SlideShare a Scribd company logo
1 of 34
Download to read offline
SMART HOME TECHNOLOGIES

                George Wang
                       2012
Smart Home Applications




By 2020, 50 billion devices will be connected to the Internet
Smart Home and Smart Phone                Low Speed
                                            Control




                             High Speed
                                Video
Smart Home Technologies

 1.   X10
 2.   INSTEON
 3.   Z-Wave
 4.   ZigBee
 5.   6LoWPAN
 6.   HomePlug
X10 Basics
• Definition:
   – X10 is an international and open industry standard for communication among
     electronic devices used for home automation, also known as domotics. It
     primarily uses power line wiring for signaling and control. A wireless radio
     based protocol transport is also defined.

• Working Principles:
   – Household electrical wiring is used to send digital data between X10 devices.
     This digital data is encoded onto a 120 kHz carrier which is transmitted as
     bursts (1ms) during the relatively quiet zero crossings of the 50 or 60 Hz AC.
     One bit is transmitted at each zero crossing. Each bit is transmitted 3 times.

• History:
   – X10 was developed in 1975 by
     Pico Electronics of Glenrothes, Scotland
   – X10 (USA) Inc. was formed in the 1985
X10 Protocol
  – When the system is installed, each controlled device is configured to respond
    to one of the 256 possible addresses (16 house codes × 16 unit codes); each
    device reacts to commands specifically addressed to it, or possibly to several
    broadcast commands.
  – A message that says "select code A3", followed by "turn on", tells the unit "A3"
    to turn on its device. Several units can be addressed simultaneously. For
    example, "select A3", "select A15", "select A4", and finally, "turn on", causes
    units A3, A4, and A15 to all turn on.
X10 Advantages and Limitations

  Inexpensive                        Commands getting
  No new wiring is required          Relatively slow
  Simple to install                  Limited functionality
  100's of compatible                Interference and lack of
  products                           encryption
  Time proven -- it has been         Control only up to 256
  around for over 30 years           lights and appliances




 It is estimated that X10 compatible products can be found in
 over 10 million American homes.
INSTEON — Ultimate Reliability
  – INSTEON is a dual-band mesh home area networking topology employing AC-
    power lines and a radio-frequency (RF) protocol to communicate with devices.
  – INSTEON was developed by SmartLabs Technology, a division of SmartLabs, Inc.
    since 1992.
  – It enables devices, such as light switches, thermostats, motion sensors, etc. to
    be networked together using the power line, radio frequency (RF), or both.
  – All INSTEON devices are peers. Each device can transmit, receive, and repeat
    any message of the INSTEON protocol, without requiring a master controller or
    routing software.
  – INSTEON-enabled devices will work with legacy X10 products. INSTEON driver
    chip sets simply include the capability of transmitting, receiving, and
    responding to X10 power line messages in addition to INSTEON messages.
  – Every INSTEON device has a unique 24 bit address, all transmissions are
    encoded onto the network.
  – SmartLabs offer's Developer Kits which allows communications between the
    product and the INSTEON network. The interface can be an internal INSTEON
    chip, a small PC board or an external plug-in adapter with I/O ports connecting
    to the host product.
INSTEON Packet Timing vs. X10
                                All INSTEON powerline
                                packets contain 24 bits.

                                An INSTEON powerline
                                packet lasts 1.823
                                milliseconds.

                                INSTEON packets are
                                transmitted during the zero
                                crossing quiet time to
                                minimize the effect of
                                powerline noise.

                                INSTEON packets begin 800
                                microseconds before a zero
                                crossing and last until 1023
                                microseconds after the zero
                                crossing.
INSTEON
Device
Communication              Connect to
                              PC                      RF Bridges
                                                     Two Phases
At the main electrical
junction box to the
home, the single three-
wire 220 VAC powerline
is split into a pair of
two-wire 110 VAC
powerlines, known as
Phase 1 and Phase 2.
Phase 1 wiring usually
powers half the circuits
in the home, and Phase
2 powers the other half.


                                        Compatible
                                          to X10
How does INSTEON Compare with ZigBee, Bluetooth,
HomePlug, X10?
•   Bluetooth - Bluetooth is designed as an ad-hoc network technology and as such
    is NOT designed to be a home control networking technology.

•   HomePlug - INSTEON is compatible with HomePlug but focused on different
    applications. HomePlug is tuned to broadband applications while INSTEON is
    focused on home control. INSTEON is a more cost-effective technology for
    home management.

•   ZigBee/Z-Wave - INSTEON is not limited to a single physical network technology
    and does not require a network controller. It supports both RF and Powerline,
    enabling a broader set of applications. INSTEON technology is also a more cost-
    effective and reliable technology allowing it to be integrated into a broader
    range of products.

•   X10 - INSTEON is a more robust and reliable network yet, it is priced similarly
    and is compatible with industry standard X10 devices.
Z-Wave — Wireless Solution
– Z-Wave is a proprietary wireless communications protocol
  designed for home automation, specifically to remote control
  applications in residential and light commercial environments.
– The technology uses a low-power RF radio embedded or
  retrofitted into home electronics devices and systems, such as
  lighting, home access control, entertainment systems and
  household appliances.
– The Z-Wave Alliance is an international consortium of 160
  independent manufacturers that provide interoperable Z-Wave
  enabled devices.
– Bandwidth: 9,600 bit/s or 40 kbit/s, fully interoperable
– Range: Approximately 30 meters assuming "open air" conditions,
  with reduced range indoors depending on building materials.
– Frequency band: uses the sub-1GHz ISM band
– Z-Wave's ability to command multiple devices as a unified event
  makes it well suited for home audio and video applications.


                          No AC, No Wire
Z-Wave Chip and Applications
 •   Z-Wave is available as Z-Wave Single Chip
     solutions by Sigma Designs (Zensys).
 •   Protocol stack is embedded in the chips.
 •   Flash memory and blueprints of the PCB
     circuitry are available to the
     manufacturer/OEM for their applications.




                            Compatibility is very GOOD!
Sub-1GHz Frequency Coverage by Z-Wave




            Frequency differs from country to country.
            It is less crowded compared to 2.4GHz band.
ZigBee — low-cost, low-power, wireless mesh network
– ZigBee is a specification for a suite of high level communication
  protocols using small, low-power digital radios based on an IEEE
  802.15.4 standard for personal area networks that was finalized in
  2006.
– Applications include wireless light switches, electrical meters with
  in-home-displays, and other consumer and industrial equipment
  that requires short-range wireless transfer of data at relatively low
  rates.
– ZigBee specification is intended to be simpler and less expensive
  than other WPANs, such as Bluetooth.
– ZigBee is targeted at radio-frequency (2.4 GHz) applications that
  require a low data rate, long battery life, and secure networking.
– The defined rate of 250 kbps is best suited for periodic or
  intermittent data or a single signal transmission from a sensor or
  input device.
– The wireless IEEE 802.15.4 ZigBee RF4CE standard is replacing
  infrared applications such as remote controls.

                                  No AC, No Wire
ZigBee Networking
ZigBee uses standard networking terms for data transmission, as defined by IEEE.

• Data Request (transmit data)
• Data Confirm (acknowledgment of a data request)
• Data Indication (receive data)




                                                                  ZigBee Latency
 ZigBee Data Requests




                                                    ZigBee Endpoints Example
IEEE 802.15.4 Channel
•   Channel numbers 0 through 10 are defined •                ZigBee uses 2.4 GHz, WiFi, cordless
    by the sub-1 GHz 802.15.4 radios, but                     phones, and microwave ovens also exit in
    ZigBee doesn't run on the sub-1 GHz radios.               this band.




    ZigBee nodes can only send data requests to other nodes on the same network. A single ZigBee
    network is called a Personal Area Network (PAN).

    ZigBee PANs are formed by ZigBee Coordinators (ZCs). Only ZCs may form a PAN. The other ZigBee
    node types, ZigBee Routers (ZRs) and ZigBee End-Devices (ZEDs) may join a network, but do not form
    one themselves.

    ZigBee does not typically change channels. It is defined by the Application Profile. A ZigBee device
    must scan all channels, and join the network on one channel. If the profile is a private profile, it may
    choose to limit the device to one or any set of the 16 available channels.
ZigBee Applications - Profiles
•   Public profiles are designed for products   •   Manufacturer-specific profiles (MSPs)
    from one manufacturer (X) to work, right        allow the OEM to define any set of clusters,
    out-of-the-box, with products from              endpoints, and devices.
    another manufacturer (Y).                   •   ZigBee places no restrictions on data type
                                                    as long as data rate remain reasonable.




                                                    • Play/Pause
                                                    • Skip Forward
                                                    • Skip Backward
                                                    • Volume Up
                                                    • Volume Down


                                                             iPod Controller Concept
How do ZigBee Compares with Z-Wave, X10 and
INSTEON ?
INSTEON: Moderately priced, highly reliable Dual-mesh RF & Powerline
technology. However, INSTEON was mainly designed for 110V/60Hz AC power.
X10: Inexpensive but lacks the robustness, flexibility and reliability required by
home-control applications
ZigBee & Z-Wave: Single-band (RF-only) wireless networks that require a network
controller. Z-Wave is proprietary while ZigBee is open standard.
ZigBee for Home Utility Management




         •   Zigbee provides communication and data exchange
             between the utility and home area networks
         •   Data can be accessed via the Internet
ZigBee for Further Improvement
    ZigBee was started in 2003 based on IEEE 802.15.4 features, adding ad hoc
    networking, service discovery and application protocol profiles.
    ZigBee is a protocol specification from an industry special interest group
    called the ZigBee Alliance. Leading provider is Control4.
    ZigBee has been successful for multi-vendor ad hoc applications such as
    home automation.
    ZigBee has several down-sides, including reliance on a single wireless link
    technology, tight coupling with application profiles, along with Internet
    integration and scalability limitations.
    Zigbee product falls short when comparing to INSTEON, X10, and Z-Wave
    in home automation and DYI market.
    In 2009 the ZigBee Alliance announced that ZigBee will start to integrate
    IETF standards such as 6LoWPAN and ROLL into its future specifications.

        ZigBee Building Automation
        ZigBee Health Care
        ZigBee Home Automation
        ZigBee Retail Services
        ZigBee Smart Energy
        ZigBee Telecom Services
6LoWPAN – The Internet of Things Technology
– 6LoWPAN is an acronym of IPv6 over Low power Wireless Personal Area
  Networks.
– 6LoWPAN is the name of a working group in the Internet area of the IETF.
– It has defined encapsulation and header compression mechanisms that
  allow IPv6 packets to be sent to and received from over IEEE 802.15.4
  based wireless networks.
– It originated from the idea that "IP could and should be applied even to
  the smallest devices and that low-power devices with limited processing
  capabilities should be able to participate in the Internet of Things.”
– The vision behind the Internet of Things is that embedded devices, also
  called smart objects, are universally becoming IP enabled, and an integral
  part of the Internet.


                                                  Google’s android light bulb
                                                  runs 6LoWPAN
6LoWPAN – Issues from IPv6 to IEEE802.15.4
 – Adapting the packet sizes of the two networks
     IPv6 requires MTU (Maximum Transmission Unit) to be at least 1280 Bytes.
     IEEE802.15.4's standard packet size is 127 octets.
 – Address resolution
     IPv6: 128 bit IP addresses in a hierarchical manner
     IEEE 802.15.4: IEEE 64 bit extended addresses or 16 bit addresses that are unique within
     a PAN. There is also a PAN-ID for a group of collocated IEEE802.15.4 devices.
 – Differing device designs and focus
     IEEE802.15.4: cost, power consumption, code-size optimization , installation
     IP: networking, high speed, algorithms, interoperability
 – Addressing management mechanisms
     The management of addresses for devices that communicate across the two dissimilar
     domains of IPv6 and IEEE802.15.4 is cumbersome, if not exhaustingly complex.
 – Device and service discovery
     Since IP-enabled devices may require the formation of ad hoc networks, the current state
     of neighboring devices and the services hosted by such devices will need to be known.
     IPv6 neighbor discovery extensions is an internet draft proposed as a contribution in this
     area.
6LoWPAN Related Standards and Alliances




      Note: In 2008 a new IETF working group was formed, Routing over Low-power
      and Lossy Networks (ROLL)
6LoWPAN vs. ZigBee
 – The weakness of 6LoWPAN is that they do NOT yet have a real market for the
   protocol at the moment.
 – The main problem lies in the fact that they don't have any standards in place to
   govern device interoperability of each wireless sensor node.
 – Zigbee has the device interoperability specification and testing infrastructure in
   place.
 – ZigBee has access to two potentially large markets that are gateways into the
   consumer home, i.e., wireless sensor (smart meters) and remote control.
 – 6LoWPAN has access to a huge amount of infrastructure, a large pool of protocol
   developers, and TCP/IP which is the universal language of communications all
   over the world.
 – Big companies such as Cisco, Microsoft, Google, and Intel may jump in support
   6LoWPAN. This would be on top of companies like Sony, Samsung, Panasonic,
   and Philips that came along with RF4CE.
Power Line Communications (PLC) for Home
– X10 and INSTEON are PLC technologies for
  home control (narrowband) using the
  electrical power wiring within a home for
  home automation
– HomePlug is PLC technology used to
  interconnect home computers and
  peripherals, and home entertainment devices
  that have an Ethernet port. It allows devices
  to share video and data without the
  inconvenience of running dedicated network
  cables.
– IEEE 1901 includes HomePlug AV as a baseline
  technology, so any IEEE 1901 products are
  fully interoperable with HomePlug AV,
  HomePlug Green PHY or the forthcoming
  HomePlug AV2 specification.
– Other standards specifications for power line
  home networking include the Universal
  Powerline Association, the HD-PLC Alliance
  and the ITU-T’s G.hn and HomePNA
  specifications.
HomePlug

  – HomePlug is the family name for various power line communications
    specifications that support networking over existing home electrical wiring,
    targeting broadband applications such as in-home distribution of low data
    rate IPTV, gaming, and Internet content.
  – The first HomePlug specification, HomePlug 1.0, was released in June 2001.
  – HomePlug AV specification, which was released in 2005, increased physical
    layer (PHY) peak data rates from 14 to 200 Mbit/s.
  – HomePlug AV2, finalized in Jan. 2012, offers Gigabit speed at the physical
    layer and 600Mbs+ at the MAC layer. with products expected to ship in
    2013.
  – The HomePlug Green PHY (10Mbps) specification was released in June 2010
    and targets Smart Energy and Smart Grid applications
  – There are 4 chip vendors that are shipping interoperable HomePlug AV
    chipsets with IEEE 1901 support (Broadcom, Qualcomm Atheros, Sigma
    Designs, and SPiDCOM)
  – Major HomePlug AV product vendors are ATRIE Technology P Limited, Cisco,
    devolo, ZyXEL, D-Link, Logitech, NETGEAR and Western Digital.

    HomePlug node shipments will surpass 30 million units by 2014.
HomePlug Product by Logitech




 Logitech HD Powerline 200 Adapter   The video monitoring system uses electrical
 Max speed is 200M, $69.99 online    wiring and outlets and existing Internet
                                     connection - without the hardwired approach of
                                     some traditional security companies.
HomePlug Product by D-Link
                              Features
                              •   Integrate WiFi (802.11n) and PLC
                                  (HomePlug AV)
                              •   Up to 200 Mbps through PowerLine
                                  Network
                              •   Easily connect and secure Home Network
                                  with push button security
                              •   Extend your existing wireless network
                                  coverage for Your Entire Home or Office
                              •   Plug & Play Installation
                              •   QoS Support to Prioritize Internet Traffic
                              •   Connect Computers, Game Consoles, or
                                  Media Players to the Web
                              •   Supports secure wireless encryption using
                                  WPA or WPA2
                              •   Fast Ethernet Ports for Wired Network
                                  Speeds

DHP-W306AV POWERLINE AV WIRELESS N EXTENDER                                    •   IEEE 802.3
• Turns power outlet into a network connection.                                •   IEEE 802.3u
• Extends wireless network to the corners of home without the                  •   IEEE 802.11b
  need for network cables.
                                                                               •   IEEE 802.11g
• No extra drilling and extra wiring required!
• $99.99 online                                                                •   IEEE 802.11n
                                                                               •   HomePlug AV
HomePlug Product by Loop




    Loop-G1701: Exceeds max speed of HomePlug AV 200M.
Smart Home Opportunities and Challenges
– Applications:
    – Home smart energy                      – Home automation
    – Health care                            – Telecom Services
    – Home security                          – Home entertainment
– Integrated Platforms to Emerge:
    – User-friendly system, product, and interfaces via seamless integration of
      technologies, e.g., control (INSTEON, ZigBee) and high-speed video (WiFi, HomePlug)
    – Common technology platforms supporting different equipment interfaces and
      interconnectivity protocols
    – Integration of mobile devices, embedded devices, application software, and Internet
      service platforms
    – New business models with full combination between technologies and human
      behavioral patterns
– Challenges:
    – Security and reliability               – Cost
    – protocol standardization               – Easy to install and use
    – Interoperability                       – Customer education
Summary: Smart Home Technologies

 1.   X10        How it gets started

 2.   INSTEON    Choice for electrical appliance

 3.   Z-Wave     Proprietary wireless

 4.   ZigBee     Open standard wireless

 5.   6LoWPAN    Future

 6.   HomePlug   High speed PLC

 7.   WiFi       High speed wireless
No Boundary, No Limitation




           Unmanned Drones flying high to focus on a target
THANKS!

George Wang
Director, America Tech-Center
Loop Telecom International
+1.630.877.0031
chowfei101@gmail.com
www.looptelecom.com

More Related Content

What's hot

What's hot (20)

Smart Home EEF
Smart Home EEFSmart Home EEF
Smart Home EEF
 
Smart home
Smart homeSmart home
Smart home
 
Smart home
Smart homeSmart home
Smart home
 
Smart home solution
Smart home solutionSmart home solution
Smart home solution
 
Smart house (Move to Easy Life)
Smart house (Move to Easy Life)Smart house (Move to Easy Life)
Smart house (Move to Easy Life)
 
Smart homes presentation
Smart homes presentation Smart homes presentation
Smart homes presentation
 
Smart homes
Smart homesSmart homes
Smart homes
 
Smart home
Smart homeSmart home
Smart home
 
Smart home
Smart homeSmart home
Smart home
 
The Design of Smart Home
The Design of Smart HomeThe Design of Smart Home
The Design of Smart Home
 
Smart Home Evolution
Smart Home EvolutionSmart Home Evolution
Smart Home Evolution
 
iot based home automation
iot based home automationiot based home automation
iot based home automation
 
Home Smart Home
Home Smart HomeHome Smart Home
Home Smart Home
 
Presentation Smart Home With Home Automation
Presentation Smart Home With Home AutomationPresentation Smart Home With Home Automation
Presentation Smart Home With Home Automation
 
Smart homes
Smart homesSmart homes
Smart homes
 
Smarthome
SmarthomeSmarthome
Smarthome
 
Arduino Smart Home Automation Controller
Arduino Smart Home Automation ControllerArduino Smart Home Automation Controller
Arduino Smart Home Automation Controller
 
Smart homes
Smart homesSmart homes
Smart homes
 
Home automation system
Home automation systemHome automation system
Home automation system
 
Business Information Systems - Smart Home Tech Talk
Business Information Systems - Smart Home Tech TalkBusiness Information Systems - Smart Home Tech Talk
Business Information Systems - Smart Home Tech Talk
 

Viewers also liked

Context Reasoning and Prediction in Smart Environments: the Home Manager case
Context Reasoning and Prediction in Smart Environments: the Home Manager caseContext Reasoning and Prediction in Smart Environments: the Home Manager case
Context Reasoning and Prediction in Smart Environments: the Home Manager caseEnrico Denti
 
The 2017 Smart Home Insider Survey
The 2017  Smart Home Insider Survey The 2017  Smart Home Insider Survey
The 2017 Smart Home Insider Survey NextMarket Insights
 
It's 2017, Where is my Smart Home?
It's 2017, Where is my Smart Home?It's 2017, Where is my Smart Home?
It's 2017, Where is my Smart Home?Jeff Katz
 
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligente
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligenteIoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligente
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligenteUSERADGENTS
 
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB Sabrina Delale
 
Smart Home technologies
Smart Home technologiesSmart Home technologies
Smart Home technologiesloggcity
 

Viewers also liked (9)

Context Reasoning and Prediction in Smart Environments: the Home Manager case
Context Reasoning and Prediction in Smart Environments: the Home Manager caseContext Reasoning and Prediction in Smart Environments: the Home Manager case
Context Reasoning and Prediction in Smart Environments: the Home Manager case
 
The 2017 Smart Home Insider Survey
The 2017  Smart Home Insider Survey The 2017  Smart Home Insider Survey
The 2017 Smart Home Insider Survey
 
It's 2017, Where is my Smart Home?
It's 2017, Where is my Smart Home?It's 2017, Where is my Smart Home?
It's 2017, Where is my Smart Home?
 
2013 smart home vf
2013 smart home vf2013 smart home vf
2013 smart home vf
 
Security systems for your smart home
Security systems for your smart home Security systems for your smart home
Security systems for your smart home
 
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligente
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligenteIoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligente
IoTeaTime #3 : Smart Home | De la maison connectée à la maison intelligente
 
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB
Smart Home • Sabrina Delale • Soutenance thèse pro MBA DMB
 
Smart Home technologies
Smart Home technologiesSmart Home technologies
Smart Home technologies
 
Presentation on home automation
Presentation on home automationPresentation on home automation
Presentation on home automation
 

Similar to Smart Home Tech Short

Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01
Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01
Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01Anhbaatar Aagii
 
BluetoothPPT.pdf
BluetoothPPT.pdfBluetoothPPT.pdf
BluetoothPPT.pdfPpupu
 
Low Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of ThingsLow Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of ThingsDuncan Purves
 
9-29-15 IEEE-CVT Presentation by EH-Final
9-29-15 IEEE-CVT Presentation by EH-Final9-29-15 IEEE-CVT Presentation by EH-Final
9-29-15 IEEE-CVT Presentation by EH-FinalEd Hightower
 
Application of Zigbee in Smart Home with Dynamic Routing Algorithm
Application of Zigbee in Smart Home with Dynamic Routing AlgorithmApplication of Zigbee in Smart Home with Dynamic Routing Algorithm
Application of Zigbee in Smart Home with Dynamic Routing AlgorithmNooria Sukmaningtyas
 
6-IoT protocol.pptx
6-IoT protocol.pptx6-IoT protocol.pptx
6-IoT protocol.pptxPratik Gohel
 
Wireless connectivity for iot
Wireless connectivity for iotWireless connectivity for iot
Wireless connectivity for iotSubramanyam Arige
 
Data_Processing_and_communication_bluetooth.pptx
Data_Processing_and_communication_bluetooth.pptxData_Processing_and_communication_bluetooth.pptx
Data_Processing_and_communication_bluetooth.pptx20CE112YASHPATEL
 
Low Power Wireless Sensor Network Technologies and Standards for the Internet...
Low Power Wireless Sensor Network Technologies and Standards for the Internet...Low Power Wireless Sensor Network Technologies and Standards for the Internet...
Low Power Wireless Sensor Network Technologies and Standards for the Internet...Duncan Purves
 
Wireless_Connectivity_BASIC_Linkedin
Wireless_Connectivity_BASIC_LinkedinWireless_Connectivity_BASIC_Linkedin
Wireless_Connectivity_BASIC_LinkedinRobert Russell
 
Internet of things Technology Review
Internet of things Technology ReviewInternet of things Technology Review
Internet of things Technology ReviewArt Garcia
 
Wirless Parsonal Area Networks.ppt
Wirless Parsonal Area Networks.pptWirless Parsonal Area Networks.ppt
Wirless Parsonal Area Networks.pptMunazza63
 
The Differences of between ZigBee and Bluetooth technologies
The Differences of between ZigBee and Bluetooth technologiesThe Differences of between ZigBee and Bluetooth technologies
The Differences of between ZigBee and Bluetooth technologiesCan KAYA
 
ZIP-and-IoT-Whitepaper[1]
ZIP-and-IoT-Whitepaper[1]ZIP-and-IoT-Whitepaper[1]
ZIP-and-IoT-Whitepaper[1]Sasi Nair
 
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)Ari Zoldan
 

Similar to Smart Home Tech Short (20)

Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01
Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01
Smarthometechshort 13304126815608-phpapp01-120228010616-phpapp01
 
Bluetooth
BluetoothBluetooth
Bluetooth
 
BluetoothPPT.pdf
BluetoothPPT.pdfBluetoothPPT.pdf
BluetoothPPT.pdf
 
Low Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of ThingsLow Power Wireless Technologies and Standards for the Internet of Things
Low Power Wireless Technologies and Standards for the Internet of Things
 
9-29-15 IEEE-CVT Presentation by EH-Final
9-29-15 IEEE-CVT Presentation by EH-Final9-29-15 IEEE-CVT Presentation by EH-Final
9-29-15 IEEE-CVT Presentation by EH-Final
 
Application of Zigbee in Smart Home with Dynamic Routing Algorithm
Application of Zigbee in Smart Home with Dynamic Routing AlgorithmApplication of Zigbee in Smart Home with Dynamic Routing Algorithm
Application of Zigbee in Smart Home with Dynamic Routing Algorithm
 
6-IoT protocol.pptx
6-IoT protocol.pptx6-IoT protocol.pptx
6-IoT protocol.pptx
 
Bluetooth.ppt
Bluetooth.pptBluetooth.ppt
Bluetooth.ppt
 
Wireless connectivity for iot
Wireless connectivity for iotWireless connectivity for iot
Wireless connectivity for iot
 
Data_Processing_and_communication_bluetooth.pptx
Data_Processing_and_communication_bluetooth.pptxData_Processing_and_communication_bluetooth.pptx
Data_Processing_and_communication_bluetooth.pptx
 
RUGGEDCOM WIN5100 wimax
RUGGEDCOM WIN5100 wimaxRUGGEDCOM WIN5100 wimax
RUGGEDCOM WIN5100 wimax
 
Low Power Wireless Sensor Network Technologies and Standards for the Internet...
Low Power Wireless Sensor Network Technologies and Standards for the Internet...Low Power Wireless Sensor Network Technologies and Standards for the Internet...
Low Power Wireless Sensor Network Technologies and Standards for the Internet...
 
Wireless_Connectivity_BASIC_Linkedin
Wireless_Connectivity_BASIC_LinkedinWireless_Connectivity_BASIC_Linkedin
Wireless_Connectivity_BASIC_Linkedin
 
Wireless LAN
Wireless LANWireless LAN
Wireless LAN
 
Main document
Main documentMain document
Main document
 
Internet of things Technology Review
Internet of things Technology ReviewInternet of things Technology Review
Internet of things Technology Review
 
Wirless Parsonal Area Networks.ppt
Wirless Parsonal Area Networks.pptWirless Parsonal Area Networks.ppt
Wirless Parsonal Area Networks.ppt
 
The Differences of between ZigBee and Bluetooth technologies
The Differences of between ZigBee and Bluetooth technologiesThe Differences of between ZigBee and Bluetooth technologies
The Differences of between ZigBee and Bluetooth technologies
 
ZIP-and-IoT-Whitepaper[1]
ZIP-and-IoT-Whitepaper[1]ZIP-and-IoT-Whitepaper[1]
ZIP-and-IoT-Whitepaper[1]
 
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)
Spotwave Z1900 PCS 1900 MHz Cell Phone Signal Booster (Quantum-Wireless.com)
 

Smart Home Tech Short

  • 1. SMART HOME TECHNOLOGIES George Wang 2012
  • 2. Smart Home Applications By 2020, 50 billion devices will be connected to the Internet
  • 3. Smart Home and Smart Phone Low Speed Control High Speed Video
  • 4. Smart Home Technologies 1. X10 2. INSTEON 3. Z-Wave 4. ZigBee 5. 6LoWPAN 6. HomePlug
  • 5. X10 Basics • Definition: – X10 is an international and open industry standard for communication among electronic devices used for home automation, also known as domotics. It primarily uses power line wiring for signaling and control. A wireless radio based protocol transport is also defined. • Working Principles: – Household electrical wiring is used to send digital data between X10 devices. This digital data is encoded onto a 120 kHz carrier which is transmitted as bursts (1ms) during the relatively quiet zero crossings of the 50 or 60 Hz AC. One bit is transmitted at each zero crossing. Each bit is transmitted 3 times. • History: – X10 was developed in 1975 by Pico Electronics of Glenrothes, Scotland – X10 (USA) Inc. was formed in the 1985
  • 6. X10 Protocol – When the system is installed, each controlled device is configured to respond to one of the 256 possible addresses (16 house codes × 16 unit codes); each device reacts to commands specifically addressed to it, or possibly to several broadcast commands. – A message that says "select code A3", followed by "turn on", tells the unit "A3" to turn on its device. Several units can be addressed simultaneously. For example, "select A3", "select A15", "select A4", and finally, "turn on", causes units A3, A4, and A15 to all turn on.
  • 7. X10 Advantages and Limitations Inexpensive Commands getting No new wiring is required Relatively slow Simple to install Limited functionality 100's of compatible Interference and lack of products encryption Time proven -- it has been Control only up to 256 around for over 30 years lights and appliances It is estimated that X10 compatible products can be found in over 10 million American homes.
  • 8. INSTEON — Ultimate Reliability – INSTEON is a dual-band mesh home area networking topology employing AC- power lines and a radio-frequency (RF) protocol to communicate with devices. – INSTEON was developed by SmartLabs Technology, a division of SmartLabs, Inc. since 1992. – It enables devices, such as light switches, thermostats, motion sensors, etc. to be networked together using the power line, radio frequency (RF), or both. – All INSTEON devices are peers. Each device can transmit, receive, and repeat any message of the INSTEON protocol, without requiring a master controller or routing software. – INSTEON-enabled devices will work with legacy X10 products. INSTEON driver chip sets simply include the capability of transmitting, receiving, and responding to X10 power line messages in addition to INSTEON messages. – Every INSTEON device has a unique 24 bit address, all transmissions are encoded onto the network. – SmartLabs offer's Developer Kits which allows communications between the product and the INSTEON network. The interface can be an internal INSTEON chip, a small PC board or an external plug-in adapter with I/O ports connecting to the host product.
  • 9. INSTEON Packet Timing vs. X10 All INSTEON powerline packets contain 24 bits. An INSTEON powerline packet lasts 1.823 milliseconds. INSTEON packets are transmitted during the zero crossing quiet time to minimize the effect of powerline noise. INSTEON packets begin 800 microseconds before a zero crossing and last until 1023 microseconds after the zero crossing.
  • 10. INSTEON Device Communication Connect to PC RF Bridges Two Phases At the main electrical junction box to the home, the single three- wire 220 VAC powerline is split into a pair of two-wire 110 VAC powerlines, known as Phase 1 and Phase 2. Phase 1 wiring usually powers half the circuits in the home, and Phase 2 powers the other half. Compatible to X10
  • 11. How does INSTEON Compare with ZigBee, Bluetooth, HomePlug, X10? • Bluetooth - Bluetooth is designed as an ad-hoc network technology and as such is NOT designed to be a home control networking technology. • HomePlug - INSTEON is compatible with HomePlug but focused on different applications. HomePlug is tuned to broadband applications while INSTEON is focused on home control. INSTEON is a more cost-effective technology for home management. • ZigBee/Z-Wave - INSTEON is not limited to a single physical network technology and does not require a network controller. It supports both RF and Powerline, enabling a broader set of applications. INSTEON technology is also a more cost- effective and reliable technology allowing it to be integrated into a broader range of products. • X10 - INSTEON is a more robust and reliable network yet, it is priced similarly and is compatible with industry standard X10 devices.
  • 12. Z-Wave — Wireless Solution – Z-Wave is a proprietary wireless communications protocol designed for home automation, specifically to remote control applications in residential and light commercial environments. – The technology uses a low-power RF radio embedded or retrofitted into home electronics devices and systems, such as lighting, home access control, entertainment systems and household appliances. – The Z-Wave Alliance is an international consortium of 160 independent manufacturers that provide interoperable Z-Wave enabled devices. – Bandwidth: 9,600 bit/s or 40 kbit/s, fully interoperable – Range: Approximately 30 meters assuming "open air" conditions, with reduced range indoors depending on building materials. – Frequency band: uses the sub-1GHz ISM band – Z-Wave's ability to command multiple devices as a unified event makes it well suited for home audio and video applications. No AC, No Wire
  • 13. Z-Wave Chip and Applications • Z-Wave is available as Z-Wave Single Chip solutions by Sigma Designs (Zensys). • Protocol stack is embedded in the chips. • Flash memory and blueprints of the PCB circuitry are available to the manufacturer/OEM for their applications. Compatibility is very GOOD!
  • 14. Sub-1GHz Frequency Coverage by Z-Wave Frequency differs from country to country. It is less crowded compared to 2.4GHz band.
  • 15. ZigBee — low-cost, low-power, wireless mesh network – ZigBee is a specification for a suite of high level communication protocols using small, low-power digital radios based on an IEEE 802.15.4 standard for personal area networks that was finalized in 2006. – Applications include wireless light switches, electrical meters with in-home-displays, and other consumer and industrial equipment that requires short-range wireless transfer of data at relatively low rates. – ZigBee specification is intended to be simpler and less expensive than other WPANs, such as Bluetooth. – ZigBee is targeted at radio-frequency (2.4 GHz) applications that require a low data rate, long battery life, and secure networking. – The defined rate of 250 kbps is best suited for periodic or intermittent data or a single signal transmission from a sensor or input device. – The wireless IEEE 802.15.4 ZigBee RF4CE standard is replacing infrared applications such as remote controls. No AC, No Wire
  • 16. ZigBee Networking ZigBee uses standard networking terms for data transmission, as defined by IEEE. • Data Request (transmit data) • Data Confirm (acknowledgment of a data request) • Data Indication (receive data) ZigBee Latency ZigBee Data Requests ZigBee Endpoints Example
  • 17. IEEE 802.15.4 Channel • Channel numbers 0 through 10 are defined • ZigBee uses 2.4 GHz, WiFi, cordless by the sub-1 GHz 802.15.4 radios, but phones, and microwave ovens also exit in ZigBee doesn't run on the sub-1 GHz radios. this band. ZigBee nodes can only send data requests to other nodes on the same network. A single ZigBee network is called a Personal Area Network (PAN). ZigBee PANs are formed by ZigBee Coordinators (ZCs). Only ZCs may form a PAN. The other ZigBee node types, ZigBee Routers (ZRs) and ZigBee End-Devices (ZEDs) may join a network, but do not form one themselves. ZigBee does not typically change channels. It is defined by the Application Profile. A ZigBee device must scan all channels, and join the network on one channel. If the profile is a private profile, it may choose to limit the device to one or any set of the 16 available channels.
  • 18. ZigBee Applications - Profiles • Public profiles are designed for products • Manufacturer-specific profiles (MSPs) from one manufacturer (X) to work, right allow the OEM to define any set of clusters, out-of-the-box, with products from endpoints, and devices. another manufacturer (Y). • ZigBee places no restrictions on data type as long as data rate remain reasonable. • Play/Pause • Skip Forward • Skip Backward • Volume Up • Volume Down iPod Controller Concept
  • 19. How do ZigBee Compares with Z-Wave, X10 and INSTEON ? INSTEON: Moderately priced, highly reliable Dual-mesh RF & Powerline technology. However, INSTEON was mainly designed for 110V/60Hz AC power. X10: Inexpensive but lacks the robustness, flexibility and reliability required by home-control applications ZigBee & Z-Wave: Single-band (RF-only) wireless networks that require a network controller. Z-Wave is proprietary while ZigBee is open standard.
  • 20. ZigBee for Home Utility Management • Zigbee provides communication and data exchange between the utility and home area networks • Data can be accessed via the Internet
  • 21. ZigBee for Further Improvement ZigBee was started in 2003 based on IEEE 802.15.4 features, adding ad hoc networking, service discovery and application protocol profiles. ZigBee is a protocol specification from an industry special interest group called the ZigBee Alliance. Leading provider is Control4. ZigBee has been successful for multi-vendor ad hoc applications such as home automation. ZigBee has several down-sides, including reliance on a single wireless link technology, tight coupling with application profiles, along with Internet integration and scalability limitations. Zigbee product falls short when comparing to INSTEON, X10, and Z-Wave in home automation and DYI market. In 2009 the ZigBee Alliance announced that ZigBee will start to integrate IETF standards such as 6LoWPAN and ROLL into its future specifications. ZigBee Building Automation ZigBee Health Care ZigBee Home Automation ZigBee Retail Services ZigBee Smart Energy ZigBee Telecom Services
  • 22. 6LoWPAN – The Internet of Things Technology – 6LoWPAN is an acronym of IPv6 over Low power Wireless Personal Area Networks. – 6LoWPAN is the name of a working group in the Internet area of the IETF. – It has defined encapsulation and header compression mechanisms that allow IPv6 packets to be sent to and received from over IEEE 802.15.4 based wireless networks. – It originated from the idea that "IP could and should be applied even to the smallest devices and that low-power devices with limited processing capabilities should be able to participate in the Internet of Things.” – The vision behind the Internet of Things is that embedded devices, also called smart objects, are universally becoming IP enabled, and an integral part of the Internet. Google’s android light bulb runs 6LoWPAN
  • 23. 6LoWPAN – Issues from IPv6 to IEEE802.15.4 – Adapting the packet sizes of the two networks IPv6 requires MTU (Maximum Transmission Unit) to be at least 1280 Bytes. IEEE802.15.4's standard packet size is 127 octets. – Address resolution IPv6: 128 bit IP addresses in a hierarchical manner IEEE 802.15.4: IEEE 64 bit extended addresses or 16 bit addresses that are unique within a PAN. There is also a PAN-ID for a group of collocated IEEE802.15.4 devices. – Differing device designs and focus IEEE802.15.4: cost, power consumption, code-size optimization , installation IP: networking, high speed, algorithms, interoperability – Addressing management mechanisms The management of addresses for devices that communicate across the two dissimilar domains of IPv6 and IEEE802.15.4 is cumbersome, if not exhaustingly complex. – Device and service discovery Since IP-enabled devices may require the formation of ad hoc networks, the current state of neighboring devices and the services hosted by such devices will need to be known. IPv6 neighbor discovery extensions is an internet draft proposed as a contribution in this area.
  • 24. 6LoWPAN Related Standards and Alliances Note: In 2008 a new IETF working group was formed, Routing over Low-power and Lossy Networks (ROLL)
  • 25. 6LoWPAN vs. ZigBee – The weakness of 6LoWPAN is that they do NOT yet have a real market for the protocol at the moment. – The main problem lies in the fact that they don't have any standards in place to govern device interoperability of each wireless sensor node. – Zigbee has the device interoperability specification and testing infrastructure in place. – ZigBee has access to two potentially large markets that are gateways into the consumer home, i.e., wireless sensor (smart meters) and remote control. – 6LoWPAN has access to a huge amount of infrastructure, a large pool of protocol developers, and TCP/IP which is the universal language of communications all over the world. – Big companies such as Cisco, Microsoft, Google, and Intel may jump in support 6LoWPAN. This would be on top of companies like Sony, Samsung, Panasonic, and Philips that came along with RF4CE.
  • 26. Power Line Communications (PLC) for Home – X10 and INSTEON are PLC technologies for home control (narrowband) using the electrical power wiring within a home for home automation – HomePlug is PLC technology used to interconnect home computers and peripherals, and home entertainment devices that have an Ethernet port. It allows devices to share video and data without the inconvenience of running dedicated network cables. – IEEE 1901 includes HomePlug AV as a baseline technology, so any IEEE 1901 products are fully interoperable with HomePlug AV, HomePlug Green PHY or the forthcoming HomePlug AV2 specification. – Other standards specifications for power line home networking include the Universal Powerline Association, the HD-PLC Alliance and the ITU-T’s G.hn and HomePNA specifications.
  • 27. HomePlug – HomePlug is the family name for various power line communications specifications that support networking over existing home electrical wiring, targeting broadband applications such as in-home distribution of low data rate IPTV, gaming, and Internet content. – The first HomePlug specification, HomePlug 1.0, was released in June 2001. – HomePlug AV specification, which was released in 2005, increased physical layer (PHY) peak data rates from 14 to 200 Mbit/s. – HomePlug AV2, finalized in Jan. 2012, offers Gigabit speed at the physical layer and 600Mbs+ at the MAC layer. with products expected to ship in 2013. – The HomePlug Green PHY (10Mbps) specification was released in June 2010 and targets Smart Energy and Smart Grid applications – There are 4 chip vendors that are shipping interoperable HomePlug AV chipsets with IEEE 1901 support (Broadcom, Qualcomm Atheros, Sigma Designs, and SPiDCOM) – Major HomePlug AV product vendors are ATRIE Technology P Limited, Cisco, devolo, ZyXEL, D-Link, Logitech, NETGEAR and Western Digital. HomePlug node shipments will surpass 30 million units by 2014.
  • 28. HomePlug Product by Logitech Logitech HD Powerline 200 Adapter The video monitoring system uses electrical Max speed is 200M, $69.99 online wiring and outlets and existing Internet connection - without the hardwired approach of some traditional security companies.
  • 29. HomePlug Product by D-Link Features • Integrate WiFi (802.11n) and PLC (HomePlug AV) • Up to 200 Mbps through PowerLine Network • Easily connect and secure Home Network with push button security • Extend your existing wireless network coverage for Your Entire Home or Office • Plug & Play Installation • QoS Support to Prioritize Internet Traffic • Connect Computers, Game Consoles, or Media Players to the Web • Supports secure wireless encryption using WPA or WPA2 • Fast Ethernet Ports for Wired Network Speeds DHP-W306AV POWERLINE AV WIRELESS N EXTENDER • IEEE 802.3 • Turns power outlet into a network connection. • IEEE 802.3u • Extends wireless network to the corners of home without the • IEEE 802.11b need for network cables. • IEEE 802.11g • No extra drilling and extra wiring required! • $99.99 online • IEEE 802.11n • HomePlug AV
  • 30. HomePlug Product by Loop Loop-G1701: Exceeds max speed of HomePlug AV 200M.
  • 31. Smart Home Opportunities and Challenges – Applications: – Home smart energy – Home automation – Health care – Telecom Services – Home security – Home entertainment – Integrated Platforms to Emerge: – User-friendly system, product, and interfaces via seamless integration of technologies, e.g., control (INSTEON, ZigBee) and high-speed video (WiFi, HomePlug) – Common technology platforms supporting different equipment interfaces and interconnectivity protocols – Integration of mobile devices, embedded devices, application software, and Internet service platforms – New business models with full combination between technologies and human behavioral patterns – Challenges: – Security and reliability – Cost – protocol standardization – Easy to install and use – Interoperability – Customer education
  • 32. Summary: Smart Home Technologies 1. X10 How it gets started 2. INSTEON Choice for electrical appliance 3. Z-Wave Proprietary wireless 4. ZigBee Open standard wireless 5. 6LoWPAN Future 6. HomePlug High speed PLC 7. WiFi High speed wireless
  • 33. No Boundary, No Limitation Unmanned Drones flying high to focus on a target
  • 34. THANKS! George Wang Director, America Tech-Center Loop Telecom International +1.630.877.0031 chowfei101@gmail.com www.looptelecom.com