Future agriculture in a changing climate

894 views
779 views

Published on

Presentation made in the AXA Chair Launch Workshop on Biosphere and Climate Impacts, in Imperial College London.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
894
On SlideShare
0
From Embeds
0
Number of Embeds
41
Actions
Shares
0
Downloads
44
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • For Lobell map: Values show the linear trend in temperature for the main crop grown in that grid cell, and for the months in which that crop is grown. Values indicate the trend in terms of multiples of the standard deviation of historical year-to-year variation. ** A 1˚C rise tended to lower yields by up to 10% except in high latitude countries, where in particular rice gains from warming.** In India, warming may explain the recently slowing of yield gains. For yield graph: Estimated net impact of climate trends for 1980-2008 on crop yields for major producers and for global production. Values are expressed as percent of average yield. Gray bars show median estimate and error bars show 5-95% confidence interval from bootstrap resampling with 500 replicates. Red and blue dots show median estimate of impact for T trend and P trend, respectively. **At the global scale, maize and wheat exhibited negative impacts for several major producers and global net loss of 3.8% and 5.5% relative to what would have been achieved without the climate trends in 1980-2008. In absolute terms, these equal the annual production of maize in Mexico (23 MT) and wheat in France (33 MT), respectively.Source:Climate Trends and Global Crop Production Since 1980David B. Lobell1,*, Wolfram Schlenker2,3, and Justin Costa-Roberts1Science magazine
  • Why focus on Food securityAnd climate change has to be set in the context of growing populations and changing diets60-70% more food will be needed by 2050 because of population growth and changing diets – and this is in a context where climate change will make agriculture more difficult.
  • Where the bar shows yield gap fractions, so green (0) = no gap between actual production and potential production; and red (1) = complete yield gap.
  • Distribution change is the other side of the “land-use change” coin – i.e. the distribution of coffee / maize / apple production across the world or across a region changes (i.e. it is exactly the same as the “farmers moving” in the previous slide)But perhaps leave out this slide as the previous one covers itHowden SM, Crimp S, Nelson R (2010) Australian agriculture in a climate of change. In ‘Managing Climate Change. Papers from the Greenhouse 2009 Conference’. (Eds I Jubb, P Holper, W Cai) pp. 101–112. (CSIRO: Melbourne) CCAFS does not have a copy of this conference paper
  • PNAS SI on ag innovation
  • Nos encontramos con el modelo de los cuatro países y se asigna el resultado (en este caso las diferencias entre la producciones actuales y futuras (2020) la producción de frijol) para Centroamérica.Como podemos ver, hay zonas donde la producción se reducirá drásticamente, mientras que otros están mejorando su potencial de producción. Los cambios ya descritos en las condiciones del clima y sus interacciones con las condiciones de ubicación específica determinaran  la producción del cultivo. El estrés por calor, la sequía y las altas temperaturas en noche son los principales culpables de estos resultados. Esto es ampliamente sostenido por evidencia científica. Algunas de las conclusiones generales son:Frijol:Temperaturas> 28/18  C (día / noche) decrecimiento en la producción de biomasa, seed-set, el numero y tamaño de las semillas (menos vainas por planta, menos semillas por vaina, peso menor en las semillas)Niveles elevados de CO2 también decrece seed-setNiveles elevados de CO2 aumentaron la biomasa, pero los beneficios de los niveles elevados de CO2 disminuye con aumento de las temperaturas maíz:La tensión alta temperatura disminuye la polinización y la producción de semillas de maíz, causada principalmente por la disminución en la viabilidad del polen y receptividad del estigmaLa tensión alta temperatura disminuye la semilla-set y los números del núcleo por planta.La tensión alta temperatura también afecta negativamente la calidad del núcleo y la densidad (proteínas, enzimas)Etapas reproductivas (el desarrollo del polen, floración, llenado de los granos antes de tiempo) son relativamente más sensibles a la sequía, la sequía disminuye el número y el peso seco del núcleo. El maíz necesita 50% del agua en el período de10 días antes y 20 días después de la floración inicial. A pesar de subrayar lo suficiente la temperatura del agua afecta el desarrollo del polen.El estrés hídrico reduce el número y tamaño de granos.Las temperaturas más altas en la noche significa mayores pérdidas de la respiración por lo tanto la pérdidas de biomasa y de rendimiento.Con los resultados DSSAT ahora podemos identificar los diferentes tipos de ámbitos de intervención en la región (siguiente diapositiva)  
  • nwcrpIntroduced a new cropnwvarIntroduced a new variety of cropshcyIntroduced a short cycle varietylgcyIntroduced a long cycle varietydrtlIntroduced a drought tolerant varietyfdtlIntroduced a flood tolerant varietydstlIntroduced a disease tolerant varietypsrsIntroduced a pest resistant varietyexarExpanded cropping areardarReduced cropping areastirStarted irrigationspbrStopped burningincrIntroduced intercroppingcrcvIntroduced cover cropsmcctIntroduced micro-catchmentsbundIntroduced bunds / ridgesmulcIntroduced mulchingterrIntroduced terracesstlnIntroduced stone lininghedgIntroduced hedgesctplIntroduced contour ploughingrotaIntroduced crop rotationelppIntroduced early land preparationelptIntroduced early plantingltptIntroduced late plantingmnftStarted using or increased use of mineral fertilizermncpStarted using or increased use of mineral fertilizerumphStarted using pesticides / herbicidesumipIntroduced integrated pest managementumcmIntroduced integrated crop management
  • Scaling up climate-smart agriculture: investment needs from innovation to implementation at scale. The set of sustainable agricultural practices that can improve adaptation, mitigation and livelihoods is highly diverse, varying by region and farming system. Many such practices are already well-known and others are yet to be invented or brought into general awareness. The process by which sustainable agricultural practices are taken up in specific farm regions and commodity sectors will be idiosyncratic, controlled by factors such as type and level of investment, availability of relevant knowledge and infrastructure, and the institutional and policy context. The type and amount of public and private sector investment varies country to country although, in general, investment in agriculture is low in low-income countries and higher in wealthier countries (where selection of agricultural practices is driven by a complex mixture of policy and market signals). The role of farmers’ organizations and agribusinesses is also highly variable by country and region. This schematic depicts the general sequence of investments, transitions and outcomes on the path to widespread adoption of agriculture practices that achieve adaptation, mitigation and livelihood objectives. Each phase in this general sequence has distinct incentives, knowledge requirements, risk tolerances, success metrics and expectations about return on investment. The purpose of this conceptual framework is to challenge funders, researchers, practitioners and other actors to clearly understand the precursors, partnerships and institutions required for investments to result in broad uptake of sustainable practices. It can also be used by those currently operating in one or more of these phases to clarify their role, objectives, progress and likely outcomes. Major phases include: (1) Innovation / identification of sustainable practices through adaptive farmer-driven research designed to achieve robust understanding of biophysical and socio-economic dynamics and outcomes relevant to incomes and environmental services. (2) Pre-investment (eg, climate finance, agricultural development funds) focused on ”real world” testing and operationalizing of sustainable practices through public-private partnerships designed to understand risks (eg, ROI lag time), barriers (eg, land tenure, subsidies) and necessary institutions (eg, managing financial flows, Extension) and infrastructure (eg, seed systems, monitoring). (3) Implementation of sustainable agricultural practices at scale, based on robust ROI, and establishment of public and private sector institutions to build capacity (eg, local farm associations and agribusinesses), provide oversight (eg, quality control for implementation and financing) and manage risk (eg, insurance or safety net programs), coupled with harmonization of the policy context (eg, re-orientation of subsidy programs). To meet urgent new challenges, stronger institutional mechanisms are needed (eg, to mitigate risks associated with innovation) and the research enterprise must evolve much more rapidly and develop better connectivity across research institutions, Extension and farmers (eg, through mandates for farmer-oriented research).
  • Analogue tourParticipatory videos
  • Future agriculture in a changing climate

    1. 1. AXA Chair Conference, London June 2013The future of agriculture in achanging worldThe future ofagriculture in achanging worldAndy JarvisAXA Chair Launch Workshop inBiosphere and Climate Impacts
    2. 2. TheChallenge
    3. 3. The concentration ofGHGs is risingLong-term implicationsfor the climate and forcrop suitability
    4. 4. Historical impacts on food security% Yield impactfor wheatObserved changes in growing seasontemperature for crop growingregions,1980-2008.Lobell et al (2011)
    5. 5. No matter what, change is upon us
    6. 6. Average projected % change in suitability for 50 crops, to 2050Crop suitability is changing
    7. 7. In order to meetglobal demands,we will need60-70%more foodby 2050.Food security is at risk
    8. 8. Source: Erb et al. (2007)•30-45% of earth’s terrestrial surface is pasture- 80% of all agricultural land•1/3 arable land used for feed crop production•70% of previously forested land in the Amazon = pasture3 Livestock and GHG
    9. 9. Arable land per person will decreaseYear• World Population• Arable land1950• 2,500,000,000• 0.52 ha20006,1000,000• 0.25 ha20509,000,000• 0.16 haThe arable landon the earth is~3% or 1.5billion ha
    10. 10. Livestock products: Developing countries arehungry for more.•Growth in animal productconsumption has increasedmore than any othercommodity group.1•Greatest increases in S andSE Asia, Latin America.-Overall meatconsumption in Chinahas quadrupled since1980 to 119lbs/person/yr.2•Economic and populationgrowth, rising per capitaincomes, urbanizationPhoto by: CGIAR
    11. 11. Land requirements for fooddepend on three factors:1) Population numbers2) Type of diet3) Food output per unit landKastner et al. 2012•Developed countries: high-energy diets, butlow pop. growth, high output efficiency.•Developing countries: low-energy diets, offsetby high pop. growth, low efficiency.Will dietary change override population growth as the major driver behind landrequirements?
    12. 12. 0 0.25 0.50 0.75 1Exacerbating the yield gapFrom Licker et al, 2010Climate change will likely pose additional difficulties for resource-poor farmers (e.g., inAfrica), thereby increasing the yield gap
    13. 13. Exacerbating the yield gapClimate change will likelypose additional difficultiesfor already resource-poorfarmers (i.e., many inAfrica), thereby increasingthe yield gap
    14. 14. Message 1:In the coming decades, climate changeand other global trends will endangeragriculture, food security, and rurallivelihoods.
    15. 15. Average projected % change in suitability for 50 crops, to 2050Crop suitability is changing
    16. 16. CO2 FertilisationRosenthal et al. (2012)report ~100 %increases in root yieldunder elevated CO2Further evidence of the crop’s potential underclimate changeUnder optimal management
    17. 17. Agriculture responsiblefor 19-29%Part of the problem,natural source forsolutions too
    18. 18. 020406080100120140160180200Pig Poultry Beef Milk EggskgCO2eq/kganimalprotein•Livestock alone is 10-18%3of all globalanthropogenic GHG-Other estimates as high as 51%4,5•Range arises from methodological differences-Inventories vs. life cycle assessments, Attribution of land use to livestock,Omissions, misallocations2 Livestock and GHGSource: de Vries and de Boer (2009)Range of GHG intensities for livestock commodities•Highest variation occurs forbeef, due to variety ofproduction systems.•Ruminants require morefossil energy use, emit moreCH4 per animal.6
    19. 19. Message 2:With new challenges also comenew opportunities.
    20. 20. Can we breed our way out of theproblem?
    21. 21. Why do we need breeding?• For starters, we have novel climates: 30% of theworld will experience novel combinations of climate
    22. 22. And also non-linear responses of cropsto climates•For example, US maize, soy, cotton yields fall rapidly when exposedto temperatures >30˚C•In many cases, roughly 6-10% yield loss per degreeSchlenker and Roberts 2009 PNAS
    23. 23. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428.doi:10.1371/journal.pone.0066428http://www.plosone.org/article/info:doi/10.1371/journal.pone.0066428Can we breed our way out of theproblem?
    24. 24. Current suitability
    25. 25. Current climatic constraint
    26. 26. What will this mean for cassava?
    27. 27. The Rambo root!
    28. 28. But what about other staples?The Rambo root versus Mr. Bean
    29. 29. Cassava suitability change comparedwith other staples• Cassava consistently outperforms otherstaples in terms of changes in suitability
    30. 30. Cassava’s role as a substitution crop• Cassava as a fallback crop under an uncertainclimate (risk management)• Cassava as the substitution crop for otherstaples more sensitive to heat and drought• Cassava as a source of increasing food andnutritional security across the continent• A rare positive story for a climate changeresearcher
    31. 31. Heat and drought?Not for cassavaDrought tolerance willpush adaptation upinto SahelBig gains also fromcold tolerance –despite climatechange, this continuesto be the majorconstraint globally
    32. 32. Drought and heat?
    33. 33. Consideration in breeding for CC• Inherent uncertainty in futures, BUT, temperatures willincrease, rainfall likely to change, greater variability inmany parts of the world• Climate affects multiple factors, all need to beconsidered:– Growing season timing, length of growing season– Pests and disease patterns (big gap in knowledge)– Crop distribution, affecting other non-climate related traitsand constraints – e.g. soil-related constraints– Crop physiology, crop development phases speed up etc.
    34. 34. Message 3:Different breeding challenges for differentcrops, in different countries – no silverbullet!
    35. 35. A wicked problem
    36. 36. Let’s talk about Wicked Solutionswick·ed (w k d)adj. wick·ed·er, wick·ed·est1. Evil by nature and in practice: "this wicked man Hitler, the repository andembodiment of many forms of soul-destroying hatred"(Winston S. Churchill).2. Playfully malicious or mischievous: a wicked prank; a critics wicked wit.3. Severe and distressing: a wicked cough; a wicked gash; wicked drivingconditions.4. Highly offensive; obnoxious: a wicked stench.5. Slang Strikingly good, effective, or skillful
    37. 37. Yield potential, AND yield gapAsian rice vs.African riceAsian non-rice vs.African non-riceFrom Otsukaa and Kijimab, 2010
    38. 38. Transformation in agriculture
    39. 39. Decision making in spite of uncertaintyVermeulen et al. (2013)Signal-to-noise ratioTimeIncremental Systemic Transformativet1Current variabilityt3t2t4Top-down approachesparticularly importantTransition in types of adaptationSeasonalforecasting(Case 4)Stakeholderled (Case 1)Stakeholder led (Case 2)Altitudinalgradients (Case 3)Cropsuitability(Case 4)Bottom-up approachesparticularly important
    40. 40. Suitability inCauca• Significant changes to2020, drastic changesto 2050• The Cauca case:reduced coffeeegrowing area andchanges in geographicdistribution. Somenew opportunities.MECETA
    41. 41. No regretTransformationalChangeBottom-upIncrementalAdaptationHighcertaintyTransformationalChange
    42. 42. Adaptation entry points in maize-bean systems
    43. 43. Scalable climate smart technologies….
    44. 44. Getting to grips with climate adaptation:The right choices
    45. 45. Evaluating varietal adaptationVar.CariocaVar.CalimaVar.Jamapa
    46. 46. Likely yield with different planting dates
    47. 47. Modelling potential losses from extreme events with differentplanting dates
    48. 48. Benefits of potential adaptation options: conservation agriculture%yieldloss% water deficit
    49. 49. Playing out transformative adaptationin CCAFS benchmark sites in East AfricaWhen, where, how and with whom?
    50. 50. Where do we work?CCAFS sites Main crops Main livestock (forages)Borana(ET) Maize(96.6%)Beans(86.4%)Wheat(33.1%)Beef cattle(93.2%)Goats(77.8%)Nyando (KE) Maize(99.2%)Sorghum(73.3%)Beans(34.4%)Goats(66.9%)Chicken/hens (61.2%)Usambara (TZ) Maize(87.1%)Beans(75%)Tomatoes(29%)Chicken/hens(82.1%)Dairy cows(56.4%)Albertine Rift (UG) Cassava(78.6%)Beans(68.4%)Sweetpotatoes(59.8%)Chicken/hens(82.5%)Pigs(63.1%)
    51. 51. Climate smart agriculture: tacklingadoption head onRash model (Campell, 1963): Attitude towards change = number + difficulty of change made
    52. 52. Silvopastoral systems:A mini-revolution inColombia and CentralAmericaPiedemonte llaneroEstado inicial: Julio 17, 2007Agosto 15, 200813 mesesOctubre 22, 200815 meses
    53. 53. TimeUptakeofsustainableagriculturalpracticesInnovation /Identification ofpracticesPre-investment(eg, developmentfunds, climatefinance)Implementation atscale /Establishment ofinstitutionsDemonstration ofagro-economic andsustainabilitypotentialPolicy shifts and large-scale changes inpractices, livelihoodsand environmentalimpactsDemonstration offinancial /commercial viabilityand sustainabilityoutcomes
    54. 54. 1 January 2013Leb byClimate smart villages:Key agricultural activities for managing risks
    55. 55. Local implementation grounded inlocal realitiesClimateresilienceBaselineAdaptedtechnologiesAdaptedtechnologies+Climate-specificmanagementAdaptedtechnologies+Climate-specificmanagement+SeasonalagroclimaticforecastsAdaptedtechnologies+Climate-specificmanagement+Seasonalagroclimaticforecasts+EnablingenvironmentNAPs andNAMAsClimate smartness
    56. 56. LushotoMbuziiYambaMorogoroMwitikilwaNyomboNjombeMbingaKinoleFOTF in TanzaniaAnalogue study TourVillages visited Starting pointSepukila Village:-Matengo pits: Traditional soil andwater conservation technique-Coffee nursery-StovesMasasi Village:-Water source-Fish pond-BiogasMtama Village:- Bee keeping-Market value chain socialenterprise visit- Input supply Stockists-Weather station visit- Bean trial visit- Tree nursery visitFarms of the futureJourney to Yamba’s plausible futures
    57. 57. Wicked solutions for climate smartagriculture• No matter what, impacts of climate change will be profound• Climate just one driver of global change in agriculture• Opportunities for re-thinking food systems, increasing efficiency• …..but no silver bullet• Wicked solutions exist, but we need to think about newinstitutional arrangements, new policies, and new investment to• Science can contribute new solutions, methods for targetting,improved understanding of priorities• The challenge is very big – reducing emissions from agriculture,ensuring adaptation
    58. 58. http://www.slideshare.net/ciatdapa/http://dapa.ciat.cgiar.orghttp://www.ccafs.cgiar.orgsign up for e-bulletins, twitter: @cgiarclimate

    ×