SlideShare a Scribd company logo
1 of 169
Download to read offline
Arthur CHARPENTIER - École d'été EURIA.




       mesures de risques et dépendance
                              Arthur Charpentier
            Université de Rennes 1 & École Polytechnique
                           arthur.charpentier@univ-rennes1.fr
                   http://blogperso.univ-rennes1.fr/arthur.charpentier/index.php/




                                                                                    1
Arthur CHARPENTIER - École d'été EURIA.



    3                                                0.9




                                          V (rank of Y)
Y




                                                     0.4
 -1
                             (X i,Y i)

                                                                                                      (U i,V i)




        -3      -1       1          3                                    0.2            0.5     0.8
                     X                                                          U (rank of X)



                                                              Density of the copula




                                                           Isodensity curves of the density




                                                                                                                  2
Arthur CHARPENTIER - École d'été EURIA.




                                        Agenda
 •   General introduction

Modelling correlated risks
 •   A short introduction to copulas

 •   Quantifying dependence

 •   Statistical inference

 •   Agregation properties




                                                 3
Arthur CHARPENTIER - École d'été EURIA.




                                        Agenda
 •   General introduction

Modelling correlated risks
 •   A short introduction to copulas

 •   Quantifying dependence

 •   Statistical inference

 •   Agregation properties




                                                 4
Arthur CHARPENTIER - École d'été EURIA.


          Some references on large and correlated risks
Rank  , J. (2006). Copulas: From Theory to Application in Finance. Risk Book ,

Nelsen  , R. (1999,2006). An introduction to copulas. Springer Verlag ,

Cherubini   , U.,   Luciano    , E. &    Vecchiato, W. (2004). Copula Methods in

Finance. Wiley,

Beirlant   , J.,   Goegebeur     , Y.,   Segers, J. &   Teugels
                                                              , J. (2004). Statistics of

Extremes: Theory and Applications. Wiley,

McNeil   , A.   Frey , R., &   Embrechts     , P. (2005). Quantitative Risk

Management: Concepts, Techniques, and Tools. Princeton University Press,




                                                                                     5
Arthur CHARPENTIER - École d'été EURIA.




                                        Agenda
 •   General introduction

Modelling correlated risks
 •   A short introduction to copulas

 •   Quantifying dependence

 •   Statistical inference

 •   Agregation properties




                                                 6
Arthur CHARPENTIER - École d'été EURIA.

                Copulas, an introduction (in dimension 2)
Denition 1. A copula C is a joint distribution function on [0, 1]2 , with uniform
margins on [0, 1].
Set   C(u, v) = P(U ≤ u, V ≤ v),           where      (U, V )    is a random pair with uniform

margins.

C   is a distribution function on         [0, 1]2 ,   and thus         C(0, v) = C(u, 0) = 0, C(1, 1) = 1.
Furthermore      C   is   increasing :   since   P    is a positive measure, for all                     u1 ≤ u2    and

v1 ≤ v2 ,
                                                                                Copula, positive area




                                                           1.0
    P(u1  U ≤ u2 , v1  V ≤ v2 ) ≥ 0,

                                                           0.8
                                                           0.6
    thus
                                                           0.4
    C(u2 , v2 ) − C(u1 , v2 )
                                                           0.2




    −C(u2 , v1 ) + C(u1 , v1 ) ≥ 0.
                                                           0.0




                                                                 0.0      0.2       0.4      0.6        0.8   1.0




                                                                                                                      7
Arthur CHARPENTIER - École d'été EURIA.




C   has uniform margins, and thus


                  C(u, 1) = P(U ≤ u, V ≤ 1) = P(U ≤ u) = u          on   [0, 1].

Proposition 2.   C is a copula if and only if C(0, v) = C(u, 0) = 0, C(u, 1) = u
and C(1, v) = v for all u, v , with the following 2-increasingness property
                   C(u2 , v2 ) − C(u1 , v2 ) − C(u2 , v1 ) + C(u1 , v1 ) ≥ 0,

for any u1 ≤ u2 and v1 ≤ v2 .




                                                                                   8
Arthur CHARPENTIER - École d'été EURIA.



                                                         Borders of the copula function


          !0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4




                                                                                                                                         1.2
                                                                                                                                   1.0
                                                                                                                             0.8
                                                                                                                       0.6
                                                                                                                 0.4
                                                                                                           0.2
                                                                                                     0.0
                                                                                                 !0.2
                               !0.2              0.0   0.2   0.4   0.6   0.8   1.0   1.2   1.4




       Figure 1: Value of the copula on the border of the unit square.



                                                                                                                                               9
Arthur CHARPENTIER - École d'été EURIA.



              Fonction de répartition à marges uniformes


          Z




                                                    Y
                         X




                   Figure 2: Graphical representation of a copula.



                                                                     10
Arthur CHARPENTIER - École d'été EURIA.




If   C   is twice dierentiable, one can dene its density as

                                               ∂ 2 C(u, v)
                                     c(u, v) =             .
                                                  ∂u∂v




                                                                11
Arthur CHARPENTIER - École d'été EURIA.



              Densité d’une loi à marges uniformes

         z




                      x                          x




                                   Figure 3: Density of a copula.



                                                                    12
Arthur CHARPENTIER - École d'été EURIA.


            Fonction de répartition à marges uniformes   Densité d’une loi à marges uniformes




            Fonction de répartition à marges uniformes   Densité d’une loi à marges uniformes




                    Figure 4: Distribution functions and densities.



                                                                                                13
Arthur CHARPENTIER - École d'été EURIA.


            Fonction de répartition à marges uniformes   Densité d’une loi à marges uniformes




            Fonction de répartition à marges uniformes   Densité d’une loi à marges uniformes




                    Figure 5: Distribution functions and densities.



                                                                                                14
Arthur CHARPENTIER - École d'été EURIA.


                                  Sklar's theorem
Theorem 3. (Sklar) Let C be a copula, and FX and FY two marginal
distributions, then F (x, y) = C(FX (x), FY (y)) is a bivariate distribution
function, with F ∈ F(FX , FY ).
Conversely, if F ∈ F(FX , FY ), there exists C such that
F (x, y) = C(FX (x), FY (y)). Further, if FX and FY are continuous, then C is
unique, and given by
             C(u, v) = F (FX (u), FY (v)) for all (u, v) ∈ [0, 1] × [0, 1]
                           −1      −1


We will then dene the copula of F , or the copula of (X, Y ).
In that case, the copula of   (X, Y )   is the distribution function of   (FX (X), FY (Y )).
Proposition 4. If (X, Y ) has copula C , the copula of (g(X), h(Y )) is also C for
any increasing functions g and h.


                                                                                        15
Arthur CHARPENTIER - École d'été EURIA.

             Copulas, an introduction (in dimension d ≥ 2)
Denition 5. A copula C is a joint distribution function on [0, 1]d , with
uniform margins on [0, 1].
Let   U = (U1 , ..., Ud )   denote a random pair with uniform margins.

C is a distribution function on [0, 1]d ,          and thus      C(u) = 0          if   ui = 0   for some

i ∈ {1, . . . , d}, and C(1) = 1.
Furthermore     C satises some increasing property                    since   P   is a positive measure

(for all   0 ≤ u ≤ v ≤ 1, P(u  U ≤ v) ≥ 0), thus

                                                sign(z)C(z)    ≥ 0,
                                            z

where the sum is taken over all vertices of               [u × v],      and where sign(z) is          +1    if

zi = ui    for an even number of        i   (and   −1   otherwise, see Figure 6). And nally                     C
has uniform margins, and thus


                             C(1, . . . , 1, ui , 1, . . . , 1) = ui   on   [0, 1].

                                                                                                                 16
Arthur CHARPENTIER - École d'été EURIA.


                              Increasing functions in dimension 3




                 Figure 6: The notion of      3-increasing    functions.




                                                                           17
Arthur CHARPENTIER - École d'été EURIA.

Theorem 6. (Sklar) Let C be a copula, and F1 , . . . , Fd be d marginal
distributions, then F (x) = C(F1 (x1 ), . . . , Fd (xd )) is a distribution function, with
F ∈ F(F1 , . . . , Fd ).
Conversely, if F ∈ F(F1 , . . . , Fd ), there exists C such that
F (x) = C(F1 (x1 ), . . . , Fd (xd )). Further, if the Fi 's are continuous, then C is
unique, and given by
                  C(u) = F (F1 (u1 ), . . . , Fd (ud )) for all (ui ) ∈ [0, 1]
                             −1                −1


We will then dene the copula of F , or the copula of X .
In that case, the copula of         (X = (X1 , . . . , Xd )   is the distribution function of

U = (F1 (X1 ), . . . , Fd (Yd )).
Again, if   C   is dierentiable, one can dene its density,

                                                    ∂ d C(u1 , . . . , ud )
                              c(u1 , . . . , ud ) =                         .
                                                        ∂u1 . . . ∂ud


                                                                                                18
Arthur CHARPENTIER - École d'été EURIA.




          Copulas in high dimension, a dicult problem
It is usually dicult to represent dependence in dimension         d  2,   and it is

usually studied by pairs.

In dimension    d = 2,   one can dene the following Fréchet class     F(FX , FY , FZ )
dened by its marginal distributions. But it can also be interested to study

F(FXY , FXZ , FY Z )     dened by it paired distributions.

One of the problem that arises is the compatibility of marginals: one has to

verify that

                          CXY (x, y) =      CX|Z (x|z)CY |Z (y|z)dz,

for instance.




                                                                                          19
Arthur CHARPENTIER - École d'été EURIA.




                                                                                                      1.0
                                                                                                      0.8
               1.0




                                                                                                      0.6
               0.8




                                                                                                  p
               0.6




                                                                                                      0.4
                                                                                            1.0
               0.4




                                                                                      0.8




                                                                                                      0.2
                                                                                0.6
               0.2




                                                                          0.4
                                                                   0.2




                                                                                                      0.0
               0.0




                                                             0.0
                 0.0   0.2         0.4   0.6    0.8    1.0

                                                                                                            0.0        0.2   0.4      0.6   0.8   1.0

                                                                                                                             Composante 1




                                                                                                      1.0
         1.0




                                                                                                      0.8
         0.8




                                                                                                      0.6
         0.6
     p




                                                                                                  p

                                                                                                      0.4
         0.4
         0.2




                                                                                                      0.2
         0.0




                 0.0         0.2          0.4         0.6                0.8            1.0           0.0   0.0        0.2   0.4      0.6   0.8   1.0

                                           Composante 2                                                                      Composante 3




                 Figure 7: Scatterplot in dimension                                                               3   including projections.



                                                                                                                                                        20
Arthur CHARPENTIER - École d'été EURIA.


                               Copulas and ranks
The copula of  X = (X1 , . . . , Xd )   is the distribution function of

U = (F1 (X1 ), . . . , Fd (Yd )).
In practice, since marginal distributions are unknown, the idea is to substitute

empirical distribution function,

                                                                            n
                   #{observations Xi,j 's lower        than   xi }     1
        Fi (xi ) =                                                   =           1(Xi,j ≤ xi ).
                           #{observations }                            n   j=1


Note that
                                                                           n
              #{observations Xi,j 's lower than Xi,j0 }   1                                          Ri,j0
Fi (Xi,j0 ) =                                           =                       1(Xi,j   ≤ Xi,j0 ) =       ,
                        #{observations }                  n            j=1
                                                                                                      n

where   Ri,j0   denotes the rank of   Xi,j0   within   {Xi,1 , ..., Xi,n }.
On a statistical point of view, studying the copula means                  studying ranks.

                                                                                                   21
Arthur CHARPENTIER - École d'été EURIA.


                                                 Scatterplot of (X,Y)                                                                       Scatterplot of the ranks of (X,Y)




                            9.0




                                                                                                                           20
                            8.5
                            8.0




                                                                                                                           15
                                                                                                Ranks of the Yi’s
                            7.5
      Y (raw data)




                                                                                                                           10
                            7.0
                            6.5




                                                                                                                           5
                            6.0
                            5.5




                                  2.5   3.0    3.5      4.0     4.5        5.0     5.5   6.0                                                  5             10               15          20

                                                        X (raw data)                                                                                 Ranks of the Xi’s




                                    Scatterplot of the ranks of (X,Y), divided by n                                              Scatterplot o+ ,-,/0, t1e copula!t3pe tran+orm o+ ,6,70
                            1.0




                                                                                                                           1.0
                                                                                                                           0.8
                            0.8




                                                                                                Vi=Ranks of the Yi’s/n+1
      Ranks of the Yi’s/n




                                                                                                                           0.6
                            0.6




                                                                                                                           0.4
                            0.4




                                                                                                                           0.2
                            0.2




                                                                                                                           0.0
                                         0.2         0.4         0.6             0.8      1.0                                      0.0      0.2       0.4         0.6             0.8    1.0

                                                     Ranks of the Xi’s/n                                                                          Ui=Ranks of the Xi’s/n+1




Figure 8: Copulas, ranks and parametric inference, from                                                                                                          (Xi , Yi )             to    (Ui , Vi ).


                                                                                                                                                                                                       22
Arthur CHARPENTIER - École d'été EURIA.

                            Some very classical copulas
  •   The independent copula        C(u, v) = uv = C ⊥ (u, v).
The copula is standardly denoted             Π, P   or   C ⊥,   and an independent version of
                                                                                       L
(X, Y )   will be denoted    (X ⊥ , Y ⊥ ).   It is a random vector such that      X⊥ = X      and
      L
Y⊥ =Y,       with copula    C ⊥.
In higher dimension,     C ⊥ (u1 , . . . , ud ) = u1 × . . . × ud    is the independent copula.

  •   The comonotonic copula        C(u, v) = min{u, v} = C + (u, v).
The copula is standardly denoted             M,   or   C +,   and an comonotone version of
                                                                                       L
(X, Y )   will be denoted    (X + , Y + ).   It is a random vector such that      X+ = X      and
      L
Y+ =Y,       with copula    C +.
(X, Y )   has copula   C+   if and only if there exists a strictly increasing function            h
                                                          L−1       −1
such that    Y = h(X),     or equivalently     (X, Y ) = (FX (U ), FY (U ))      where   U   is

U([0, 1]).

                                                                                                  23
Arthur CHARPENTIER - École d'été EURIA.

Note that for any       u, v

                 P(U ≤ u, V ≤ v)          = P({U ∈ [0, u]} ∩ {V ∈ [0, v]})
                                          ≤ min{P(U ∈ [0, u]), P(V ∈ [0, v])}

thus,     C(u, v) ≤ min{u, v} = C + (u, v).          Thus,       C+   is an upper bound for the set of

copulas.

In higher dimension,       C + (u1 , . . . , ud ) = min{u1 , . . . , ud }   is the comonotonic

copula.

  •   The contercomotonic copula            C(u, v) = max{u + v − 1, 0} = C − (u, v).
The copula is standardly denoted                W,   or   C −,   and an contercomontone version of
                                                                                            L
(X, Y )    will be denoted      (X − , Y − ).   It is a random vector such that        X− = X     and
      L
Y− =Y,        with copula      C −.
(X, Y )    has copula   C−     if and only if there exists a strictly decreasing function             h
                                                             L−1           −1
such that     Y = h(X),     or equivalently       (X, Y ) = (FX (1 − U ), FY (U ))        where   U   is

U([0, 1]).

                                                                                                   24
Arthur CHARPENTIER - École d'été EURIA.



Note that for any     u, v ,

P(U ≤ u, V ≤ v) =              P({U ∈ [0, u]} ∩ {V ∈ [0, v]})
                      =        P(U ∈ [0, u]) + P(V ∈ [0, v]) − P({U ∈ [0, u]} ∪ {V ∈ [0, v]})

thus, C(u, v) ≥ u + v − 1 since P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) ≤ 1, and since
C(u, v) ≥ 0, C(u, v) ≥ max{u + v − 1, 0} = C − (u, v). Thus, C − is a lower bound
for the set of copulas.

In higher dimension,    C − (u1 , . . . , ud ) = max{u1 + . . . + ud − (d − 1), 0} is not   a

copula: if   (X, Y ) and (X, Z) are countercomonotonic, (Y, Z) is necessarily
comonotonic - it is not possible to have all component highly negatively

correlated.

Anyway, it is still the best pointwise lower bound.




                                                                                            25
Arthur CHARPENTIER - École d'été EURIA.

        1




                                                                                                                1




                                                                                                                                                                                                                                0.8 1
                   nd
                  0.8




                                                                                                         0.2 0.4 0.6 0.8
                                                                                                                          la




                                                                                                                                                                                                                                 nd
                                                                                                        Independence copu
  Frechet lower bou




                                                                                                                                                                                                                Frechet upper bou
0 0.2 0.4 0.6




                                                                                                                                                                                                              0 0.2 0.4 0.6
                                                                                                                      0
                         0.8                                                                                                    0.8
                                                                                                                                                                                                                                         0.8
                                0.6                                                                                                   0.6
                                                                                            0.8                                                                                                   0.8                                           0.6
                                                                                                                                                                                                                                                                                                          0.8
                                      u_    0.4                                       0.6                                                   u_ 0.4                                          0.6
                                        2                                                                                                     2                                                                                                       u_ 0.4                                        0.6
                                                                                                                                                                                                                                                        2
                                                                          0.4                                                                                                   0.4   u_1
                                                  0.2                           u_1                                                                  0.2
                                                                                                                                                                                                                                                                0.2                     0.4
                                                                                                                                                                                                                                                                                              u_1
                                                              0.2                                                                                                   0.2
                                                                                                                                                                                                                                                                            0.2




                                                   Fréchet Lower Bound                                                                                     Independent copula                                                                                     Fréchet Upper Bound
1.0




                                                                                                        1.0




                                                                                                                                                                                                              1.0
0.8




                                                                                                        0.8




                                                                                                                                                                                                              0.8
0.6




                                                                                                        0.6




                                                                                                                                                                                                              0.6
0.4




                                                                                                        0.4




                                                                                                                                                                                                              0.4
0.2




                                                                                                        0.2




                                                                                                                                                                                                              0.2
0.0




                                                                                                        0.0




                                                                                                                                                                                                              0.0
                        0.0                 0.2         0.4         0.6               0.8         1.0                          0.0             0.2            0.4         0.6               0.8         1.0                             0.0               0.2         0.4         0.6               0.8         1.0




                               Scatterplot, Lower Fréchet!Hoeffding bound                                                      Scatterplot, Indepedent copula random generation                                                                Scatterplot, Upper Fréchet!Hoeffding bound
1.0




                                                                                                        1.0




                                                                                                                                                                                                              1.0
0.8




                                                                                                        0.8




                                                                                                                                                                                                              0.8
0.6




                                                                                                        0.6




                                                                                                                                                                                                              0.6
0.4




                                                                                                        0.4




                                                                                                                                                                                                              0.4
0.2




                                                                                                        0.2




                                                                                                                                                                                                              0.2
0.0




                                                                                                        0.0




                                                                                                                                                                                                              0.0
                        0.0                 0.2         0.4         0.6               0.8         1.0                          0.0             0.2            0.4         0.6               0.8         1.0                             0.0               0.2         0.4         0.6               0.8         1.0




                               Figure 9: Contercomontonce, independent, and comonotone copulas.


                                                                                                                                                                                                                                                                                                                26
Arthur CHARPENTIER - École d'été EURIA.



              Pitfalls on independence and comonotonicity
The following proposition is false,

Uncorrect Proposition 7. If X and Y are independent, if Y and Z are
independent, then X and Z are independent.
If


                         (X, Y, Z) = (1, 1, 1)       with probability   1/4,
                                         (1, 2, 1)   with probability   1/4,
                                         (3, 2, 3)   with probability   1/4,
                                         (3, 1, 3)   with probability   1/4,


then    X   and   Y   are independent, and     Y   and   Z   are independent, but   X = Z.



                                                                                             27
Arthur CHARPENTIER - École d'été EURIA.




                          X and Y independent                                     Y and Z independent                                     X and Z comonotonic
              4




                                                                      4




                                                                                                                              4
              3




                                                                      3




                                                                                                                              3
Component Y




                                                        Component Z




                                                                                                                Component Z
              2




                                                                      2




                                                                                                                              2
              1




                                                                      1




                                                                                                                              1
              0




                                                                      0




                                                                                                                              0
                  0   1            2            3   4                     0   1            2            3   4                     0   1            2            3   4

                              Component X                                             Component Y                                             Component X




                                  Figure 10: Mixing independence and comonotonicity.




                                                                                                                                                                    28
Arthur CHARPENTIER - École d'été EURIA.


              Pitfalls on independence and comonotonicity
The following proposition is false,

Uncorrect Proposition 8. If X and Y are comonotonic, if Y and Z are
comonotonic, then X and Z are comonotonic.
If


                         (X, Y, Z) = (1, 1, 1)       with probability   1/4,
                                         (1, 2, 3)   with probability   1/4,
                                         (3, 2, 1)   with probability   1/4,
                                         (3, 3, 3)   with probability   1/4,


then    X   and   Y   are comonotonic, and     Y   and   Z   are comonotonic, but   X   and   Z   are

independent.




                                                                                                  29
Arthur CHARPENTIER - École d'été EURIA.




                          X and Y comonotonic                                     Y and Z comonotonic                                     X and Z independent
              4




                                                                      4




                                                                                                                              4
              3




                                                                      3




                                                                                                                              3
Component Y




                                                        Component Z




                                                                                                                Component Z
              2




                                                                      2




                                                                                                                              2
              1




                                                                      1




                                                                                                                              1
              0




                                                                      0




                                                                                                                              0
                  0   1            2            3   4                     0   1            2            3   4                     0   1            2            3   4

                              Component X                                             Component Y                                             Component X




                                  Figure 11: Mixing independence and comonotonicity.




                                                                                                                                                                    30
Arthur CHARPENTIER - École d'été EURIA.


              Pitfalls on independence and comonotonicity
The following proposition is false,

Uncorrect Proposition 9. If X and Y are comonotonic, if Y and Z are
independent, then X and Z are independent.
If


                         (X, Y, Z) = (1, 1, 3)       with probability   1/4,
                                         (2, 1, 1)   with probability   1/4,
                                         (2, 3, 3)   with probability   1/4,
                                         (3, 3, 1)   with probability   1/4,


then    X   and   Y   are comonotonic, and     Y   and   Z   are independent, but   X   and   Z   are

anticomonotonic.




                                                                                                  31
Arthur CHARPENTIER - École d'été EURIA.




If


                         (X, Y, Z) = (1, 1, 1)       with probability   1/4,
                                         (2, 1, 3)   with probability   1/4,
                                         (2, 3, 1)   with probability   1/4,
                                         (3, 3, 3)   with probability   1/4,


then    X   and   Y   are comonotonic, and     Y   and   Z   are independent, but   X   and   Z   are

comonotonic.




                                                                                                  32
Arthur CHARPENTIER - École d'été EURIA.




                          X and Y comonotonic                                     Y and Z independent                                     X and Z comonotonic
              4




                                                                      4




                                                                                                                              4
              3




                                                                      3




                                                                                                                              3
Component Y




                                                        Component Z




                                                                                                                Component Z
              2




                                                                      2




                                                                                                                              2
              1




                                                                      1




                                                                                                                              1
              0




                                                                      0




                                                                                                                              0
                  0   1            2            3   4                     0   1            2            3   4                     0   1            2            3   4

                              Component X                                             Component Y                                             Component X




                                  Figure 12: Mixing independence and comonotonicity.




                                                                                                                                                                    33
Arthur CHARPENTIER - École d'été EURIA.


                     Elliptical (Gaussian and t) copulas
The idea is to extend the multivariate probit model,         Y = (Y1 , . . . , Yd ) with
marginal   B(pi )   distributions, modeled as     Yi = 1(Xi ≤ ui ), where X ∼ N (I, Σ).
 •   The Gaussian copula, with parameter              α ∈ (−1, 1),
                                     Φ−1 (u)    Φ−1 (v)
                     1                                          −(x2 − 2αxy + y 2 )
       C(u, v) =   √                                      exp                               dxdy.
                 2π 1 − α2        −∞           −∞                   2(1 − α2 )

Analogously the   t-copula is the distribution of (T (X), T (Y ))           where    T   is the   t-cdf,
and where   (X, Y ) has a joint t-distribution.
 •   The Student t-copula with parameter              α ∈ (−1, 1)   and   ν ≥ 2,
                                 t−1 (u)    t−1 (v)                                −((ν+2)/2)
                   1              ν          ν            x2 − 2αxy + y 2
     C(u, v) =   √                                     1+                                         dxdy.
               2π 1 − α2        −∞         −∞                2(1 − α2 )



                                                                                                    34
Arthur CHARPENTIER - École d'été EURIA.

                                   Archimedean copulas
                                Denition of Archimedean copulas

 •    Archimedian copulas         C(u, v) = φ−1 (φ(u) + φ(v)),     where   φ   is decreasing

      convex   (0, 1),   with   φ(0) = ∞ and φ(1) = 0.
Example 10. If φ(t) = [− log t]α , then C is Gumbel's copula, and if
φ(t) = t−α − 1, C is Clayton's. Note that C ⊥ is obtained when φ(t) = − log t.
                         How Archimedean copulas were introduced ?

1.   The frailty approach (      Oakes    (1989)).

Assume that      X   and   Y    are conditionally independent, given the value of an

heterogeneous component            Θ.   Assume further that


             P(X ≤ x|Θ = θ) = (GX (x))θ         and   P(Y ≤ y|Θ = θ) = (GY (y))θ

for some baseline distribution functions         GX   and   GY .
Then

                F (x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ))

                                                                                               35
Arthur CHARPENTIER - École d'été EURIA.


thus, since   X   and   Y   are conditionally independent,


                    F (x, y) = E(P(X ≤ x|Θ = θ) × P(Y ≤ y|Θ = θ))

and therefore


        F (x, y) = E (GX (x))Θ × (GY (y))Θ = ψ(− log GX (x) − log GY (y))

where   ψ   denotes the Laplace transform of         Θ,   i.e.   ψ(t) = E(e−tΘ ).   Since


                  FX (x) = ψ(− log GX (x))      and   FY (y) = ψ(− log GY (y))

and thus, the joint distribution of        (X, Y )   satises


                            F (x, y) = ψ(ψ −1 (FX (x)) + ψ −1 (FY (y))).

Example 11. If Θ is Gamma distributed, the associated copula is Clayton's. If
Θ has a stable distribution, the associated copula is Gumbel's.


                                                                                            36
Arthur CHARPENTIER - École d'été EURIA.




Consider two risks,    X    and   Y,   such that


              X|Θ = θG ∼ E(θG )        and   Y |Θ = θG ∼ E(θG )   are independent,


              X|Θ = θB ∼ E(θB )        and   Y |Θ = θB ∼ E(θB )   are independent,

(unobservable good (G) and bad (B ) risks).

The following gures start from          2   classes of risks, then   3,   and then a continuous

risk factor   θ ∈ (0, ∞).




                                                                                             37
Arthur CHARPENTIER - École d'été EURIA.



                  Conditional independence, two classes                          Conditional independence, two classes

         20




                                                                       3
                                                                       2
         15




                                                                       1
         10




                                                                       0
                                                                       !1
         5




                                                                       !2
                                                                       !3
         0




              0            5             10               15                !3      !2     !1      0      1      2       3




 Figure 13: Two classes of risks,                         (Xi , Yi )   and       (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))).


                                                                                                                             38
Arthur CHARPENTIER - École d'été EURIA.



                  Conditional independence, three classes                       Conditional independence, three classes




                                                                     3
         40




                                                                     2
         30




                                                                     1
                                                                     0
         20




                                                                     !1
         10




                                                                     !2
                                                                     !3
         0




              0       5     10      15     20     25        30             !3       !2     !1      0      1      2        3




Figure 14: Three classes of risks,                          (Xi , Yi )    and    (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))).


                                                                                                                              39
Arthur CHARPENTIER - École d'été EURIA.


                 Conditional independence, continuous risk factor              Conditional independence, continuous risk factor

           100




                                                                          3
                                                                          2
           80




                                                                          1
           60




                                                                          0
           40




                                                                          !1
           20




                                                                          !2
                                                                          !3
           0




                  0       20       40       60       80       100               !3     !2     !1      0      1       2      3




Figure 15: Continuous classes of risks,                             (Xi , Yi )   and        (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))).


                                                                                                                                  40
Arthur CHARPENTIER - École d'été EURIA.




2.   The survival approach: assume that there is a convex survival function      S,
with    S(0) = 1,   such that


                                P(X  x, Y  y) = S(x + y),

then the joint survival copula of       (X, Y )   is


                                     S(S −1 (u) + S −1 (v)).

Example 12. If S is the Pareto survival distribution, the associated copula is
Clayton's. If S is the Weibull survival distribution, the associated copula is
Gumbel's.




                                                                                      41
Arthur CHARPENTIER - École d'été EURIA.




3.   The use of Kendall's distribution function        K(t) = P(C(U, V ) ≤ t)   where

(U, V )   is a random pair with distribution       function C .

Then, for Archimedean copulas,

                                               φ (t)
                                 K(t) = t −          = t − λ(t),
                                               φ(t)
which can be inverted easily in

                                                      1
                                                           1
                               φ(t) = φ(t0 ) exp               dt ,
                                                     t0   λ(t)
for some    0  t0  1   and   0 ≤ u ≤ 1.




                                                                                        42
Arthur CHARPENTIER - École d'été EURIA.



                   Some more examples of Archimedean copulas


                     ψ(t)               range     θ
       (1)       1 (t−θ − 1)
                 θ
                                    [−1, 0) ∪ (0, ∞)             Clayton,   Clayton    (1978)

       (2)         (1 − t)θ              [1, ∞)
                    1−θ(1−t)
       (3)     log                      [−1, 1)                     Ali-Mikhail-Haq

                                                                 Gumbel               Hougaard
                        t
       (4)        (− log t)θ             [1, ∞)        Gumbel,              (1960),              (1986)

       (5)     − log e
                       −θt −1
                      e−θ −1
                                    (−∞, 0) ∪ (0, ∞)     Frank,   Frank   (1979),     Nelsen(1987)

       (6)   − log{1 − (1 − t)θ }        [1, ∞)            Joe,   Frank     (1981),   Joe(1993)

       (7)   − log{θt + (1 − θ)}         (0, 1]
       (8)
                    1−t                  [1, ∞)
                  1+(θ−1)t
       (9)     log(1 − θ log t)          (0, 1]            Barnett    (1980),   Gumbel    (1960)

      (10)      log(2t−θ − 1)            (0, 1]
      (11)       log(2 − tθ )           (0, 1/2]
      (12)        ( 1 − 1)θ              [1, ∞)
                    t
      (13)     (1 − log t)θ − 1          (0, ∞)
      (14)      (t−1/θ − 1)θ             [1, ∞)
      (15)       (1 − t1/θ )θ            [1, ∞)                  Genest  Ghoudi       (1994)

      (16)     ( θ + 1)(1 − t)           [0, ∞)
                 t




                                                                                                          43
Arthur CHARPENTIER - École d'été EURIA.




                   Some characterizations of Archimedean copula

                                                                         L
•   Frank copula is the only Archimedean such that               (U, V ) = (1 − U, 1 − V )
    (stability by symmetry),

•   Clayton copula is the only Archimedean such that               (U, V )   has the same

    copula as   (U, V )   given   (U ≤ u, V ≤ v)   (stability by truncature),

•   Gumbel copula is the only Archimedean such that                 (U, V ) has the same
    copula as   (max{U1 , ..., Un }, max{V1 , ..., Vn })   for   all n ≥ 1 (max-stability),




                                                                                              44
Arthur CHARPENTIER - École d'été EURIA.


                                       Extreme value copulas
 •   Extreme value copulas

                                                                        log u
                       C(u, v) = exp (log u + log v) A                                    ,
                                                                    log u + log v
     where   A   is a dependence function, convex on              [0, 1]   with   A(0) = A(1) = 1,   et


                           max{1 − ω, ω} ≤ A (ω) ≤ 1            for all    ω ∈ [0, 1] .

An alternative denition is the following:               C   is an extreme value copula if for all

z  0,
                                                          1/z        1/z
                                C(u1 , . . . , ud ) = C(u1 , . . . , ud )z .

Those copula are then called max-stable: dene the maximum componentwise of

a sample   X 1 , . . . , Xn ,   i.e.   Mi = max{Xi,1 , . . . , Xi,n }.



                                                                                                     45
Arthur CHARPENTIER - École d'été EURIA.



The joint distribution of       M   is


                            P(M ≤ x) = C(F1 (x1 , . . . , Fd (xd ))n ,

where   C   is the copula of the    X i 's.   Since   P(Mi ≤ xi ) = Fi (xi )n ,   it can be written


                   P(M ≤ x) = C(P(M1 ≤ x1 )1/n , . . . , P(Md ≤ xd )1/n )n .
             1/n         1/n
Thus, C(u1 , . . . , ud )n       is the copula of the      n   maximum componentwise from a

sample with copula C .

Example 13. : If A is constant (1 on [0, 1]), then X and Y are independent,
and if A(ω) = max {ω, 1 − ω}, X and Y are comonotonic. Gumbel's copula is
obtained if
                                                                 (
                               A(ω) = ((1 − ω)α + ω α + 1) 1/α),
for all 0 ≤ ω ≤ 1 and α ≥ 1.


                                                                                               46
Arthur CHARPENTIER - École d'été EURIA.


                           Pickands dependence function A




            1.0
            0.9
            0.8
            0.7
            0.6
            0.5




                  0.0        0.2          0.4   0.6   0.8      1.0




           Figure 16: Shape of Gumbel's dependence function   A(ω).


                                                                      47
Arthur CHARPENTIER - École d'été EURIA.

                How to construct much more copulas ?
                             Using geometric transformations

From a given copula     C,   cdf of random pair     (U, V ),   dene

 •   the copula of   (U, 1 − V ),

                               C(U,1−V ) (u, v) = u − C(u, 1 − v)

 •   the copula of   (1 − U, V ),

                               C(1−U,V ) (u, v) = v − C(1 − u, v)

 •   the copula of   (1 − U, 1 − V ),   the   rotated or survival copula,
                C(1−U,1−V ) (u, v) = C ∗ (u, v) = u + v − 1 + C(1 − u, 1 − v)

Note that if   P(X ≤ x, Y ≤ y) = C(P(X ≤ x), P(Y ≤ y)),            then


                     P(X  x, Y  y) = C ∗ (P(X  x), P(Y  y)).


                                                                                48
Arthur CHARPENTIER - École d'été EURIA.




                                                 0.8
       0.8




                                                 0.4
       0.4




                                                 0.0
       0.0




             0.0   0.2   0.4   0.6   0.8   1.0         0.0   0.2   0.4   0.6   0.8   1.0




    Figure 17: Using geometric transformation to generate new copulas.


                                                                                           49
Arthur CHARPENTIER - École d'été EURIA.



       0.8




                                                 0.8
       0.4




                                                 0.4
                                                 0.0
       0.0




             0.0   0.2   0.4   0.6   0.8   1.0         0.0   0.2   0.4   0.6   0.8   1.0




    Figure 18: Using geometric transformation to generate new copulas.


                                                                                           50
Arthur CHARPENTIER - École d'été EURIA.




                                                 0.8
       0.8




                                                 0.4
       0.4




                                                 0.0
       0.0




             0.0   0.2   0.4   0.6   0.8   1.0         0.0   0.2   0.4   0.6   0.8   1.0




    Figure 19: Using geometric transformation to generate new copulas.


                                                                                           51
Arthur CHARPENTIER - École d'été EURIA.



       0.8




                                                 0.8
       0.4




                                                 0.4
                                                 0.0
       0.0




             0.0   0.2   0.4   0.6   0.8   1.0         0.0   0.2   0.4   0.6   0.8   1.0




    Figure 20: Using geometric transformation to generate new copulas.


                                                                                           52
Arthur CHARPENTIER - École d'été EURIA.

                               Using mixture of copulas

Lemma 14. The set of copulas is convex, i.e. if {Cθ , θ ∈ Ω} is a collection of
copulas,
                              C(u, v) =         Cθ (u, v)dΠ(θ)
                                            R
is a copula, where Π is a distribution on Ω
Thus   C = αC1 + (1 − α)C2     denes a copula for all     α ∈ [0, 1].
Example 15.     Fréchet (1951) suggested a mixture of the lower and the upper
bound,
            C(u, v) = αC − (u, v) + (1 − α)C + (u, v), for some α ∈ [0, 1].

Example 16.     Mardia (1970) suggested a mixture of the lower, the upper
bound, and the independent copula
                   α2 −               2  ⊥         α2 +
         C(u, v) =   C (u, v) + (1 − α )C (u, v) +   C (u, v), α ∈ [0, 1].
                   2                               2


                                                                              53
Arthur CHARPENTIER - École d'été EURIA.


                                    Using distortion functions

Denition 17. A distortion function is a function h : [0, 1] → [0, 1] strictly
increasing such that h(0) = 0 and h(1) = 1.
The set of distortion function will be denoted          H.
Note that      h∈H    if and only if   h−1 ∈ H.   Given a copula     C,   dene


                                 Ch (u, v) = h−1 (C(h(u), h(v))).

If   h   is convex, then   Ch   is a copula, called distorted copula.

Example 18. if h(x) = x1/n , the distorted copula is
                 Ch (u, v) = C n (u1/n , v 1/n ), for all n ∈ N, (u, v) ∈ [0, 1]2 .

if the survival copula of the (Xi , Yi )'s is C , then the survival copula of
(Xn:n , Yn:n ) = (max{X1 , ..., Xn }, max{Y1 , ..., Yn }) is Ch .



                                                                                      54
Arthur CHARPENTIER - École d'été EURIA.




Example 19. if C(u, v) = uv = C ⊥ (u, v) (the independent copula), and
φ(·) = log h(·), then

                   Ch (u, v) = h−1 (h(u)h(v)) = φ−1 (φ(u) + φ(v)).

Example 20. if h(x) = [1 − e−αx ]/[1 − e−α ] (an exponential distortion), and if
C = C ⊥ , then
                               1        (e−αu − 1)(e−αv − 1)
                  Ch (u, v) = − log 1 +                              ,
                               α              e−α − 1
which is Frank copula.




                                                                             55
Arthur CHARPENTIER - École d'été EURIA.

               Distorted Frank copula, h(x) = x        Distorted Frank copula, h(x) = x(1   2)




             Distorted Frank copula, h(x) = x(1   3)
                                                       Distorted Frank copula, h(x) = x(1   4)




                  Figure 21: Distorted copula, from Frank copula.



                                                                                                 56
Arthur CHARPENTIER - École d'été EURIA.

                          Monte Carlo and copulas
Generation of independent variables can be done using a              Random     function.

Denition 21. Function Random should satisfy the following properties (i) for
all 0 ≤ a ≤ b ≤ 1,
                               P (Random ∈ ]a, b]) = b − a.
(ii) successive calls of function Random should generate independent draws, i.e.
0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1

               P (Random1 ∈ ]a, b] , Random2 ∈ ]c, d]) = (b − a) (d − c) ,

or more generally, dene k-uniformity for all 0 ≤ ai ≤ bi ≤ 1, i = 1, ..., k,
                                                                     k
            P (Random1 ∈ ]a1 , b1 ] , ..., Randomk ∈ ]ak , bk ]) =         (bi − ai ) .
                                                                     i=1


Thus, one can generate easily random vectors         U = (U1 , ..., Ud )     with independent

component.


                                                                                            57
Arthur CHARPENTIER - École d'été EURIA.




The idea to generate correlated vectors      U = (U1 , ..., Ud ),   the idea is to use rst


   P(U1 ≤ u1 , . . . , Ud ≤ ud ) =    P(Ud ≤ ud |U1 ≤ u1 , . . . , Ud−1 ≤ ud−1 )
                                      ×P(Ud−1 ≤ ud−1 |U1 ≤ u1 , . . . , Ud−2 ≤ ud−2 )
                                      ×...
                                      ×P(U3 ≤ u3 |U1 ≤ u1 , U2 ≤ u2 )
                                      ×P(U2 ≤ u2 |U1 ≤ u1 ) × P(U1 ≤ u1 ).




                                                                                         58
Arthur CHARPENTIER - École d'été EURIA.


Starting from the end,    P(U1 ≤ u1 ) = u1      since   U1   is uniform, while


      P(U2 ≤ u2 |U1 = u1 )
  = P(U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1|U1 = u1 )
  =    lim P(U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1|U1 ∈ [u1 , u1 + h])
      h→0
        P(u1 ≤ U1 ≤ u1 + h, U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1)
  =    lim
    h→0                 P(U1 ∈ [u1 , u1 + h])
        P(U1 ≤ u1 + h, U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1) − P(U1 ≤ u1 , U2 ≤ u2 , U3 ≤ 1, . . .
  = lim
    h→0                                         P(U1 ∈ [u1 , u1 + h])
        C(u1 + h, u2 , 1, . . . , 1) − C(u1 , u2 , 1, . . . , 1)   ∂C
  = lim                                                          =     C(u1 , u2 , 1, . . . , 1).
    h→0                            h                               ∂u1
and more generally,

                                                     ∂ k−1
  P(Uk ≤ uk |U1 = u1 , . . . , Uk−1   = uk−1 ) =                 C(u1 , . . . , uk , 1, . . . , 1).
                                                 ∂u1 . . . ∂uk−1


                                                                                                 59
Arthur CHARPENTIER - École d'été EURIA.


Thus,   U = (U1 , .., Un )   with copula   C     could be simulated using the following

algorithm,

 •   simulate   U1   uniformly on    [0, 1],

                                               u1 ← Random1 ,

 •   simulate   U2   from the conditional distribution       ∂1 C(·|u1 ),

                                  u2 ← [∂1 C(·|u1 )]−1 (Random2 ),

 •   simulate   Uk   from the conditional distribution          ∂1,...,k−1 C(·|u1 , ..., uk−1 ),

                        uk ← [∂1,...,k−1 C(·|u1 , ..., uk−1 )]−1 (Randomk ),

...etc, where the    Randomi 's   are independent calls of a        Random    function.

This is the underlying idea when using Cholesky decomposition.




                                                                                                   60
Arthur CHARPENTIER - École d'été EURIA.


Example:       for Clayton's copula,      C(u, v) = (u−α + v −α − 1)−1/α , (U, V )   has joint

distribution    C   if and only if   U is uniform on on [0, 1] and V |U = u has
conditional distribution


                P(V ≤ v|U = u) = ∂2 C(v|u) = (1 + uα [v −α − 1])−1−1/α .

The algorithm to generate Clayton's copula is the

 •   simulate   U1   uniformly on      [0, 1],

                                                 u1 ← Random1 ,

 •   simulate   U2   from the conditional distribution        ∂2 C(·|u),

                                     u2 ← [∂1 C(·|u1 )]−1 (Random2 ),

     i.e.

                           u2 ← [(Random2 )−α/(1+α − 1]u−α + 1−1/α .
                                                        1



                                                                                          61
Arthur CHARPENTIER - École d'été EURIA.




                                                                     1.5
           0.0 0.5 1.0 1.5 2.0




                                                                     1.0
                                                                     0.5
                                                                     0.0
                                 0.0   0.2   0.4   0.6   0.8   1.0                     0.0   0.2   0.4   0.6   0.8   1.0

                                  Distribution of v given u=0.3                         Distribution of v given u=0.5



              Generation of Clayton’s copula
           0.8




                                                                     0.0 0.5 1.0 1.5
           0.4
           0.0




                                 0.0   0.2   0.4   0.6   0.8   1.0                     0.0   0.2   0.4   0.6   0.8   1.0

                                                                                        Distribution of v given u=0.8




                                       Figure 22: Simulation of Clayton's copula.



                                                                                                                           62
Arthur CHARPENTIER - École d'été EURIA.




         500




                                                          400
     /




                                                      /
         300
     q




                                                      q

                                                          200
         0 100




                                                          0
                 0.0    0.2   0.4   0.6   0.8   1.0               0.0    0.2    0.4       0.6   0.8   1.0

                          !i#tribution +e -                                 !i#tribution +e 9




                                                          4
         0.8




                                                          2
                                                          0
         0.4




                                                          !4 !2
         0.0




                 0.0    0.2   0.4   0.6   0.8   1.0               !4       !2         0         2       4

                          -ni:orm mar=in#                              Stan+ar+ ?au##ian mar=in#




                       Figure 23: Simulation of the independent copula.



                                                                                                            63
Arthur CHARPENTIER - École d'été EURIA.




         400




                                                       400
     /




                                                   /
     .




                                                   .
         200




                                                       200
         0




                                                       0
               010   012   014   014   015   610             010   012   014       014   015   610

                       !is$riu$i(n +e -                             !is$riu$i(n +e 7




                                                       4
         015




                                                       2
                                                       0
         014




                                                       !2
         010




               010   012   014   014   015   610                   !2          0         2     4

                       -ni8(r9 9argins                         $an+ar+ =aussian 9argins




                     Figure 24: Simulation of the comontone copula.



                                                                                                     64
Arthur CHARPENTIER - École d'été EURIA.




         400




                                                       400
     /




                                                   /
     q




                                                   q
         200




                                                       200
         0




                                                       0
               0.0   0.2   0.4   0.6   0.8   1.0             0.0   0.2   0.4   0.6   0.8   1.0

                       Distribution de -                             Distribution de V
         0.8




                                                       2
                                                       0
         0.4




                                                       !2
         0.0




                                                       !4
               0.0   0.2   0.4   0.6   0.8   1.0                   !2      0         2      4

                       -niform margins                         tandard =aussian margins




               Figure 25: Simulation of the contercomonotone copula.



                                                                                                 65
Arthur CHARPENTIER - École d'été EURIA.




                                                       900
         400
     /




                                                   /

                                                       300
     .




                                                   .
         200




                                                       0 100
         0




               010   012   014   014   015   110               010    012   014       014   015   110

                       !istri'tion de -                                 !istri'tion de 7




                                                       4
         015




                                                       2
                                                       0
         014




                                                       !4 !2
         010




               010   012   014   014   015   110               !4      !2         0         2      4

                       -ni:orm mr=ins                              Stndrd ?'ssin mr=ins




                     Figure 26: Simulation of the Gaussian copula.



                                                                                                        66
Arthur CHARPENTIER - École d'été EURIA.




                                                        400
         400
     y




                                                    y
     .




                                                    .

                                                        200
         200
         0




                                                        0
               010   012    014   014   015   110             010   012   014       014   015   110

                       D#$%u$on +e U                              D#$%u$on +e V




                                                        4
         015




                                                        2
                                                        0
         014




                                                        !2
         010




               010   012    014   014   015   110                   !2          0         2      4

                       Unfo%m ma%;n#                          S$an+a%+ =au##an ma%;n#




                           Figure 27: Simulation of Clayton's copula.



                                                                                                      67
Arthur CHARPENTIER - École d'été EURIA.




         400




                                                       400
     y




                                                   y
     q




                                                   q
         200




                                                       200
         0




                                                       0
               0.0   0.2   0.4   0.6   0.8   1.0               0.0    0.2    0.4       0.6   0.8   1.0

                       Distribution de U                                 Distribution de V




                                                       4
         0.8




                                                       2
                                                       0
         0.4




                                                       !4 !2
         0.0




               0.0   0.2   0.4   0.6   0.8   1.0               !4       !2         0         2     4

                       Uniform margins                              Standard Gaussian margins




                 Figure 28: Simulation of Clayton's survival copula.



                                                                                                         68
Arthur CHARPENTIER - École d'été EURIA.




         400




                                                       400
     y




                                                   y
     q




                                                   q
         200




                                                       200
         0




                                                       0
               0.0   0.2   0.4   0.6   0.8   1.0               0.0    0.2    0.4   0.6   0.8     1.0

                       Distribution de U                                 Distribution de V




                                                       4
         0.8




                                                       2
                                                       0
         0.4




                                                       !4 !2
         0.0




               0.0   0.2   0.4   0.6   0.8   1.0               !4       !2         0         2

                       Uniform margins                              Standard Gaussian margins




                       Figure 29: Simulation of a copula mixture.



                                                                                                       69
Arthur CHARPENTIER - École d'été EURIA.



          Copulas in nance: options on multiple assets
Remark 22. Recall that Breeden  Litzenberger (1978) proved that the risk
neutral probability can be obtrained from option prices: consider the price of a call
                                                         ∞
C(T, K) = e−rT EQ ((ST − K)+ ). Since (ST − K)+ = K 1(ST  x)dx, one gets
                                              ∞
                                        −rT
                          C(T, K) = e             Q(ST  x)dx,
                                              K

hence
                                 ∂C                             ∂P
          Q(ST ≤ x) = −e−rT         (T, x), or Q(ST ≤ x) = −erT    (T, x)
                                 ∂K                             ∂K
where P denotes the price of a put option.
                                                     1    2
Consider an option on    2   assets, with payo   h(ST , ST ).   The price at time   0   is

e−rT EQ (h(ST , ST )).
            1    2




                                                                                              70
Arthur CHARPENTIER - École d'été EURIA.



                   Copulas in nance: call on maximum
                            1    2           1    2
Here the payo is        h(ST , ST ) = (max{ST , ST } − K)+ .         The price is then


               C(T, K) =         e−rT EQ ((max{ST , ST } − K)+ )
                                                1    2

                                                  ∞
                            =    e−rT EQ                         1    2
                                                      1 − 1(max{ST , ST } ≤ x)dx
                                                 K
                                            ∞
                                     −rT                   1    2
                            =    e              1 − Q(max{ST , ST } ≤ x) dx,
                                           K
                                                              1     2
                                                           Q(ST ≤x,ST ≤x)

              1    2
hence, if   (ST , ST )   has copula    C   (under    Q),   then

                                     ∞
                                                   ∂P 1             ∂P 2
            C(T, K) = e−rT               1 − C erT      (T, x), erT      (T, x) dx.
                                  K                ∂K               ∂K




                                                                                          71
Arthur CHARPENTIER - École d'été EURIA.




                     Copulas in nance: call on spreads
                            1    2        1    2
Here the payo is        h(ST , ST ) = ([ST − ST ] − K)+ .           The price is then

                                                                          ∞
                   −rT          1         2                   −rT                2            1
C(T, K)      = e          EQ ((ST    −   ST   − K)+ ) = e           EQ        1(ST + K ≤ x ≤ ST )dx
                                                                         −∞
                              ∞
             = e−rT                       2           2           1
                                   Q(K + ST ≤ x) − Q(ST + K ≤ x, ST ≤ x} ≤ x) dx,
                              −∞
                                                                       1     2
                                                                    Q(ST ≤x,ST ≤x+K)

              1    2
hence, if   (ST , ST )   has copula      C    (under   Q),   then

                         ∞
               −rT            rT   ∂P 2              rT ∂P
                                                           1
                                                                      rT ∂P
                                                                            2
C(T, K) = e                   e         (T, x−K)−C e         (T, x), e        (T, x − K) dx.
                         −∞        ∂K                   ∂K               ∂K




                                                                                               72
Arthur CHARPENTIER - École d'été EURIA.




            Copulas in nance: bonds on option prices
Using Tchen's inequality, it is possible to derive bounds for options when the

payo is supermodular.




                                                                                 73
Arthur CHARPENTIER - École d'été EURIA.




                                        Agenda
 •   General introduction

Modelling correlated risks
 •   A short introduction to copulas

 •   Quantifying dependence

 •   Statistical inference

 •   Agregation properties




                                                 74
Arthur CHARPENTIER - École d'été EURIA.



                    Natural properties for dependence measures

Denition 23.      κ is measure of concordance if and only if κ satises
1. κ is dened for every pair (X, Y ) of continuous random variables,
2. −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1,
3. κ (X, Y ) = κ (Y, X),
4. if X and Y are independent, then κ (X, Y ) = 0,
5. κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ),
6. if (X1 , Y1 )   P QD   (X2 , Y2 ), then κ (X1 , Y1 ) ≤ κ (X2 , Y2 ),
7. if (X1 , Y1 ) , (X2 , Y2 ) , ... is a sequence of continuous random vectors that
   converge to a pair (X, Y ) then κ (Xn , Yn ) → κ (X, Y ) as n → ∞.



                                                                                      75
Arthur CHARPENTIER - École d'été EURIA.




As pointed out in      Scarsini    (1984), most of the axioms are    self-evident .
Ifκ is measure of concordance, then, if f and g are both strictly increasing, then
κ(f (X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f (X) with f almost
surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f (X) with f

almost surely strictly decreasing (see         Scarsini   (1984)).




                                                                                        76
Arthur CHARPENTIER - École d'été EURIA.


                   Association measures: Kendall's                   τ   and Spearman's              ρ
Rank correlations can be considered, i.e. Spearman's                                 ρ   dened as

                                                                             1       1
              ρ(X, Y ) = corr(FX (X), FY (Y )) = 12                                      C(u, v)dudv − 3
                                                                         0       0

and Kendall's      τ   dened as

                                                   1       1
                           τ (X, Y ) = 4                       C(u, v)dC(u, v) − 1.
                                               0       0

                             Historical version of those coecients

Spearman's rho was introduced in               Spearman              (1904) as


     ρ(X, Y ) = 3[P((X1 − X2 )(Y1 − Y3 )  0) − P((X1 − X2 )(Y1 − Y3 )  0)],

where     (X1 , Y1 ), (X2 , Y2 )   and   (X3 , Y3 )    denote three independent versions of

(X, Y )   (see   Nelsen    (1999)).




                                                                                                           77
Arthur CHARPENTIER - École d'été EURIA.




Similarly Kendall's tau was not dened using copulae, but as the probability of

concordance, minus the probability of discordance, i.e.


     τ (X, Y ) = 3[P((X1 − X2 )(Y1 − Y2 )  0) − P((X1 − X2 )(Y1 − Y2 )  0)],

where   (X1 , Y1 )   and   (X2 , Y2 )   denote two independent versions of   (X, Y )   (see

Nelsen    (1999)).

                                      4Q
Equivalently,   τ (X, Y ) = 1 −       2 − 1)
                                             where Q is the number       of inversions
                                   n(n
between the rankings of         X and Y (number of discordance).




                                                                                              78
Arthur CHARPENTIER - École d'été EURIA.


     1.5                  Concordant pairs                                         Discordant pairs




                                                              1.5
     1.0




                                                              1.0
     0.5




                                                              0.5
 Y




                                                          Y
     0.0




                                                              0.0
     !0.5




                                                              !0.5
            !2.0   !1.5   !1.0   !0.5   0.0   0.5   1.0              !2.0   !1.5   !1.0   !0.5   0.0   0.5   1.0

                                   X                                                        X




                           Figure 30: Concordance versus discordance.




                                                                                                                   79
Arthur CHARPENTIER - École d'été EURIA.




                          The case of the Gaussian random vector

If   (X, Y )   is a Gaussian random vector with correlation        r,        Kruskal
                                                                        then (         (1958))

                                6        r                         2
                   ρ(X, Y ) =     arcsin       and   τ (X, Y ) =     arcsin (r) .
                                π        2                         π




                                                                                          80
Arthur CHARPENTIER - École d'été EURIA.




                       Link between Kendall's tau and Spearman's rho

Note that Kendall's tau and Spearman's are linked: it is impossible to have at

the same time         τ ≥ 0.4   and   ρ = 0.
Hence   ρ   and   τ   satisfy

                                3τ − 1     1 + 2τ − τ 2
                                       ≤ρ≤                if   τ ≥0
                                   2            2
                                τ 2 + 2τ − 1     1 + 3τ
                                             ≤ρ≤          if   τ ≤ 0.
                                      2             2
which yield the area given below.




                                                                             81
Arthur CHARPENTIER - École d'été EURIA.



                       1.0




                       0.5
     Rho de Spearman




                       0.0




                       -0.5




                       -1.0
                              -1.0       -0.5            0.0               0.5         1.0
                                                    Tau de Kendall




                                     Figure 31: Admissible region of   ρ    and   τ.

                                                                                             82
Arthur CHARPENTIER - École d'été EURIA.




                  From Kendall'tau to copula parameters
      Kendall's   τ   0.0    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1.0

      Gaussian    θ   0.00   0.16   0.31   0.45   0.59   0.71   0.81   0.89   0.95   0.99   1.00

       Gumbel     θ   1.00   1.11   1.25   1.43   1.67   2.00   2.50   3.33   5.00   10.0   +∞
      Plackett    θ   1.00   1.57   2.48   4.00   6.60   11.4   21.1   44.1   115    530    +∞
      Clayton     θ   0.00   0.22   0.50   0.86   1.33   2.00   3.00   4.67   8.00   18.0   +∞
        Frank     θ   0.00   0.91   1.86   2.92   4.16   5.74   7.93   11.4   18.2   20.9   +∞
           Joe    θ   1.00   1.19   1.44   1.77   2.21   2.86   3.83   4.56   8.77   14.4   +∞
     Galambos     θ   0.00   0.34   0.51   0.70   0.95   1.28   1.79   2.62   4.29   9.30   +∞
   Morgenstein    θ   0.00   0.45   0.90    -      -      -      -      -      -      -      -




                                                                                                   83
Arthur CHARPENTIER - École d'été EURIA.




           From Spearman's rho to copula parameters
   Spearman's    ρ   0.0    0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1.0

      Gaussian   θ   0.00   0.10   0.21   0.31   0.42   0.52   0.62   0.72   0.81   0.91   1.00

       Gumbel    θ   1.00   1.07   1.16   1.26   1.38   1.54   1.75   2.07   2.58   3.73   +∞
       A.M.H.    θ   1.00   1.11   1.25   1.43   1.67   2.00   2.50   3.33   5.00   10.0   +∞
      Plackett   θ   1.00   1.35   1.84   2.52   3.54   5.12   7.76   12.7   24.2   66.1   +∞
      Clayton    θ   0.00   0.14   0.31   0.51   0.76   1.06   1.51   2.14   3.19   5.56   +∞
        Frank    θ   0.00   0.60   1.22   1.88   2.61   3.45   4.47   5.82   7.90   12.2   +∞
          Joe    θ   1.00   1.12   1.27   1.46   1.69   1.99   2.39   3.00   4.03   6.37   +∞
     Galambos    θ   0.00   0.28   0.40   0.51   0.65   0.81   1.03   1.34   1.86   3.01   +∞
   Morgenstein   θ   0.00   0.30   0.60   0.90    -      -      -      -      -      -      -




                                                                                                  84
Arthur CHARPENTIER - École d'été EURIA.

                          Alternative expressions of those coecients

Note that those coecients can also be expressed as follows


                                         [0,1]×[0,1]
                                                     C(u, v) − C ⊥ (u, v)dudv
                     ρ(X, Y ) =                                                                           (1)
                                         [0,1]×[0,1]
                                                     C + (u, v) − C ⊥ (u, v)dudv

(the normalized average distance between                  C   and   C ⊥ ),   for instance.

                      A dependence measure in higher dimension ?

From equations 1 and         ??, it is possible to obtain a natural mutlidimensional
extention (see   Wolf       (1980),      Joe   (1990) or      Nelsen    (1996)),


                 [0,1]d
                          C(u) − C ⊥ (u)du                   d+1
  ρ(X) =                                             =                         2d            C(u)du − 1
            [0,1]×[0,1]
                           C + (u)   −   C ⊥ (u)du        2d − (d + 1)              [0,1]d
                                                                                                          (2)

and similarly

                                 1
                     τ (X) == d−1                    2d             C(u)dCu − 1                           (3)
                             2    − 1)                     [0,1]d


                                                                                                          85
Arthur CHARPENTIER - École d'été EURIA.




Note that a lower bound for   τ is then −1/(2d−1 − 1),     while it is

(2d − (d + 1)!)/(d!(2d − (d + 1))).
In dimension 3, Kendall's    τ   is the average of the three   2-dimensional   Kendall's   τ,
                                1
                   τ (X, Y, Z) = (τ (X, Y ) + τ (X, Z) + τ (Y, Z)).
                                3




                                                                                       86
Arthur CHARPENTIER - École d'été EURIA.



                        Tail concentration functions
Venter   (2002) suggest to use several Tail Concentration Functions

Denition 24. For lower tails, dene
L(z) = P(U  z, V  z)/z = C(z, z)/z = P r(U  z|V  z) = P r(V  z|U  z),

and for upper tails,
               R(z) = P(U  z, V  z)/(1 − z) = P r(U  z|V  z).



Joe (1990) uses the term upper tail dependence parameter for

R = R(1) = limz→1 R(z),      and lower tail dependence parameter for

L = L(0) = limz→0 L(z).



                                                                        87
Arthur CHARPENTIER - École d'été EURIA.




                     Functional correlation measures
                                                              1 1
Consider also Kendall's tau, dened as               −1 + 4   0 0
                                                                    C(u, v)dC(u, v).
Denition 25. The cumulative tau can be dened as
                                         z       z
                   J(z) = −1 + 4                     C(u, v)dC(u, v)/C(z, z)2 .
                                     0       0




                                                                                       88
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2
Slides euria-2

More Related Content

What's hot (20)

Slides astin
Slides astinSlides astin
Slides astin
 
Slides lyon-anr
Slides lyon-anrSlides lyon-anr
Slides lyon-anr
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Fougeres Besancon Archimax
Fougeres Besancon ArchimaxFougeres Besancon Archimax
Fougeres Besancon Archimax
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Berlin
BerlinBerlin
Berlin
 
Slides ineq-2
Slides ineq-2Slides ineq-2
Slides ineq-2
 
Slides dauphine
Slides dauphineSlides dauphine
Slides dauphine
 
Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017Graduate Econometrics Course, part 4, 2017
Graduate Econometrics Course, part 4, 2017
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides ensae 9
Slides ensae 9Slides ensae 9
Slides ensae 9
 
Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 

Similar to Slides euria-2

NumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesNumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesSpider Financial
 
Auc silver spring
Auc silver springAuc silver spring
Auc silver springVivian Stg
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Brief survey on Three-Dimensional Displays
Brief survey on Three-Dimensional DisplaysBrief survey on Three-Dimensional Displays
Brief survey on Three-Dimensional DisplaysTaufiq Widjanarko
 
Hmm Tutorial
Hmm TutorialHmm Tutorial
Hmm Tutorialjefftang
 
Paper and pencil_cosmological_calculator
Paper and pencil_cosmological_calculatorPaper and pencil_cosmological_calculator
Paper and pencil_cosmological_calculatorSérgio Sacani
 
Hmm tutorial
Hmm tutorialHmm tutorial
Hmm tutorialPiyorot
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeadsguestdc9119
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)gracenyura
 
Fractional Differential Equation for the Analysis of Electrophysiological Rec...
Fractional Differential Equation for the Analysis of Electrophysiological Rec...Fractional Differential Equation for the Analysis of Electrophysiological Rec...
Fractional Differential Equation for the Analysis of Electrophysiological Rec...Mariela Marín
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 

Similar to Slides euria-2 (15)

NumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notesNumXL 1.55 LYNX release notes
NumXL 1.55 LYNX release notes
 
Calorimetry
CalorimetryCalorimetry
Calorimetry
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Auc silver spring
Auc silver springAuc silver spring
Auc silver spring
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Brief survey on Three-Dimensional Displays
Brief survey on Three-Dimensional DisplaysBrief survey on Three-Dimensional Displays
Brief survey on Three-Dimensional Displays
 
Hmm Tutorial
Hmm TutorialHmm Tutorial
Hmm Tutorial
 
Paper and pencil_cosmological_calculator
Paper and pencil_cosmological_calculatorPaper and pencil_cosmological_calculator
Paper and pencil_cosmological_calculator
 
Hmm tutorial
Hmm tutorialHmm tutorial
Hmm tutorial
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeads
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Lecture 32 fuzzy systems
Lecture 32   fuzzy systemsLecture 32   fuzzy systems
Lecture 32 fuzzy systems
 
Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)Physics Note! ( Chap. 1&2)
Physics Note! ( Chap. 1&2)
 
Fractional Differential Equation for the Analysis of Electrophysiological Rec...
Fractional Differential Equation for the Analysis of Electrophysiological Rec...Fractional Differential Equation for the Analysis of Electrophysiological Rec...
Fractional Differential Equation for the Analysis of Electrophysiological Rec...
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 

More from Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Slides euria-2

  • 1. Arthur CHARPENTIER - École d'été EURIA. mesures de risques et dépendance Arthur Charpentier Université de Rennes 1 & École Polytechnique arthur.charpentier@univ-rennes1.fr http://blogperso.univ-rennes1.fr/arthur.charpentier/index.php/ 1
  • 2. Arthur CHARPENTIER - École d'été EURIA. 3 0.9 V (rank of Y) Y 0.4 -1 (X i,Y i) (U i,V i) -3 -1 1 3 0.2 0.5 0.8 X U (rank of X) Density of the copula Isodensity curves of the density 2
  • 3. Arthur CHARPENTIER - École d'été EURIA. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 3
  • 4. Arthur CHARPENTIER - École d'été EURIA. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 4
  • 5. Arthur CHARPENTIER - École d'été EURIA. Some references on large and correlated risks Rank , J. (2006). Copulas: From Theory to Application in Finance. Risk Book , Nelsen , R. (1999,2006). An introduction to copulas. Springer Verlag , Cherubini , U., Luciano , E. & Vecchiato, W. (2004). Copula Methods in Finance. Wiley, Beirlant , J., Goegebeur , Y., Segers, J. & Teugels , J. (2004). Statistics of Extremes: Theory and Applications. Wiley, McNeil , A. Frey , R., & Embrechts , P. (2005). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 5
  • 6. Arthur CHARPENTIER - École d'été EURIA. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 6
  • 7. Arthur CHARPENTIER - École d'été EURIA. Copulas, an introduction (in dimension 2) Denition 1. A copula C is a joint distribution function on [0, 1]2 , with uniform margins on [0, 1]. Set C(u, v) = P(U ≤ u, V ≤ v), where (U, V ) is a random pair with uniform margins. C is a distribution function on [0, 1]2 , and thus C(0, v) = C(u, 0) = 0, C(1, 1) = 1. Furthermore C is increasing : since P is a positive measure, for all u1 ≤ u2 and v1 ≤ v2 , Copula, positive area 1.0 P(u1 U ≤ u2 , v1 V ≤ v2 ) ≥ 0, 0.8 0.6 thus 0.4 C(u2 , v2 ) − C(u1 , v2 ) 0.2 −C(u2 , v1 ) + C(u1 , v1 ) ≥ 0. 0.0 0.0 0.2 0.4 0.6 0.8 1.0 7
  • 8. Arthur CHARPENTIER - École d'été EURIA. C has uniform margins, and thus C(u, 1) = P(U ≤ u, V ≤ 1) = P(U ≤ u) = u on [0, 1]. Proposition 2. C is a copula if and only if C(0, v) = C(u, 0) = 0, C(u, 1) = u and C(1, v) = v for all u, v , with the following 2-increasingness property C(u2 , v2 ) − C(u1 , v2 ) − C(u2 , v1 ) + C(u1 , v1 ) ≥ 0, for any u1 ≤ u2 and v1 ≤ v2 . 8
  • 9. Arthur CHARPENTIER - École d'été EURIA. Borders of the copula function !0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 !0.2 !0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Figure 1: Value of the copula on the border of the unit square. 9
  • 10. Arthur CHARPENTIER - École d'été EURIA. Fonction de répartition à marges uniformes Z Y X Figure 2: Graphical representation of a copula. 10
  • 11. Arthur CHARPENTIER - École d'été EURIA. If C is twice dierentiable, one can dene its density as ∂ 2 C(u, v) c(u, v) = . ∂u∂v 11
  • 12. Arthur CHARPENTIER - École d'été EURIA. Densité d’une loi à marges uniformes z x x Figure 3: Density of a copula. 12
  • 13. Arthur CHARPENTIER - École d'été EURIA. Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Figure 4: Distribution functions and densities. 13
  • 14. Arthur CHARPENTIER - École d'été EURIA. Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Fonction de répartition à marges uniformes Densité d’une loi à marges uniformes Figure 5: Distribution functions and densities. 14
  • 15. Arthur CHARPENTIER - École d'été EURIA. Sklar's theorem Theorem 3. (Sklar) Let C be a copula, and FX and FY two marginal distributions, then F (x, y) = C(FX (x), FY (y)) is a bivariate distribution function, with F ∈ F(FX , FY ). Conversely, if F ∈ F(FX , FY ), there exists C such that F (x, y) = C(FX (x), FY (y)). Further, if FX and FY are continuous, then C is unique, and given by C(u, v) = F (FX (u), FY (v)) for all (u, v) ∈ [0, 1] × [0, 1] −1 −1 We will then dene the copula of F , or the copula of (X, Y ). In that case, the copula of (X, Y ) is the distribution function of (FX (X), FY (Y )). Proposition 4. If (X, Y ) has copula C , the copula of (g(X), h(Y )) is also C for any increasing functions g and h. 15
  • 16. Arthur CHARPENTIER - École d'été EURIA. Copulas, an introduction (in dimension d ≥ 2) Denition 5. A copula C is a joint distribution function on [0, 1]d , with uniform margins on [0, 1]. Let U = (U1 , ..., Ud ) denote a random pair with uniform margins. C is a distribution function on [0, 1]d , and thus C(u) = 0 if ui = 0 for some i ∈ {1, . . . , d}, and C(1) = 1. Furthermore C satises some increasing property since P is a positive measure (for all 0 ≤ u ≤ v ≤ 1, P(u U ≤ v) ≥ 0), thus sign(z)C(z) ≥ 0, z where the sum is taken over all vertices of [u × v], and where sign(z) is +1 if zi = ui for an even number of i (and −1 otherwise, see Figure 6). And nally C has uniform margins, and thus C(1, . . . , 1, ui , 1, . . . , 1) = ui on [0, 1]. 16
  • 17. Arthur CHARPENTIER - École d'été EURIA. Increasing functions in dimension 3 Figure 6: The notion of 3-increasing functions. 17
  • 18. Arthur CHARPENTIER - École d'été EURIA. Theorem 6. (Sklar) Let C be a copula, and F1 , . . . , Fd be d marginal distributions, then F (x) = C(F1 (x1 ), . . . , Fd (xd )) is a distribution function, with F ∈ F(F1 , . . . , Fd ). Conversely, if F ∈ F(F1 , . . . , Fd ), there exists C such that F (x) = C(F1 (x1 ), . . . , Fd (xd )). Further, if the Fi 's are continuous, then C is unique, and given by C(u) = F (F1 (u1 ), . . . , Fd (ud )) for all (ui ) ∈ [0, 1] −1 −1 We will then dene the copula of F , or the copula of X . In that case, the copula of (X = (X1 , . . . , Xd ) is the distribution function of U = (F1 (X1 ), . . . , Fd (Yd )). Again, if C is dierentiable, one can dene its density, ∂ d C(u1 , . . . , ud ) c(u1 , . . . , ud ) = . ∂u1 . . . ∂ud 18
  • 19. Arthur CHARPENTIER - École d'été EURIA. Copulas in high dimension, a dicult problem It is usually dicult to represent dependence in dimension d 2, and it is usually studied by pairs. In dimension d = 2, one can dene the following Fréchet class F(FX , FY , FZ ) dened by its marginal distributions. But it can also be interested to study F(FXY , FXZ , FY Z ) dened by it paired distributions. One of the problem that arises is the compatibility of marginals: one has to verify that CXY (x, y) = CX|Z (x|z)CY |Z (y|z)dz, for instance. 19
  • 20. Arthur CHARPENTIER - École d'été EURIA. 1.0 0.8 1.0 0.6 0.8 p 0.6 0.4 1.0 0.4 0.8 0.2 0.6 0.2 0.4 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Composante 1 1.0 1.0 0.8 0.8 0.6 0.6 p p 0.4 0.4 0.2 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Composante 2 Composante 3 Figure 7: Scatterplot in dimension 3 including projections. 20
  • 21. Arthur CHARPENTIER - École d'été EURIA. Copulas and ranks The copula of X = (X1 , . . . , Xd ) is the distribution function of U = (F1 (X1 ), . . . , Fd (Yd )). In practice, since marginal distributions are unknown, the idea is to substitute empirical distribution function, n #{observations Xi,j 's lower than xi } 1 Fi (xi ) = = 1(Xi,j ≤ xi ). #{observations } n j=1 Note that n #{observations Xi,j 's lower than Xi,j0 } 1 Ri,j0 Fi (Xi,j0 ) = = 1(Xi,j ≤ Xi,j0 ) = , #{observations } n j=1 n where Ri,j0 denotes the rank of Xi,j0 within {Xi,1 , ..., Xi,n }. On a statistical point of view, studying the copula means studying ranks. 21
  • 22. Arthur CHARPENTIER - École d'été EURIA. Scatterplot of (X,Y) Scatterplot of the ranks of (X,Y) 9.0 20 8.5 8.0 15 Ranks of the Yi’s 7.5 Y (raw data) 10 7.0 6.5 5 6.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 5 10 15 20 X (raw data) Ranks of the Xi’s Scatterplot of the ranks of (X,Y), divided by n Scatterplot o+ ,-,/0, t1e copula!t3pe tran+orm o+ ,6,70 1.0 1.0 0.8 0.8 Vi=Ranks of the Yi’s/n+1 Ranks of the Yi’s/n 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Ranks of the Xi’s/n Ui=Ranks of the Xi’s/n+1 Figure 8: Copulas, ranks and parametric inference, from (Xi , Yi ) to (Ui , Vi ). 22
  • 23. Arthur CHARPENTIER - École d'été EURIA. Some very classical copulas • The independent copula C(u, v) = uv = C ⊥ (u, v). The copula is standardly denoted Π, P or C ⊥, and an independent version of L (X, Y ) will be denoted (X ⊥ , Y ⊥ ). It is a random vector such that X⊥ = X and L Y⊥ =Y, with copula C ⊥. In higher dimension, C ⊥ (u1 , . . . , ud ) = u1 × . . . × ud is the independent copula. • The comonotonic copula C(u, v) = min{u, v} = C + (u, v). The copula is standardly denoted M, or C +, and an comonotone version of L (X, Y ) will be denoted (X + , Y + ). It is a random vector such that X+ = X and L Y+ =Y, with copula C +. (X, Y ) has copula C+ if and only if there exists a strictly increasing function h L−1 −1 such that Y = h(X), or equivalently (X, Y ) = (FX (U ), FY (U )) where U is U([0, 1]). 23
  • 24. Arthur CHARPENTIER - École d'été EURIA. Note that for any u, v P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]}) ≤ min{P(U ∈ [0, u]), P(V ∈ [0, v])} thus, C(u, v) ≤ min{u, v} = C + (u, v). Thus, C+ is an upper bound for the set of copulas. In higher dimension, C + (u1 , . . . , ud ) = min{u1 , . . . , ud } is the comonotonic copula. • The contercomotonic copula C(u, v) = max{u + v − 1, 0} = C − (u, v). The copula is standardly denoted W, or C −, and an contercomontone version of L (X, Y ) will be denoted (X − , Y − ). It is a random vector such that X− = X and L Y− =Y, with copula C −. (X, Y ) has copula C− if and only if there exists a strictly decreasing function h L−1 −1 such that Y = h(X), or equivalently (X, Y ) = (FX (1 − U ), FY (U )) where U is U([0, 1]). 24
  • 25. Arthur CHARPENTIER - École d'été EURIA. Note that for any u, v , P(U ≤ u, V ≤ v) = P({U ∈ [0, u]} ∩ {V ∈ [0, v]}) = P(U ∈ [0, u]) + P(V ∈ [0, v]) − P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) thus, C(u, v) ≥ u + v − 1 since P({U ∈ [0, u]} ∪ {V ∈ [0, v]}) ≤ 1, and since C(u, v) ≥ 0, C(u, v) ≥ max{u + v − 1, 0} = C − (u, v). Thus, C − is a lower bound for the set of copulas. In higher dimension, C − (u1 , . . . , ud ) = max{u1 + . . . + ud − (d − 1), 0} is not a copula: if (X, Y ) and (X, Z) are countercomonotonic, (Y, Z) is necessarily comonotonic - it is not possible to have all component highly negatively correlated. Anyway, it is still the best pointwise lower bound. 25
  • 26. Arthur CHARPENTIER - École d'été EURIA. 1 1 0.8 1 nd 0.8 0.2 0.4 0.6 0.8 la nd Independence copu Frechet lower bou Frechet upper bou 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.8 0.8 0.8 0.6 0.6 0.8 0.8 0.6 0.8 u_ 0.4 0.6 u_ 0.4 0.6 2 2 u_ 0.4 0.6 2 0.4 0.4 u_1 0.2 u_1 0.2 0.2 0.4 u_1 0.2 0.2 0.2 Fréchet Lower Bound Independent copula Fréchet Upper Bound 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Scatterplot, Lower Fréchet!Hoeffding bound Scatterplot, Indepedent copula random generation Scatterplot, Upper Fréchet!Hoeffding bound 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 9: Contercomontonce, independent, and comonotone copulas. 26
  • 27. Arthur CHARPENTIER - École d'été EURIA. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 7. If X and Y are independent, if Y and Z are independent, then X and Z are independent. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (1, 2, 1) with probability 1/4, (3, 2, 3) with probability 1/4, (3, 1, 3) with probability 1/4, then X and Y are independent, and Y and Z are independent, but X = Z. 27
  • 28. Arthur CHARPENTIER - École d'été EURIA. X and Y independent Y and Z independent X and Z comonotonic 4 4 4 3 3 3 Component Y Component Z Component Z 2 2 2 1 1 1 0 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Component X Component Y Component X Figure 10: Mixing independence and comonotonicity. 28
  • 29. Arthur CHARPENTIER - École d'été EURIA. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 8. If X and Y are comonotonic, if Y and Z are comonotonic, then X and Z are comonotonic. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (1, 2, 3) with probability 1/4, (3, 2, 1) with probability 1/4, (3, 3, 3) with probability 1/4, then X and Y are comonotonic, and Y and Z are comonotonic, but X and Z are independent. 29
  • 30. Arthur CHARPENTIER - École d'été EURIA. X and Y comonotonic Y and Z comonotonic X and Z independent 4 4 4 3 3 3 Component Y Component Z Component Z 2 2 2 1 1 1 0 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Component X Component Y Component X Figure 11: Mixing independence and comonotonicity. 30
  • 31. Arthur CHARPENTIER - École d'été EURIA. Pitfalls on independence and comonotonicity The following proposition is false, Uncorrect Proposition 9. If X and Y are comonotonic, if Y and Z are independent, then X and Z are independent. If (X, Y, Z) = (1, 1, 3) with probability 1/4, (2, 1, 1) with probability 1/4, (2, 3, 3) with probability 1/4, (3, 3, 1) with probability 1/4, then X and Y are comonotonic, and Y and Z are independent, but X and Z are anticomonotonic. 31
  • 32. Arthur CHARPENTIER - École d'été EURIA. If (X, Y, Z) = (1, 1, 1) with probability 1/4, (2, 1, 3) with probability 1/4, (2, 3, 1) with probability 1/4, (3, 3, 3) with probability 1/4, then X and Y are comonotonic, and Y and Z are independent, but X and Z are comonotonic. 32
  • 33. Arthur CHARPENTIER - École d'été EURIA. X and Y comonotonic Y and Z independent X and Z comonotonic 4 4 4 3 3 3 Component Y Component Z Component Z 2 2 2 1 1 1 0 0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Component X Component Y Component X Figure 12: Mixing independence and comonotonicity. 33
  • 34. Arthur CHARPENTIER - École d'été EURIA. Elliptical (Gaussian and t) copulas The idea is to extend the multivariate probit model, Y = (Y1 , . . . , Yd ) with marginal B(pi ) distributions, modeled as Yi = 1(Xi ≤ ui ), where X ∼ N (I, Σ). • The Gaussian copula, with parameter α ∈ (−1, 1), Φ−1 (u) Φ−1 (v) 1 −(x2 − 2αxy + y 2 ) C(u, v) = √ exp dxdy. 2π 1 − α2 −∞ −∞ 2(1 − α2 ) Analogously the t-copula is the distribution of (T (X), T (Y )) where T is the t-cdf, and where (X, Y ) has a joint t-distribution. • The Student t-copula with parameter α ∈ (−1, 1) and ν ≥ 2, t−1 (u) t−1 (v) −((ν+2)/2) 1 ν ν x2 − 2αxy + y 2 C(u, v) = √ 1+ dxdy. 2π 1 − α2 −∞ −∞ 2(1 − α2 ) 34
  • 35. Arthur CHARPENTIER - École d'été EURIA. Archimedean copulas Denition of Archimedean copulas • Archimedian copulas C(u, v) = φ−1 (φ(u) + φ(v)), where φ is decreasing convex (0, 1), with φ(0) = ∞ and φ(1) = 0. Example 10. If φ(t) = [− log t]α , then C is Gumbel's copula, and if φ(t) = t−α − 1, C is Clayton's. Note that C ⊥ is obtained when φ(t) = − log t. How Archimedean copulas were introduced ? 1. The frailty approach ( Oakes (1989)). Assume that X and Y are conditionally independent, given the value of an heterogeneous component Θ. Assume further that P(X ≤ x|Θ = θ) = (GX (x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ for some baseline distribution functions GX and GY . Then F (x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ)) 35
  • 36. Arthur CHARPENTIER - École d'été EURIA. thus, since X and Y are conditionally independent, F (x, y) = E(P(X ≤ x|Θ = θ) × P(Y ≤ y|Θ = θ)) and therefore F (x, y) = E (GX (x))Θ × (GY (y))Θ = ψ(− log GX (x) − log GY (y)) where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ ). Since FX (x) = ψ(− log GX (x)) and FY (y) = ψ(− log GY (y)) and thus, the joint distribution of (X, Y ) satises F (x, y) = ψ(ψ −1 (FX (x)) + ψ −1 (FY (y))). Example 11. If Θ is Gamma distributed, the associated copula is Clayton's. If Θ has a stable distribution, the associated copula is Gumbel's. 36
  • 37. Arthur CHARPENTIER - École d'été EURIA. Consider two risks, X and Y, such that X|Θ = θG ∼ E(θG ) and Y |Θ = θG ∼ E(θG ) are independent, X|Θ = θB ∼ E(θB ) and Y |Θ = θB ∼ E(θB ) are independent, (unobservable good (G) and bad (B ) risks). The following gures start from 2 classes of risks, then 3, and then a continuous risk factor θ ∈ (0, ∞). 37
  • 38. Arthur CHARPENTIER - École d'été EURIA. Conditional independence, two classes Conditional independence, two classes 20 3 2 15 1 10 0 !1 5 !2 !3 0 0 5 10 15 !3 !2 !1 0 1 2 3 Figure 13: Two classes of risks, (Xi , Yi ) and (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))). 38
  • 39. Arthur CHARPENTIER - École d'été EURIA. Conditional independence, three classes Conditional independence, three classes 3 40 2 30 1 0 20 !1 10 !2 !3 0 0 5 10 15 20 25 30 !3 !2 !1 0 1 2 3 Figure 14: Three classes of risks, (Xi , Yi ) and (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))). 39
  • 40. Arthur CHARPENTIER - École d'été EURIA. Conditional independence, continuous risk factor Conditional independence, continuous risk factor 100 3 2 80 1 60 0 40 !1 20 !2 !3 0 0 20 40 60 80 100 !3 !2 !1 0 1 2 3 Figure 15: Continuous classes of risks, (Xi , Yi ) and (Φ−1 (FX (Xi )), Φ−1 (FY (Yi ))). 40
  • 41. Arthur CHARPENTIER - École d'été EURIA. 2. The survival approach: assume that there is a convex survival function S, with S(0) = 1, such that P(X x, Y y) = S(x + y), then the joint survival copula of (X, Y ) is S(S −1 (u) + S −1 (v)). Example 12. If S is the Pareto survival distribution, the associated copula is Clayton's. If S is the Weibull survival distribution, the associated copula is Gumbel's. 41
  • 42. Arthur CHARPENTIER - École d'été EURIA. 3. The use of Kendall's distribution function K(t) = P(C(U, V ) ≤ t) where (U, V ) is a random pair with distribution function C . Then, for Archimedean copulas, φ (t) K(t) = t − = t − λ(t), φ(t) which can be inverted easily in 1 1 φ(t) = φ(t0 ) exp dt , t0 λ(t) for some 0 t0 1 and 0 ≤ u ≤ 1. 42
  • 43. Arthur CHARPENTIER - École d'été EURIA. Some more examples of Archimedean copulas ψ(t) range θ (1) 1 (t−θ − 1) θ [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) 1−θ(1−t) (3) log [−1, 1) Ali-Mikhail-Haq Gumbel Hougaard t (4) (− log t)θ [1, ∞) Gumbel, (1960), (1986) (5) − log e −θt −1 e−θ −1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen(1987) (6) − log{1 − (1 − t)θ } [1, ∞) Joe, Frank (1981), Joe(1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t [1, ∞) 1+(θ−1)t (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ ) (0, 1/2] (12) ( 1 − 1)θ [1, ∞) t (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ )θ [1, ∞) Genest Ghoudi (1994) (16) ( θ + 1)(1 − t) [0, ∞) t 43
  • 44. Arthur CHARPENTIER - École d'été EURIA. Some characterizations of Archimedean copula L • Frank copula is the only Archimedean such that (U, V ) = (1 − U, 1 − V ) (stability by symmetry), • Clayton copula is the only Archimedean such that (U, V ) has the same copula as (U, V ) given (U ≤ u, V ≤ v) (stability by truncature), • Gumbel copula is the only Archimedean such that (U, V ) has the same copula as (max{U1 , ..., Un }, max{V1 , ..., Vn }) for all n ≥ 1 (max-stability), 44
  • 45. Arthur CHARPENTIER - École d'été EURIA. Extreme value copulas • Extreme value copulas log u C(u, v) = exp (log u + log v) A , log u + log v where A is a dependence function, convex on [0, 1] with A(0) = A(1) = 1, et max{1 − ω, ω} ≤ A (ω) ≤ 1 for all ω ∈ [0, 1] . An alternative denition is the following: C is an extreme value copula if for all z 0, 1/z 1/z C(u1 , . . . , ud ) = C(u1 , . . . , ud )z . Those copula are then called max-stable: dene the maximum componentwise of a sample X 1 , . . . , Xn , i.e. Mi = max{Xi,1 , . . . , Xi,n }. 45
  • 46. Arthur CHARPENTIER - École d'été EURIA. The joint distribution of M is P(M ≤ x) = C(F1 (x1 , . . . , Fd (xd ))n , where C is the copula of the X i 's. Since P(Mi ≤ xi ) = Fi (xi )n , it can be written P(M ≤ x) = C(P(M1 ≤ x1 )1/n , . . . , P(Md ≤ xd )1/n )n . 1/n 1/n Thus, C(u1 , . . . , ud )n is the copula of the n maximum componentwise from a sample with copula C . Example 13. : If A is constant (1 on [0, 1]), then X and Y are independent, and if A(ω) = max {ω, 1 − ω}, X and Y are comonotonic. Gumbel's copula is obtained if ( A(ω) = ((1 − ω)α + ω α + 1) 1/α), for all 0 ≤ ω ≤ 1 and α ≥ 1. 46
  • 47. Arthur CHARPENTIER - École d'été EURIA. Pickands dependence function A 1.0 0.9 0.8 0.7 0.6 0.5 0.0 0.2 0.4 0.6 0.8 1.0 Figure 16: Shape of Gumbel's dependence function A(ω). 47
  • 48. Arthur CHARPENTIER - École d'été EURIA. How to construct much more copulas ? Using geometric transformations From a given copula C, cdf of random pair (U, V ), dene • the copula of (U, 1 − V ), C(U,1−V ) (u, v) = u − C(u, 1 − v) • the copula of (1 − U, V ), C(1−U,V ) (u, v) = v − C(1 − u, v) • the copula of (1 − U, 1 − V ), the rotated or survival copula, C(1−U,1−V ) (u, v) = C ∗ (u, v) = u + v − 1 + C(1 − u, 1 − v) Note that if P(X ≤ x, Y ≤ y) = C(P(X ≤ x), P(Y ≤ y)), then P(X x, Y y) = C ∗ (P(X x), P(Y y)). 48
  • 49. Arthur CHARPENTIER - École d'été EURIA. 0.8 0.8 0.4 0.4 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 17: Using geometric transformation to generate new copulas. 49
  • 50. Arthur CHARPENTIER - École d'été EURIA. 0.8 0.8 0.4 0.4 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 18: Using geometric transformation to generate new copulas. 50
  • 51. Arthur CHARPENTIER - École d'été EURIA. 0.8 0.8 0.4 0.4 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 19: Using geometric transformation to generate new copulas. 51
  • 52. Arthur CHARPENTIER - École d'été EURIA. 0.8 0.8 0.4 0.4 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure 20: Using geometric transformation to generate new copulas. 52
  • 53. Arthur CHARPENTIER - École d'été EURIA. Using mixture of copulas Lemma 14. The set of copulas is convex, i.e. if {Cθ , θ ∈ Ω} is a collection of copulas, C(u, v) = Cθ (u, v)dΠ(θ) R is a copula, where Π is a distribution on Ω Thus C = αC1 + (1 − α)C2 denes a copula for all α ∈ [0, 1]. Example 15. Fréchet (1951) suggested a mixture of the lower and the upper bound, C(u, v) = αC − (u, v) + (1 − α)C + (u, v), for some α ∈ [0, 1]. Example 16. Mardia (1970) suggested a mixture of the lower, the upper bound, and the independent copula α2 − 2 ⊥ α2 + C(u, v) = C (u, v) + (1 − α )C (u, v) + C (u, v), α ∈ [0, 1]. 2 2 53
  • 54. Arthur CHARPENTIER - École d'été EURIA. Using distortion functions Denition 17. A distortion function is a function h : [0, 1] → [0, 1] strictly increasing such that h(0) = 0 and h(1) = 1. The set of distortion function will be denoted H. Note that h∈H if and only if h−1 ∈ H. Given a copula C, dene Ch (u, v) = h−1 (C(h(u), h(v))). If h is convex, then Ch is a copula, called distorted copula. Example 18. if h(x) = x1/n , the distorted copula is Ch (u, v) = C n (u1/n , v 1/n ), for all n ∈ N, (u, v) ∈ [0, 1]2 . if the survival copula of the (Xi , Yi )'s is C , then the survival copula of (Xn:n , Yn:n ) = (max{X1 , ..., Xn }, max{Y1 , ..., Yn }) is Ch . 54
  • 55. Arthur CHARPENTIER - École d'été EURIA. Example 19. if C(u, v) = uv = C ⊥ (u, v) (the independent copula), and φ(·) = log h(·), then Ch (u, v) = h−1 (h(u)h(v)) = φ−1 (φ(u) + φ(v)). Example 20. if h(x) = [1 − e−αx ]/[1 − e−α ] (an exponential distortion), and if C = C ⊥ , then 1 (e−αu − 1)(e−αv − 1) Ch (u, v) = − log 1 + , α e−α − 1 which is Frank copula. 55
  • 56. Arthur CHARPENTIER - École d'été EURIA. Distorted Frank copula, h(x) = x Distorted Frank copula, h(x) = x(1 2) Distorted Frank copula, h(x) = x(1 3) Distorted Frank copula, h(x) = x(1 4) Figure 21: Distorted copula, from Frank copula. 56
  • 57. Arthur CHARPENTIER - École d'été EURIA. Monte Carlo and copulas Generation of independent variables can be done using a Random function. Denition 21. Function Random should satisfy the following properties (i) for all 0 ≤ a ≤ b ≤ 1, P (Random ∈ ]a, b]) = b − a. (ii) successive calls of function Random should generate independent draws, i.e. 0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1 P (Random1 ∈ ]a, b] , Random2 ∈ ]c, d]) = (b − a) (d − c) , or more generally, dene k-uniformity for all 0 ≤ ai ≤ bi ≤ 1, i = 1, ..., k, k P (Random1 ∈ ]a1 , b1 ] , ..., Randomk ∈ ]ak , bk ]) = (bi − ai ) . i=1 Thus, one can generate easily random vectors U = (U1 , ..., Ud ) with independent component. 57
  • 58. Arthur CHARPENTIER - École d'été EURIA. The idea to generate correlated vectors U = (U1 , ..., Ud ), the idea is to use rst P(U1 ≤ u1 , . . . , Ud ≤ ud ) = P(Ud ≤ ud |U1 ≤ u1 , . . . , Ud−1 ≤ ud−1 ) ×P(Ud−1 ≤ ud−1 |U1 ≤ u1 , . . . , Ud−2 ≤ ud−2 ) ×... ×P(U3 ≤ u3 |U1 ≤ u1 , U2 ≤ u2 ) ×P(U2 ≤ u2 |U1 ≤ u1 ) × P(U1 ≤ u1 ). 58
  • 59. Arthur CHARPENTIER - École d'été EURIA. Starting from the end, P(U1 ≤ u1 ) = u1 since U1 is uniform, while P(U2 ≤ u2 |U1 = u1 ) = P(U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1|U1 = u1 ) = lim P(U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1|U1 ∈ [u1 , u1 + h]) h→0 P(u1 ≤ U1 ≤ u1 + h, U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1) = lim h→0 P(U1 ∈ [u1 , u1 + h]) P(U1 ≤ u1 + h, U2 ≤ u2 , U3 ≤ 1, . . . Ud ≤ 1) − P(U1 ≤ u1 , U2 ≤ u2 , U3 ≤ 1, . . . = lim h→0 P(U1 ∈ [u1 , u1 + h]) C(u1 + h, u2 , 1, . . . , 1) − C(u1 , u2 , 1, . . . , 1) ∂C = lim = C(u1 , u2 , 1, . . . , 1). h→0 h ∂u1 and more generally, ∂ k−1 P(Uk ≤ uk |U1 = u1 , . . . , Uk−1 = uk−1 ) = C(u1 , . . . , uk , 1, . . . , 1). ∂u1 . . . ∂uk−1 59
  • 60. Arthur CHARPENTIER - École d'été EURIA. Thus, U = (U1 , .., Un ) with copula C could be simulated using the following algorithm, • simulate U1 uniformly on [0, 1], u1 ← Random1 , • simulate U2 from the conditional distribution ∂1 C(·|u1 ), u2 ← [∂1 C(·|u1 )]−1 (Random2 ), • simulate Uk from the conditional distribution ∂1,...,k−1 C(·|u1 , ..., uk−1 ), uk ← [∂1,...,k−1 C(·|u1 , ..., uk−1 )]−1 (Randomk ), ...etc, where the Randomi 's are independent calls of a Random function. This is the underlying idea when using Cholesky decomposition. 60
  • 61. Arthur CHARPENTIER - École d'été EURIA. Example: for Clayton's copula, C(u, v) = (u−α + v −α − 1)−1/α , (U, V ) has joint distribution C if and only if U is uniform on on [0, 1] and V |U = u has conditional distribution P(V ≤ v|U = u) = ∂2 C(v|u) = (1 + uα [v −α − 1])−1−1/α . The algorithm to generate Clayton's copula is the • simulate U1 uniformly on [0, 1], u1 ← Random1 , • simulate U2 from the conditional distribution ∂2 C(·|u), u2 ← [∂1 C(·|u1 )]−1 (Random2 ), i.e. u2 ← [(Random2 )−α/(1+α − 1]u−α + 1−1/α . 1 61
  • 62. Arthur CHARPENTIER - École d'été EURIA. 1.5 0.0 0.5 1.0 1.5 2.0 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Distribution of v given u=0.3 Distribution of v given u=0.5 Generation of Clayton’s copula 0.8 0.0 0.5 1.0 1.5 0.4 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Distribution of v given u=0.8 Figure 22: Simulation of Clayton's copula. 62
  • 63. Arthur CHARPENTIER - École d'été EURIA. 500 400 / / 300 q q 200 0 100 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 !i#tribution +e - !i#tribution +e 9 4 0.8 2 0 0.4 !4 !2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 !4 !2 0 2 4 -ni:orm mar=in# Stan+ar+ ?au##ian mar=in# Figure 23: Simulation of the independent copula. 63
  • 64. Arthur CHARPENTIER - École d'été EURIA. 400 400 / / . . 200 200 0 0 010 012 014 014 015 610 010 012 014 014 015 610 !is$riu$i(n +e - !is$riu$i(n +e 7 4 015 2 0 014 !2 010 010 012 014 014 015 610 !2 0 2 4 -ni8(r9 9argins $an+ar+ =aussian 9argins Figure 24: Simulation of the comontone copula. 64
  • 65. Arthur CHARPENTIER - École d'été EURIA. 400 400 / / q q 200 200 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Distribution de - Distribution de V 0.8 2 0 0.4 !2 0.0 !4 0.0 0.2 0.4 0.6 0.8 1.0 !2 0 2 4 -niform margins tandard =aussian margins Figure 25: Simulation of the contercomonotone copula. 65
  • 66. Arthur CHARPENTIER - École d'été EURIA. 900 400 / / 300 . . 200 0 100 0 010 012 014 014 015 110 010 012 014 014 015 110 !istri'tion de - !istri'tion de 7 4 015 2 0 014 !4 !2 010 010 012 014 014 015 110 !4 !2 0 2 4 -ni:orm mr=ins Stndrd ?'ssin mr=ins Figure 26: Simulation of the Gaussian copula. 66
  • 67. Arthur CHARPENTIER - École d'été EURIA. 400 400 y y . . 200 200 0 0 010 012 014 014 015 110 010 012 014 014 015 110 D#$%u$on +e U D#$%u$on +e V 4 015 2 0 014 !2 010 010 012 014 014 015 110 !2 0 2 4 Unfo%m ma%;n# S$an+a%+ =au##an ma%;n# Figure 27: Simulation of Clayton's copula. 67
  • 68. Arthur CHARPENTIER - École d'été EURIA. 400 400 y y q q 200 200 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Distribution de U Distribution de V 4 0.8 2 0 0.4 !4 !2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 !4 !2 0 2 4 Uniform margins Standard Gaussian margins Figure 28: Simulation of Clayton's survival copula. 68
  • 69. Arthur CHARPENTIER - École d'été EURIA. 400 400 y y q q 200 200 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Distribution de U Distribution de V 4 0.8 2 0 0.4 !4 !2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 !4 !2 0 2 Uniform margins Standard Gaussian margins Figure 29: Simulation of a copula mixture. 69
  • 70. Arthur CHARPENTIER - École d'été EURIA. Copulas in nance: options on multiple assets Remark 22. Recall that Breeden Litzenberger (1978) proved that the risk neutral probability can be obtrained from option prices: consider the price of a call ∞ C(T, K) = e−rT EQ ((ST − K)+ ). Since (ST − K)+ = K 1(ST x)dx, one gets ∞ −rT C(T, K) = e Q(ST x)dx, K hence ∂C ∂P Q(ST ≤ x) = −e−rT (T, x), or Q(ST ≤ x) = −erT (T, x) ∂K ∂K where P denotes the price of a put option. 1 2 Consider an option on 2 assets, with payo h(ST , ST ). The price at time 0 is e−rT EQ (h(ST , ST )). 1 2 70
  • 71. Arthur CHARPENTIER - École d'été EURIA. Copulas in nance: call on maximum 1 2 1 2 Here the payo is h(ST , ST ) = (max{ST , ST } − K)+ . The price is then C(T, K) = e−rT EQ ((max{ST , ST } − K)+ ) 1 2 ∞ = e−rT EQ 1 2 1 − 1(max{ST , ST } ≤ x)dx K ∞ −rT 1 2 = e 1 − Q(max{ST , ST } ≤ x) dx, K 1 2 Q(ST ≤x,ST ≤x) 1 2 hence, if (ST , ST ) has copula C (under Q), then ∞ ∂P 1 ∂P 2 C(T, K) = e−rT 1 − C erT (T, x), erT (T, x) dx. K ∂K ∂K 71
  • 72. Arthur CHARPENTIER - École d'été EURIA. Copulas in nance: call on spreads 1 2 1 2 Here the payo is h(ST , ST ) = ([ST − ST ] − K)+ . The price is then ∞ −rT 1 2 −rT 2 1 C(T, K) = e EQ ((ST − ST − K)+ ) = e EQ 1(ST + K ≤ x ≤ ST )dx −∞ ∞ = e−rT 2 2 1 Q(K + ST ≤ x) − Q(ST + K ≤ x, ST ≤ x} ≤ x) dx, −∞ 1 2 Q(ST ≤x,ST ≤x+K) 1 2 hence, if (ST , ST ) has copula C (under Q), then ∞ −rT rT ∂P 2 rT ∂P 1 rT ∂P 2 C(T, K) = e e (T, x−K)−C e (T, x), e (T, x − K) dx. −∞ ∂K ∂K ∂K 72
  • 73. Arthur CHARPENTIER - École d'été EURIA. Copulas in nance: bonds on option prices Using Tchen's inequality, it is possible to derive bounds for options when the payo is supermodular. 73
  • 74. Arthur CHARPENTIER - École d'été EURIA. Agenda • General introduction Modelling correlated risks • A short introduction to copulas • Quantifying dependence • Statistical inference • Agregation properties 74
  • 75. Arthur CHARPENTIER - École d'été EURIA. Natural properties for dependence measures Denition 23. κ is measure of concordance if and only if κ satises 1. κ is dened for every pair (X, Y ) of continuous random variables, 2. −1 ≤ κ (X, Y ) ≤ +1, κ (X, X) = +1 and κ (X, −X) = −1, 3. κ (X, Y ) = κ (Y, X), 4. if X and Y are independent, then κ (X, Y ) = 0, 5. κ (−X, Y ) = κ (X, −Y ) = −κ (X, Y ), 6. if (X1 , Y1 ) P QD (X2 , Y2 ), then κ (X1 , Y1 ) ≤ κ (X2 , Y2 ), 7. if (X1 , Y1 ) , (X2 , Y2 ) , ... is a sequence of continuous random vectors that converge to a pair (X, Y ) then κ (Xn , Yn ) → κ (X, Y ) as n → ∞. 75
  • 76. Arthur CHARPENTIER - École d'été EURIA. As pointed out in Scarsini (1984), most of the axioms are self-evident . Ifκ is measure of concordance, then, if f and g are both strictly increasing, then κ(f (X), g(Y )) = κ(X, Y ). Further, κ(X, Y ) = 1 if Y = f (X) with f almost surely strictly increasing, and analogously κ(X, Y ) = −1 if Y = f (X) with f almost surely strictly decreasing (see Scarsini (1984)). 76
  • 77. Arthur CHARPENTIER - École d'été EURIA. Association measures: Kendall's τ and Spearman's ρ Rank correlations can be considered, i.e. Spearman's ρ dened as 1 1 ρ(X, Y ) = corr(FX (X), FY (Y )) = 12 C(u, v)dudv − 3 0 0 and Kendall's τ dened as 1 1 τ (X, Y ) = 4 C(u, v)dC(u, v) − 1. 0 0 Historical version of those coecients Spearman's rho was introduced in Spearman (1904) as ρ(X, Y ) = 3[P((X1 − X2 )(Y1 − Y3 ) 0) − P((X1 − X2 )(Y1 − Y3 ) 0)], where (X1 , Y1 ), (X2 , Y2 ) and (X3 , Y3 ) denote three independent versions of (X, Y ) (see Nelsen (1999)). 77
  • 78. Arthur CHARPENTIER - École d'été EURIA. Similarly Kendall's tau was not dened using copulae, but as the probability of concordance, minus the probability of discordance, i.e. τ (X, Y ) = 3[P((X1 − X2 )(Y1 − Y2 ) 0) − P((X1 − X2 )(Y1 − Y2 ) 0)], where (X1 , Y1 ) and (X2 , Y2 ) denote two independent versions of (X, Y ) (see Nelsen (1999)). 4Q Equivalently, τ (X, Y ) = 1 − 2 − 1) where Q is the number of inversions n(n between the rankings of X and Y (number of discordance). 78
  • 79. Arthur CHARPENTIER - École d'été EURIA. 1.5 Concordant pairs Discordant pairs 1.5 1.0 1.0 0.5 0.5 Y Y 0.0 0.0 !0.5 !0.5 !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 !2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0 X X Figure 30: Concordance versus discordance. 79
  • 80. Arthur CHARPENTIER - École d'été EURIA. The case of the Gaussian random vector If (X, Y ) is a Gaussian random vector with correlation r, Kruskal then ( (1958)) 6 r 2 ρ(X, Y ) = arcsin and τ (X, Y ) = arcsin (r) . π 2 π 80
  • 81. Arthur CHARPENTIER - École d'été EURIA. Link between Kendall's tau and Spearman's rho Note that Kendall's tau and Spearman's are linked: it is impossible to have at the same time τ ≥ 0.4 and ρ = 0. Hence ρ and τ satisfy 3τ − 1 1 + 2τ − τ 2 ≤ρ≤ if τ ≥0 2 2 τ 2 + 2τ − 1 1 + 3τ ≤ρ≤ if τ ≤ 0. 2 2 which yield the area given below. 81
  • 82. Arthur CHARPENTIER - École d'été EURIA. 1.0 0.5 Rho de Spearman 0.0 -0.5 -1.0 -1.0 -0.5 0.0 0.5 1.0 Tau de Kendall Figure 31: Admissible region of ρ and τ. 82
  • 83. Arthur CHARPENTIER - École d'été EURIA. From Kendall'tau to copula parameters Kendall's τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.16 0.31 0.45 0.59 0.71 0.81 0.89 0.95 0.99 1.00 Gumbel θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.57 2.48 4.00 6.60 11.4 21.1 44.1 115 530 +∞ Clayton θ 0.00 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 +∞ Frank θ 0.00 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 +∞ Joe θ 1.00 1.19 1.44 1.77 2.21 2.86 3.83 4.56 8.77 14.4 +∞ Galambos θ 0.00 0.34 0.51 0.70 0.95 1.28 1.79 2.62 4.29 9.30 +∞ Morgenstein θ 0.00 0.45 0.90 - - - - - - - - 83
  • 84. Arthur CHARPENTIER - École d'été EURIA. From Spearman's rho to copula parameters Spearman's ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Gaussian θ 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.72 0.81 0.91 1.00 Gumbel θ 1.00 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 +∞ A.M.H. θ 1.00 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 +∞ Plackett θ 1.00 1.35 1.84 2.52 3.54 5.12 7.76 12.7 24.2 66.1 +∞ Clayton θ 0.00 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 +∞ Frank θ 0.00 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 +∞ Joe θ 1.00 1.12 1.27 1.46 1.69 1.99 2.39 3.00 4.03 6.37 +∞ Galambos θ 0.00 0.28 0.40 0.51 0.65 0.81 1.03 1.34 1.86 3.01 +∞ Morgenstein θ 0.00 0.30 0.60 0.90 - - - - - - - 84
  • 85. Arthur CHARPENTIER - École d'été EURIA. Alternative expressions of those coecients Note that those coecients can also be expressed as follows [0,1]×[0,1] C(u, v) − C ⊥ (u, v)dudv ρ(X, Y ) = (1) [0,1]×[0,1] C + (u, v) − C ⊥ (u, v)dudv (the normalized average distance between C and C ⊥ ), for instance. A dependence measure in higher dimension ? From equations 1 and ??, it is possible to obtain a natural mutlidimensional extention (see Wolf (1980), Joe (1990) or Nelsen (1996)), [0,1]d C(u) − C ⊥ (u)du d+1 ρ(X) = = 2d C(u)du − 1 [0,1]×[0,1] C + (u) − C ⊥ (u)du 2d − (d + 1) [0,1]d (2) and similarly 1 τ (X) == d−1 2d C(u)dCu − 1 (3) 2 − 1) [0,1]d 85
  • 86. Arthur CHARPENTIER - École d'été EURIA. Note that a lower bound for τ is then −1/(2d−1 − 1), while it is (2d − (d + 1)!)/(d!(2d − (d + 1))). In dimension 3, Kendall's τ is the average of the three 2-dimensional Kendall's τ, 1 τ (X, Y, Z) = (τ (X, Y ) + τ (X, Z) + τ (Y, Z)). 3 86
  • 87. Arthur CHARPENTIER - École d'été EURIA. Tail concentration functions Venter (2002) suggest to use several Tail Concentration Functions Denition 24. For lower tails, dene L(z) = P(U z, V z)/z = C(z, z)/z = P r(U z|V z) = P r(V z|U z), and for upper tails, R(z) = P(U z, V z)/(1 − z) = P r(U z|V z). Joe (1990) uses the term upper tail dependence parameter for R = R(1) = limz→1 R(z), and lower tail dependence parameter for L = L(0) = limz→0 L(z). 87
  • 88. Arthur CHARPENTIER - École d'été EURIA. Functional correlation measures 1 1 Consider also Kendall's tau, dened as −1 + 4 0 0 C(u, v)dC(u, v). Denition 25. The cumulative tau can be dened as z z J(z) = −1 + 4 C(u, v)dC(u, v)/C(z, z)2 . 0 0 88