• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Hephantan
 

Hephantan

on

  • 584 views

He phan tan itctu.com

He phan tan itctu.com

Statistics

Views

Total Views
584
Views on SlideShare
567
Embed Views
17

Actions

Likes
0
Downloads
16
Comments
0

2 Embeds 17

http://blog.itctu.com 16
http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Hephantan Hephantan Document Transcript

    •            !   ∀  #∃  % ∃& % ∋ ( )∃ ∗
    •              
    •  ! ∀# ∃  %&∋(
    • ) ∗+ # ,  ∃  ∗+ ∀# , −. / (  % ∀#  %  0  % ∀#  %1 2( %3(   # ( ∗∀
    •       45  ,#0 ( #  ∃ 6      7 ∀# , −. /8 (( , −. /   9 # ,: , + (  ; <= , −. / (7 (( 9 ,> ) ∗  ? , 7 ∀# , −. /8 (( , −. /   9 # ,: (( #∃∀ ≅ % 8 = , −. / (7 , + (Α( , ∗ (( 9 ,> ) ∗  ? ( 7 ∀# , −. /8 (( , −. /   9 # ,: , + (  ;8 = , −. / (7 , + (Α( , ∗ (( 9 ,> ) ∗  ? 0 7 ∀# , −. /8 (( , −. /   9 # ,: (( #∃∀ ≅ % 8 = , −. / (7 (( 9 ,> ) ∗  ?8 (7 , + (1 Β 0Χ ( # (  
    • 
    • ∆ 
    •  ! ∀# ∃ 
    • Ε9 ) ∗+ # ) & Α( ? ∃  +8 &Φ 0Χ Γ( Φ Η
    •  , Ι & % ) & Α( ? ∃  +−8 &Φ 0Χ  ϑ . 0Α Φ Η
    •  , 
    •  ∃ Ε ≅ (7 %3(  (Κ % ∀#     Ε − −Λ Β 7( %        ϑ
    •  4Μ∃ Ν 6 , ΜΓ Γ > 4Ο# ∃6 ( < 
    • ( % Ε ( 0 Π ϑ Θ ( ># %Γ = 4Ρ# Σ( ( ∃6ΤΣ
    •  ! Υ ∃ 
    • Ε9 ) ∗+ # ς>  ∗Ω / (Κ & Α( #./ 0 1 %3 ) ∃ +Ι&Φ 0Χ 
    •  (7 #∃ −#Ξ %9 ΜΨ ∃ ,: (( ≅ ϑ %&Φ 0Ζ 2#./ 0 13 [,Ξ (∴ ∃   
    • 
    •  ∃ (7 %3(  (Κ % ∀#     Ε − −Λ Β7( %      ΜΓ Γ > 4Ο# ∃6 , < 7( % Ε ( (  ϑ
    •  4Μ∃ Ν 6 0 Π ϑ Θ ( ># %Γ = 4Ρ# Σ( ( ∃6]Ι ⊥ %3(   # ( ∗∀
    •  Ε9
    • ( 3 4Σ  ∃ #0 Μ∃ 6      &∋(  Ε ϑ %9 & ⊥
    •       45  ,#0  #  Μ∃ 68 (( , −. / (( − # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0
    • , 0 &∋(  Ε ϑ %9 & ⊥
    •       45  ,#0  #  Μ∃ 68 (( , −. /  # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0 ( &∋(  Ε ϑ %9 & ⊥ ∃    4α <( 68 (( , −. /  # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0 0 &∋(  Ε ϑ %9 & ⊥ ∃    4α <( 68 (( , −. /  # ∗∀ 3 %> /8 ) ( 9  ∗ (  (Ξ8 Β  
    • β<
    •     (7 ∀# ∃  &Φ 0Χ Ε ≅ %&∋(  ,> %χ (∴ <≅   # %∃ δ (  (( ∃  ∗ ( Ε ≅ %χ ∗Ζ  ∗ (
    • 
    •      <≅  )  ∗ (ε ∃  Α( ∗Α , <≅  )  ∗ ( ( <≅  ∃   # 0 <≅  ∗Χ (( , −. /φ<
    •    (7 
    • + ⊥ &Φ 0Χ ∃  ( γ Γ( ⊥ (≅ ∗ ( %1  ϑ & Η ϑ ∗Θ ,ϑ8 Β & % . 3( Γ( ⊥ ( &1  η ςΩ∃ ≅   %&∋( 0Χ −∃ 0Γ
    •    Χ ∋ Ξ     <≅  ∗Χ (( , −. / , <≅  )  ∗ ( ( <≅  )  ∗ (ε ∃  Α( ∗Α 0 <≅  ∃   #ι
    •       0Γ ? ≅  )  ∗ ( , ! 
    • )  ∗ ( %&∋(  ? Ε9 )∗+ # <= )  ,> %χ (∴ ∗  Α( ∗Α & ∃  (  &Φ 0Χ Σ ≅  ∃8(7 Γ ϕ   ακ Ε 
    • ∃  ϑ  Ω 0Α Ξ (ϑ (( ακ8 &Φ     Π9 ∋  ∗ ,     Ι
    • Ε9 (( ) ) ∗+ # ,: %&Φ )
    • ( % ( λΒ (≅ ∗ ( [ ) µ# ϑ  ) ϑ % Γ( , α  (  %! %∀# (≅ ∗ (  ⊥ (( ) ( Ι
    • Ε9 (( ) ) ∗+ # ,: %&Φ )
    • ( % ( 0 λΒ (≅ ∗ ( [ ) µ# ϑ  ) ϑ % Γ( νΣ ≅  ∗Χ (( , −. /8   ⊥ ∗ ο   
    • , ∗ −. / (  (( (≅ ∗ ( (Κ &Φ 0Χ     Ι&Φ µ#ϑ > , Ρ  Μ∗ ( π# Μ∗ 0 % ∀#  ΥΙ ⊥ %3(   # (
    •  Ε9
    • η 4 #∃ #0 Μ∃ 6     &∋(  Ε ϑ %9 & ⊥ ∃    4α <( 68 (( , −. /  # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0 , &∋(  Ε ϑ %9 & ⊥ ∃    4α <( 68 (( , −. /  # ∗∀ 3 %> /8 ) ( 9  ∗ (  (Ξ8 Β  
    •  ( &∋(  Ε ϑ %9 & ⊥
    •       45  ,#0  #  Μ∃ 68 (( , −. / (( − # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0 0 &∋(  Ε ϑ %9 & ⊥
    •       45  ,#0  #  Μ∃ 68 (( ,
    • −. /  # ∗∀ 3 %> /8 (7  (Ξ8 Β  
    •  (( 0_ 0 4  ∃5 67