• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Lesson 2 1
 

Lesson 2 1

on

  • 981 views

 

Statistics

Views

Total Views
981
Views on SlideShare
981
Embed Views
0

Actions

Likes
0
Downloads
3
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Lesson 2 1 Lesson 2 1 Presentation Transcript

    • Functions and Function Notation Any set of ordered pairs is known as a relation . A relation consists of an independent variable and a dependent variable . Usually, we think of x as the independent variable, and y as the dependent variable. The relation to the left consists of 6 ordered pairs. A function is a special kind of relations, in which each member of the independent variable is paired with one and only one value of the dependent variable. Is the relation to the left a function? Another way to state the definition of a function is that each member of the domain corresponds with exactly one member of the range . What is meant by domain and range?
    • Functions and Function Notation There are many ways to represent a function. Here are examples of three of the most common: A coordinate graph: A rule expressed symbolically or in words: “ The sale price is 20% off of the sticker price.” A list of ordered pairs: (3,5), (-1,8), (9,9), (-12, -1) -2 5 -5 0 1 1 6 4 -2 3 y x
    • Functions and Function Notation You have all seen function notation at some point in the past: If f ( x ) is defined as above, how would you evaluate f (-3)? How would you evaluate f (a+b)? f (watermelon)?
    • Are all relations functions? Consider the set of all points that are 3 units away from the point (2,2). What does a coordinate graph representing those points look like? What are the domain and range of this relation? This relation is not a function because for some members of the domain ( x values), there is more than one corresponding value in the range ( y values). You may recall the vertical line test .
      • Example:
      • The cost of renting a car is $35 per day plus $.40/mile for mileage over 100 miles.
      • Identify the dependent and independent variables.
      • State the domain and range of the function.
      • Write an equation for this function.