Análisis de vacíos en parientes silvestres

  • 134 views
Uploaded on

Presentación preparada para el Primer Taller Técnico para el Fortalecimiento de las Capacidades en Programas Nacionales Latinoamericanos (CAPFITOGEN)

Presentación preparada para el Primer Taller Técnico para el Fortalecimiento de las Capacidades en Programas Nacionales Latinoamericanos (CAPFITOGEN)

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
134
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
2
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Producción de variedadessujeta a la disponibilidad de recursosgenéticos

Transcript

  • 1. Análisis de vacios en Parientes Silvestres Nora Patricia Castañeda-ÁlvarezFoto: Luigi Guarino, Global Crop Diversity Trust
  • 2. Los parientes silvestres de los cultivos
  • 3. “any genetic material of plant origin of actual or potential value for food and agriculture” FAO, 2009FAO (Food and Agriculture Organization of the United Nations), 2009. International Treaty on Plant Genetic Resources forFood and Agriculture. , p.68.
  • 4. Parientes silvestres de Especies cultivos cultivadas VariedadesArvenses locales (landraces) Cultivares Stock modernos y genético obsoletos Líneas de mejoramiento
  • 5. 17 días de inmersiónMaterial usado: Landrace (FR13A)
  • 6. Importancia Recursos Genéticos Seguridad alimentaria Desarrollo económico Base para agricultura más sostenible Fuente de variación genética Extensión de la base genética de los cultivos Incorporación de caracteres de interés (e.g. rendimiento, calidad, tolerancia/resistencia a stress biótico o abiótico)
  • 7. Usos de los parientes silvestres
  • 8. Crop Wild Relatives (CWR) may serve as source of novel traits, as most of them have not experienced strong selective pressures and they share a common ancestry with crops, easing the use of their genes in traditional breeding and biotechnology when required (Dale 1992).Dale, P.J., 1992. Spread of Engineered Genes to Wild Relatives. Plant physiology, 100, pp.13-15.
  • 9. Usos confirmados Mejoramiento de calidad Aumento de rendimientos Caracteres nutricionales Tolerancia a plagas Tolerancia a enfermedades Adaptación a sequíaAdaptación a salinidad Patrones de injerto
  • 10. Usos potenciales Tolerancia a salinidad Tolerancia a sequía Tolerancia a heladas Tolerancia a inundaciones
  • 11. Why Crop Wild Relatives?Hajjar, R. & Hodgkin, T. 2007. The use of wild relatives in crop improvement: a survey of developments over the last 20years. Euphytica 156(1-2): 1-13
  • 12. Estado deconservación
  • 13. Conservación Conservación ex situ in situ
  • 14. Reservas genéticas activas (conservación in situ)• Triticum spp. en Ammiad, Israel• Aegilops spp. en Ceylanpinar, Turquía• Zea perennis en Sierra de Manantlán, México• Citrus, Oryza, Alocasia en Ngoc Hoi, Vietnam• Solanum spp. en Pisac Cusco, Perú
  • 15. Otras iniciativas• “Crop Wild Relatives Project”• GEF, UNEP, Bioversity International• Armenia, Bolivia, Madagascar, Sri Lanka y Uzbekistán• http://www.cropwildrelatives.org
  • 16. PGRRI - Ghana WARDA - Benin
  • 17. Amenazas: cambioclimático y cambios en el uso de la tierra
  • 18. Variations in the Earth’s surface temperature. 1000 to 2100 There’s no point in looking for the effects of climate change here! When this is going to happenMaunder minimum. Little Ice Age. Ice fairs on the Thames
  • 19. Escenario: migración ilimitadaJarvis, a, Lane, a & Hijmans, R., 2008. The effect of climate change on crop wild relatives. Agriculture, Ecosystems &Environment, 126(1-2), pp.13-23. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0167880908000133 [AccessedMarch 16, 2011].
  • 20. Escenario: no-migraciónJarvis, a, Lane, a & Hijmans, R., 2008. The effect of climate change on crop wild relatives. Agriculture, Ecosystems &Environment, 126(1-2), pp.13-23. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0167880908000133 [AccessedMarch 16, 2011].
  • 21. • 16-22% del total de especies en riesgo de extinción• Mayoría de las especies pierden por lo menos 50% de su nicho ambiental• Nichos ambientales  altamente fragmentados• Arachis: 24-31 (de 51 spp) extintas, reducción 85- 94% en área• Solanum: 20 ( de 108 spp) extintas, reducción 38- 69%• Vigna: 2 (de 48 spp) extintas, reducción 65%
  • 22. Sampled Red List Index for Plants• 20% de las plantas en riesgo de extinción• Actividad humana responsable del 81% de todas las amenazas identificadas http://threatenedplants.myspecies.info/
  • 23. Análisis de vacios
  • 24. Overview Gather taxonomic Gather occurrence Georeferencing data data Make collecting Determine gaps in Model recommendations collections distributionsSource: concept and images from Jarvis et al. 2009. Value of a Coordinate: geographic analysis of agricultural biodiversity. Presentation for Biodiversity Information Standards (TDWG), November 2009.
  • 25. Our approach Environmental dimensionGeographic Taxonomicdimension dimension Ramírez et al., 2010 40
  • 26. Methodology 2. Determination 3. Potential1. Determination of sampling distribution of target taxa deficiencies models6. Rarity based on 5. Determination 4. Geographic environmental of environmental coverage variables gaps assessment7. Determination 8. Prioritization of of priority of geographic areas collecting for collecting Ramírez et al., 2010 41
  • 27. HPS MPS LPS NFCR No Further High Priority Medium Priority Low Priority Conservation is Species Species Species Required Final priority Final priority Final priority Final priorityscore- between 0- score- between score- between score- between 3 3.01-5 5.01-7.5 7.51-10
  • 28. Methodology Prioritization results: Phaseolus case (Ramírez-Villegas et al., 2010)(A) Zones where gaps in ex situ collections for multiple high priority taxa overlap, (B) modellinguncertainties as standard deviations among high priority modelled taxaRamírez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D. and Guarino, L. 2010. A gap analysis methodology for collecting crop genepools: a case study withphaseolus beans. PLoS one 5(10)
  • 29. Our work• Data  cwr database holding c.a. 4 million records – Sources: public available databases (i.e.: GBIF, Genesys, Conabio, CRIA), collaborations with experts (i.e. David Spooner, Nigel Maxted), visits to major herbaria (i.e.: Harvard, Kew, Edinburgh, Madrid)• Website  www.cwrdiversity.org
  • 30. Datasets - herbarium
  • 31. Datasets -germplasm
  • 32. Genepool Scientific Name Avena Avena sativa Cajanus Cajanus cajan Cicer Cicer arietinum Daucus Daucus carota Eleusine Eleusine coracana Helianthus Helianthus annuus NFCR Hordeum Hordeum vulgare 5% Ipomoea Ipomoea batatas MPS Lathyrus Lathyrus sativus 14% Lens Lens culinaris Malus Malus domestica Medicago Medicago sativa Musa Musa acuminata and M. balbisiana LPS Rice Oryza glaberrima and O. sativa 19% HPS Pennisetum Pennisetum glaucum 62% Lima bean Phaseolus lunatus Bean Phaseolus vulgaris Pisum Pisum sativum Secale Secale cereal Eggplant Solanum melongena Potato Solanum tuberosum* Sorghum Sorghum bicolor Triticum Triticum aestivum Faba bean Vicia faba Vetch Vicia sativa403 taxones analizados Bambara Vigna subterranea Cowpea Vigna unguiculata
  • 33. Gracias!http://www.cwrdiversity.org/ n.p.castaneda@cgiar.org