2010
 
Equipo. no. 3
Equipo. no. 3Equipo. no. 3
Equipo. no. 3cidde2010
 
8. problemaseducativos
8. problemaseducativos8. problemaseducativos
8. problemaseducativoscidde2010
 

More from cidde2010 (8)

Trabajo en Equipos
Trabajo en EquiposTrabajo en Equipos
Trabajo en Equipos
 
ANALISIS DE FOURIER
ANALISIS DE FOURIERANALISIS DE FOURIER
ANALISIS DE FOURIER
 
Las matematicas y las tic's
Las matematicas y las tic'sLas matematicas y las tic's
Las matematicas y las tic's
 
6. ponencia.corr
6.  ponencia.corr6.  ponencia.corr
6. ponencia.corr
 
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...
MATH-GYM: Restauración Cognitiva; Solución Integral para los Problemas de Apr...
 
Equipo. no. 3
Equipo. no. 3Equipo. no. 3
Equipo. no. 3
 
8. problemaseducativos
8. problemaseducativos8. problemaseducativos
8. problemaseducativos
 
Math gym.1
Math gym.1Math gym.1
Math gym.1
 

Transformada de Laplace resuelve vibraciones mecánicas

  • 1. INSTITUTO TECNOLÓGICO DE LA LAGUNA Vibraciones mecánicas: Transformada de Laplace Ecuaciones Diferenciales MCJ Agustín Flores Ávila Rodolfo Javier Cayetano Salazar - 11130612 Oscar Adrián González Medina - 11130676 Héctor Ricardo García Fernández - 11130740 28/05/2013
  • 2. 2 1. Prólogo En el siguiente trabajo plantearemos un problema de vibraciones en el que el funcionamiento deficiente de un sistema se convierte en un problema, cosa que hay que resolver. También se verá un ejemplo de la aplicación de la transformada de Laplace para resolver ecuaciones diferenciales de un sistema Masa- Resorte-Amortiguador y la forma en que se amortigua éste al aplicarle una señal. 2. Problema Las instalaciones de “El Siglo de Torreón” se encuentra divididas por sectores: producción, publicidad, bodega y gerencia. En el área de producción se encuentra un almacén que alberga rollos de papel para prensa (más de 150kg de peso), botes de tintas y varios suministros para esta área. Está ubicado en la primera planta, exactamente arriba de los túneles bajo tierra que comunican toda la instalación de El Siglo de Torreón (para darle un movimiento más libre a las personas que van de un lado al otro de la instalación). En estos túneles, se han dado reportes de pequeñas grietas en las pare des que no estaban hace 5 meses. Al analizar la causa de estas grietas, se llegó hasta el compresor de 12 HP que se encuentra en el almacén de producción. Este compresor suministra de aire a presión a toda el área de producción, el cual es usado primordialmente para soplar residuos de papel y manchas de polvo en los rodillos de las prensas. Este compresor, que antes no se escuchaba en los alrededores del almacén, presenta vibraciones de grandes magnitudes, que son resentidas en el piso de concreto del almacén, lo que ha provocado las grietas en los túneles. 3. Justificación Ya que las vibraciones en el compresor, que antes no ocurrían, se han dado tan rápidamente y con consecuencias estructurales (el agrietamiento de ciertas áreas en el techo de los túneles de acceso), es muy necesario resolver ese problema para evitar daños más graves, pérdida de tiempo para la producción o hasta cobro de vidas en el caso de un derrumbe.
  • 3. 3 4. Marco Teórico 4.1 Física 4.1.1 2ª Ley de Newton La segunda ley de Newton es descrita como sigue: Si la fuerza resultante que actúa en una partícula es diferente de cero, la partícula tendrá una aceleración proporcional a la magnitud de tal resultante y en su misma dirección. Si una partícula es sometida a fuerzas de diferentes magnitudes, una tras otra; provocaran diferentes aceleraciones, entonces: ‫ܨ‬ଵ ܽଵ = ‫ܨ‬ଶ ܽଶ = ‫ܨ‬ଷ ܽଷ = ܿ‫݁ݐ݊ܽݐݏ݊݋‬i Esta constante es la masa de la partícula. Por esto, la 2ª ley de Newton se simplifica a: ‫ܨ‬ = ݉ ∗ ܽ Con “F” como la fuerza resultante de todas las fuerzas en la partícula, “m” la masa de la partícula y “a” la aceleración que experimenta. 4.1.2 Principio de d’Alambert Jean Le Rond d’Alambert, matemático francés, propuso una ampliación del sistema de fuerzas para los problemas de dinámicaii Siendo la 2ª ley de Newton: ܴ = ∑ ‫ܨ‬ = ݉ ∗ ܽீ, d’Alambert propuso una fuerza de inercia para obtener un sistema en equilibrio. Esta fuerza está dada por: ‫ܨ‬௜௡ = −݉ ∗ ܽீ Esto nos da un sistema de fuerzas en equilibrio de la forma ܴ + ‫ܨ‬௜௡ = 0 Estas fuerzas de inercia son solo fuerzas imaginarias para simplificar el cálculo de fuerzas y reacciones en un sistema dinámico. Para resolver el sistema solo se aplican las ecuaciones básicas de estática: ∑ ‫ܨ‬ = 0 y ∑ ‫ܯ‬ = 0 Este procedimiento es más comúnmente usado en el movimiento de un cuerpo rígido de manera lineal. Al existir movimiento angular, el proceso se hace muy complicado.
  • 4. 4 4.1.3 Ley de Hooke Los resortes tienen un límite hasta el cual pueden ser estirados este límite se conoce como límite de elasticidad, si el resorte es estirado hasta un punto antes de llegar a dicho límite y luego se retira la fuerza el resorte vuelve a su estado original, en cambio, si lo estiramos hasta un punto después del límite de elasticidad el resorte queda permanentemente deformado y jamás regresa a su estado original. Si el resorte es estirado dentro del límite de elasticidad el resorte obedece la ley de Hooke que enuncia “la tensión de un resorte es directamente proporcional a su extensión. T =-k*x”iii Donde x es la deformación que sufre del resorte k es la constante de restitución del resorte y se define como la proporcionalidad que existe entre la fuerza y la deformación El signo negativo nos indica que la fuerza del resorte se opone a la fuerza externa que lo está estirando. Si el resorte se estira más allá de su límite de elasticidad deja de obedecer la ley de Hooke. 4.1.4 Ley de amortiguamiento Sean cuales sean los procesos físicos siempre existe alguna perdida, pues, no existe el movimiento continuo, y en este caso se producen por el amortiguamiento de este movimiento vibratorio armónico simple: “El amortiguamiento se comporta como una fuerza proporcional a la velocidad, como lo son las fuerzas de rozamiento con fluidos (aire, agua...) y por ello la fórmula es la misma. C es un coeficiente de rozamiento viscoso.” iv F=c*v = c*x' 4.2 Matemáticas 4.2.1 Ecuaciones Diferenciales Las ecuaciones diferenciales se definen como “una ecuación que contiene derivadas o diferenciales”v este tipo de ecuaciones se utilizan para modelar sistemas es los que está presente el cambio, este cambio se representa con la derivada contenida en la ecuación. El orden de una ecuación diferencial es el mismo que el orden máximo de las derivadas que aparecen.
  • 5. 5 El grado de una ecuación está dado por el máximo exponente que aparezca en la derivada “Una solución de una ecuación diferencial de orden n en un intervalo I es una función definida en dicho intervalo que puede derivarse al menos n veces y que, al sustituirse junto con sus derivadas, satisface a la ED”vi esto quiere decir que una vez que tenemos la solución a la ecuación la derivamos el número de veces de la mayor derivada de la ecuación y sustituimos el valor, si la ecuación se satisface la solución en correcta. Podemos encontrar entre tres tipos de soluciones los cuales son: o Solución general: la solución general de una ecuación diferencial de grado n dada por F(x,y,y’,y’’,…,yn )=0 es una función ϕ=(x,C1,C2,…,Cn) que depende de n constantes de modo que ϕ satisface la ecuación para todos los valores de las constantes. o Solución particular: una solución particular es la que se obtiene de la solución general para valores concretos de las constantes. Una curva integral es la gráfica de la solución particular o Solución singular: es una función que satisface la ecuación diferencial y que no se obtiene de la solución general. Las condiciones iniciales son los valores que se tienen inicialmente cuando t = 0, estos valores deberían conocerse si se busca una solución única. Normalmente se presentan con el subíndice 0, por ejemplo: v0 es la velocidad inicial, m0 la masa inicial, T0 la temperatura inicial, etcétera. 4.2.2 Transformada de Laplace La transformada de Laplace es un método por el cual se transforma una ecuación diferencial (típicamente) para simplificarla. La transformada de Laplace de una f(t) con t>0 es: ‫ܨ‬ሺ‫ݏ‬ሻ = න ݁ି௦௧ ݂ሺ‫ݐ‬ሻ݀‫ݐ‬ ∞ ଴ vii Para conseguir la transformada es más común usar tablas con fórmulas ya definidas de transformadas comunes, simplificando mucho el método. De esta manera también es fácil conseguir la transformada inversa. La transformada es de uso muy común para resolver ecuaciones diferenciales difíciles, pues al transformar la función, el problema solo recae en despejes algebraicos y regresar al dominio del tiempo (transformada inversa de Laplace). Ejemplo: Tenemos la función 4e 2− t sin 4t( )
  • 6. 6 Aplicando la fórmula correspondiente, en este caso: e at sin kt( ) k s a−( ) 2 k 2 + Nos queda la transformada de Laplace que es: 16 s 2−( ) 2 16+ 5. Enunciado del problema Se tiene un sistema Masa-Resorte-Amortiguador con M=2, D=2 y K=5. A éste sistema se le aplica una fuerza como la mostrada en la figura; considerando que X(0) = X’(0) = 0 determine: a) El desplazamiento máximo en amplitud y en tiempo. b) Número de ciclos del desplazamiento antes de llegar a cero, considerando cero el 5% de la amplitud máxima. c) Clasifique su sistema, es decir si es sobre, sub ó críticamente amortiguado. d) Determine coeficiente de amortiguamiento, frecuencia angular (rad/seg), período y frecuencia (CPS). e) La posición para t=1 seg, t=3 seg y t=5 seg. g t( ) 1 1 t≤ 2≤if 0 otherwise :=f t( ) Φ t 1−( ) Φ t 2−( )−:= 1− 0 1 2 3 0.5− 0.5 1 1.5 1 f t( ) g t( ) 1 2 t
  • 7. 7 f(0) = f'(0) = 0 2x'' + 2x' + 5x = u(t-1) - u(t-2) Aplicamos Laplace a la ecuación inicial con la señal de entrada: 2[ x(s) + x(0) + x'(0)] + 2[ x(s) -x(0) ] +5[x(s)] = Obtuvimos la siguiente expresión, factorizamos y despejamos para x(s) 2[ x(s)] + 2[ x(s)] +5[x(s)] = Con los valores de masa, resorte y amortiguador obtuvimos la H(s) H t( ) Es la transformada inversa de Laplace de Aplicamos el escalón a H(t): s 2 s s e s− e 2− s − s s 2 s e s− e 2− s − s x s( ) e s− e 2− s − s 2s 2 2s+ 5+( ) M 2:= D 2:= K 5:= H s( ) 1 M s D 2M +       2 K M D 2 4M 2 −       +       ⋅ := H s( ) 1 2 s 1 2 +       2 ⋅ 9 2 + → H s( ) H1 t( ) H t( ) Φ t( ):= x s( ) 2s 2 2s+ 5+( ) e s− e 2− s − s → H t( ) 1 2 s 1 2 +       2 ⋅ 9 2 + invlaplace sin 3 t⋅ 2       e t 2 − ⋅ 3 →:=
  • 8. 8 Usamos la transformada inversa de Laplace e integramos x(s) para obtener x(t): Representa una integral de la transformada inversa de Laplace e s− e 2− s − 2s 2 2s+ 5+ invlaplace e 1 2 t 2 − sin 3 t⋅ 2 3 2 −       ⋅ Φ t 1−( )⋅ 3 e 1 t 2 − sin 3 t⋅ 2 3−       ⋅ Φ t 2−( )⋅ 3 −→ X t( ) e 1 2 t 2 − sin 3 t⋅ 2 3 2 −       ⋅ Φ t 1−( )⋅ 3 e 1 t 2 − sin 3 t⋅ 2 3−       ⋅ Φ t 2−( )⋅ 3 −:= 1 s x t( ) 0 t τX τ( ) ⌠  ⌡ d:= 1− 0.182 1.364 2.545 3.727 4.909 6.091 7.273 8.455 9.636 10.818 12 0.1− 0.1 0.2 0.18766 0.20852 H1 t( ) x t( ) t V t( ) t x t( ) d d :=
  • 9. 9 Revisamos que se cumplan las condiciones iniciales: Un ciclo completo para la función senoidal se completa en 2π, por lo tanto, si la frecuencia de nuestra función es 1.5 (como se demostrará más abajo), conseguimos cuando cumple un ciclo esta función senoidal de la siguiente manera: a) Usando "trace" obtuvimos los desplazamientos máximos (prácticos) de amplitud y tiempo: Para Para b) 5% de la amplitud para: Ciclos de h(t) = c) Clasificación del sistema: Sub-amortiguado d) Coeficiente de amortiguamiento, frecuencia angular, período y frecuencia. Como se vio en el inciso C), el coeficiente de amortiguamiento es Esta está dada en Esta está en unidades de tiempo (segundos). H t( ) Ampmax 0.20852 Tiempomax.aproximado 10.2 x t( ) Ampmax 0.18766 Tiempomax.aproximado 10 hamp t( ) 0.010426:= xamp t( ) 0.009383:= 10.2 Frecuencia 2.435= ξ D 2 M⋅ 0.5=:= ξ 0.5= Frecuencia angular K M ξ 2 − 1.5=:= Rad s Periodo 2π Frecuenciaangular 4.189=:= V 0( ) 0= x 0( ) 0= Frecuencia 2π 1.5 4.189=:=
  • 10. 10 Esta frecuencia se obtiene dividiendo la cantidad de ciclos en el tiempo que toma llegar a esos ciclos. Sus unidades, por supuesto, son Finalmente graficamos la velocidad: Frecuencia ciclos 2.435 10.2 0.239=:= ciclos s e) Posición para t=1, 3 y 5 seg. x 1( ) 0= x 3( ) 0.118= x 5( ) 0.047−=
  • 11. 11 6. Análisis de resultados • Después del proceso de resolución del problema se llegó a una señal muy parecida a la original, solo que amortiguada y con un período menor. • Las condiciones iniciales se cumplen. • Se trata de un sistema sub-amortiguado. • Siendo un sistema sub-amortiguado, la oscilación que genera después de quitar la fuerza es relativamente poca, pero si este sistema fuera usado en sistemas como automóviles máquinas de producción en serie, esta oscilación sería muy mala para estabilizarla. • A pesar de que la magnitud de la señal de entrada (Puerta, en este caso) fuese más grande que 1, la amortiguación daría una gráfica muy parecida, sin variar mucho la cantidad de ciclos que hace. • Como lo dice la señal de entrada, la fuerza es aplicada en t = 1, por lo que x(t) comienza en 1 y es impulsada durante 1 segundo, lo que provoca que en el tiempo mayor a 2 empiece a oscilar pero de manera amortiguada. 7. Conclusiones y observaciones Como vimos en todo el desarrollo del problema, la función fue evolucionando desde lo más simple (el planteamiento de una ecuación diferencial de 2o orden) a lo más complicado (la resolución particular del sistema con una señal de entrada determinada). Esta es la forma más fácil de resolver cualquier problema, pues es necesario comprenderlo en todo sentido para luego agregar dificultad. En este caso, primero definimos las leyes que usaríamos, como la 2a ley de Newton, para luego dar pie a resolver nuestro problema de vibraciones mecánicas. La primera parte sobre el planteamiento del problema se ve cómo será aplicada la señal de entrada y la forma de la ecuación diferencial. Al experimentar con esta señal de entrada nos dimos cuenta que mientras mayor sea la magnitud de la puerta, mayor será la amplitud de la gráfica arrojada por la solución de la ecuación. Esto también aplica para magnitudes negativas. El desarrollo del problema fue muy sencillo gracias a la transformada de Laplace, la cual se puede hacer de varias maneras para este caso. MathCad tiene un buen motor para transformar directamente e inversamente la ecuación, lo que simplifica mucho las cosas. Sin embargo, optamos por usar las propiedades de las transformadas para dejar un trabajo más simple y rápido para MathCad.
  • 12. 12 Obtuvimos la x(t), la respuesta particular, con una convolución de la h(t) con la señal de entrada. Solo está planteada porque la evaluación simbólica de esta operación usa muchos recursos de MathCad, necesitando mucho tiempo para procesar. Como podemos graficar sin necesidad de evaluar simbólicamente, decidimos solo poner la gráfica. Esta gráfica arroja los datos necesarios para obtener las respuestas al problema. Para hacer más práctica la toma de datos, tomamos como el 0 absoluto un 5% del valor de la amplitud normal. Gracias a esto, el tiempo de oscilación de las funciones no rebasa los 12 segundos (con estos valores de masa, resorte y amortiguador), lo cual es un tiempo un poco largo para automóviles y otros medios de transporte, siendo este tipo de sistemas inconvenientes para dichos vehículos. Por último, al graficar la velocidad (es decir, la derivada de x(t)) nos percatamos sobre unas discontinuidades de la función (las varias "rayas" en la gráfica sinusoidal de la velocidad). Esto se debe a la repentina aplicación de una fuerza constante (la señal de entrada: una puerta) en el sistema.
  • 13. 13 8. Referencias Bibliográficas i Beer, Ferdinand; Johnston, E. Russell, 2010, 9a ed. Vector mechanics for engineers: Dynamic. McGraw-Hill. ii Franklin Riley, William, 2005. Ingeniería mecánica: Dinámica. Reverté S.A.. España iii Silva, Anabelle, 2007. Ley de Hooke. Recuperado de: http://fismat.uia.mx/fismat/PAGINA/HTML/Mec%C3%A1nica%20%C3%8Dndice/Mov imiento%20arm%C3%B3nico%20simple%20en%20un%20resorte%20y%20la%20ley% 20de%20Hooke/Movimiento%20arm%C3%B3nico%20simple%20en%20un%20resorte %20y%20la%20ley%20de%20Hooke.html iv Pcpaudio. (s.f). Vibración, amortiguamiento y resonancia. Recuperado de: http://www.pcpaudio.com/pcpfiles/doc_altavoces/amortiguamiento/amortiguamiento.html v , William, 2011. Cálculo diferencial e integral. México: Limusa vi Soluciones a ecuaciones diferenciales, 2010, Recuperado de: http://canek.uam.mx/Ecuaciones/Teoria/1.ConceptosBasicos/ImpSoluciones.pdf vii Murray, 1994. 3ª ed. Ecuaciones diferenciales aplicadas. Prentice Hall