Aisi 4130

7,755 views

Published on

Aisi 4130

Published in: Technology, Business
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
7,755
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
187
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Aisi 4130

  1. 1. AISI 4130高压管线焊接学习HP Piping Welding互联网书籍-不占用纸浆的书籍(请不要打印)-其实我们可以更加环保,只要大家在意点! AISI A4130 焊接学习互联网书籍
  2. 2. Contributors;Charlie Chong 庄查理 Hejungang 贺俊钢 Li XueLiang 李学良2010 上海 2010 年韩国 2010 浙江海盐目录;1. 热处理与性能2. 焊接工艺3. 材料复验与评定照片4. 制作工艺照片5. 材料知识6. 视频学习7. 规范收集 AISI A4130 焊接学习互联网书籍
  3. 3. AISI 4130-热处理与性能AISI 4130 -Medium-carbon ultrahigh-strength steels4130 SteelAISI/SAE 4130 is a water-hardening alloy steel of low-to-intermediate hardenability. It retains good tensile, fatigue,and impact properties up to about 370 °C (700 °F); however, it has poor impact properties at cryogenic temperatures.This steel is not subject to temper embrittlement and can be nitrided. It usually is forged at 1100 to 1200 °C (2000 to2200 °F); finishing temperature should never fall below 980 °C (1800 °F). Available as billet, bar, rod, forgings, sheet,plate, tubing, and castings, 4130 steel is used to make automotive connecting rods, engine mounting lugs, shafts,fittings, bushings, gears, bolts, axles, gas cylinders, airframe components, hydraulic lines, andnitrided machinery parts.Heat Treatments. The standard heat treatments that apply to 4130 steel are: Normalize: Heat to 870 to 925 °C (1600 to 1700 °F) and hold for a time period that depends on section thickness; air cool. Tempering at 480 °C (900 °F) or above is often done after normalizing to increase yield strength Anneal: Heat to 830 to 860 °C (1525 to 1575 °F) and hold for a time period that depends on section thickness or furnace load; furnace cool Harden: Heat to 845 to 870 °C (1550 to 1600 °F) and hold, then water quench; or heat to 860 to 885 °C (1575 to 1625 °F); hold and then oil quench. Holding time depends on section thickness Temper: Hold at least ½ h to 2h at 200 to 700 °C (400 to 1300 °F); air cool or water quench. Tempering temperature and time at temperature depend mainly on desired hardness or strength level Spheroidize: Heat to 760 to 775 °C (1400 to 1425 °F) and hold 6 to 12 h; cool slowlyAISI 4130 各国代号Category SteelClass Alloy steel 合金钢Type StandardCommon Chromium-molybdenum steel 铬钼钢NamesDesignations France: AFNOR 25 CD 4 (S) Germany: DIN 1.7218 Italy: UNI 25 CrMo 4 , UNI 25 CrMo 4 KB Japan: JIS SCCrM 1 , JIS SCM 2 Sweden: SS 2225 United Kingdom: B.S. CDS 110 AISI A4130 焊接学习互联网书籍
  4. 4. United States: AMS 6350 , AMS 6350D , AMS 6351A , AMS 6356 , AMS 6360 , AMS 6360F , AMS 6361 , AMS 6362 , AMS 6370 , AMS 6370F , AMS 6371 , AMS 6371D , AMS 6373 , AMS 6373A , ASTM A322 , ASTM A331 , ASTM A505 , ASTM A513 , ASTM A519 , ASTM A646 , MIL SPEC MIL-S-16974 , SAE J404 , SAE J412 , SAE J770 , UNS G41300AISI 和 ASTM, AMS(军), Mil(军), SAE 等是美国的行业标准,其推行机构不同,但是指向材料的含义是一样的。AISI-美国钢铁学会标准,SAE-美国汽车行业, ASTM-美国材料与试验协会标准。AMS Mil(军) 在美国还有很多其他的标准推行机构,ASME 美国机械 工程师协会标准等. 然而民用规范如果被套上 ANSI 美国国家标准,身价就不一样了.带 ANSI 的是国家认可的规范. 民用行业规范是行业学会推广的规范,有的被国家认可,有的没被个别认可. 日本也有这种情况发生,有些可能相当于中国原来的“部标”,只是他们那些没有统一. 补充:它们的成分可能会有微小的差异,但性能差别不大,所以可以不作区别。其他引用 AISC 4130 材料的规范 有 The following specifications cover Alloy Steels4130;AISI 4130, AMS 6348, AMS 6350, AMS 6351, AMS 6360, AMS 6361, AMS 6362, AMS 6370, AMS 6371,AMS 6373, AMS 6374, AMS 6528, AMS 7496, ASTM A29, ASTM A322, ASTM A331, ASTM A506,ASTM A507, ASTM A513, ASTM A519, ASTM A646 (Forging - Open Die), ASTM A752, ASTM A829(Plate), MIL S-18729, MIL S-6758, SAE J1397, SAE J404, SAE J412, UNS G41300Composition 化学成分Element Weight % C 0.28-0.33 Mn 0.40-0.60 P 0.035 (max) S 0.04 (max) Si 0.15-0.30 Cr 0.80-1.10 Mo 0.15-0.25 AISI A4130 焊接学习互联网书籍
  5. 5. Mechanical Properties (退火 865 ° C 状态) Conditions 状态 Properties 性能 T 试验温度 (°C) Treatment 热处理状态Density (×1000 kg/m3) 7.7-8.03 25Poissons Ratio 0.27-0.30 25Elastic Modulus (GPa) 190-210 25Tensile Strength (Mpa) 560.5Yield Strength (Mpa) 360.6 25 annealed at 865°CElongation (%) 28.2Reduction in Area (%) 55.6Hardness (HB) 156 25 annealed at 865°CImpact Strength (J) 61.7 25 annealed at 865°C(Izod)AISI 4130- Thermal Properties Conditions Thermal Conductivity (W/m-K) T (°C) Treatment 100 42.7 300 40.6 500 37.3 700 31 1000 28.1 1200 30.1 AISI A4130 焊接学习互联网书籍
  6. 6. AISI 4130- Thermal Properties Conditions Specific Heat (J/kg-K) T (°C) Treatment 50-100 477 150-200 515 250-300 544 350-400 595 450-500 657 550-600 737 650-700 825 750-800 833AISI 4130-Electric Properties Conditions Electrical Resistivity (10-9-m) T (°C) Treatment 20 223 100 271 200 342 400 529 600 786 800 1103 1000 1171 1200 1222 AISI A4130 焊接学习互联网书籍
  7. 7. ASTM A4130 原材料在不同的热处理下会产生不同相应的机械性能,下面为参考:AISI 4130-热处理与抗拉强度关系 Conditions Tensile PropertiesT (°C) Treatment Tensile Strength (MPa) 560.5 Yield Strength (MPa) 360.6 25 annealed at 865°C Elongation (%) 28.2 Reduction in Area (%) 55.6 Tensile Strength (MPa) 668.8 Yield Strength (MPa) 436.4 25 normalized at 870°C Elongation (%) 25.5 Reduction in Area (%) 59.5 Tensile Strength (MPa) 1627 Yield Strength (MPa) 1462 25 water quenched, fine grained, tempered at 205°C Elongation (%) 10 Reduction in Area (%) 41 Tensile Strength (MPa) 1496 Yield Strength (MPa) 1379 25 water quenched, fine grained, tempered at 315°C Elongation (%) 11 Reduction in Area (%) 43 Tensile Strength (MPa) 1282 Yield Strength (MPa) 1193 25 water quenched, fine grained, tempered at 425°C Elongation (%) 13 Reduction in Area (%) 49 Tensile Strength (MPa) 1034 Yield Strength (MPa) 910 25 water quenched, fine grained, tempered at 540°C Elongation (%) 17 Reduction in Area (%) 57 25 water quenched, fine grained, tempered at 650°C Tensile Strength (MPa) 814 AISI A4130 焊接学习互联网书籍
  8. 8. Yield Strength (MPa) 703 Elongation (%) 22 Reduction in Area (%) 64AISI 4130-冲击与热处理关系 Conditions Impact Energy (J) T (°C) Treatment Method Value 25 annealed at 865°C Izod 61.7 25 normalized at 870°C Izod 86.4AISI 4130-硬度与热处理关系 Conditions Hardness T (°C) Treatment Method Value 25 annealed at 865°C HB 156 25 normalized at 870°C HB 197 25 water quenched, fine grained, tempered at 205°C HB 467 25 water quenched, fine grained, tempered at 315°C HB 435 25 water quenched, fine grained, tempered at 425°C HB 380 25 water quenched, fine grained, tempered at 540°C HB 315 25 water quenched, fine grained, tempered at 650°C HB 245 AISI A4130 焊接学习互联网书籍
  9. 9. AISI 4130-焊接程序以水淬,晶体细粒化,650℃回火为例子 产生的抗拉 814MPa 屈服 703Mpa在母材化学成分的微调下这抗拉与屈服能上下调动大约 10~15Mpa.设计工程师在设计高压管线时应当考虑到下面因素; 1. 焊后热处理温度要求 2. NACE MR01-75 要求 3. 硬度要求值得一提的是 ASTM A4130 不在 ASME B31.3 Table A-1 或 ASME IX QW/QB422 的推荐材料单里, A4130 归类为 P4A3 是不对的 B31.3 Table 331.1.1 要求的 704-746°C 焊后热处理没必要执行.焊后热处理的温度不允许高于母材调质温度.太高的焊后热处理温度要求必须提高母材调质温度,这样就降低材料抗拉与屈服从而放弃采用 A4130 高强度的原宗旨.碳素钢和低合金钢(包含 A4130), 按照 NACE 5.3.1.2 ,5.3.1.3 和 5.3.1.4 下面是这三章的大意; 1. 不允许大于 1%Ni 镍含量的焊接材料. 2. 22HRC 硬度上线能用合适的焊接工艺来达到. 3. 相关焊接工艺支持焊接评定必须文档记录相关的焊接参数这包含母材焊材的化学成分,焊接电流 参数,实际测量到的母材,焊肉与热影响区的硬度. 4. 焊评必须说明如何确保实际生产工件符合 22HRC. 5. 如果以上 1~4 不能确保-必须执行焊后热处理不少于 621℃ 6. 在能确保 1~4 的条件下甚至不需要任何热处理也符合 NACE MR01-75 要求(比如 API 5LB 管材用 于带硫化氢低压管线).回到主题 A4130 不热处理焊后硬度是不可能小于 22HRC 的,虽然焊后热处理是必要的,温度必没有特别规范要求.NACE MR01-75,,材料 3.2.2.1, 10.1 与 Table D2 只要 SCC/SSC NACE TM0177 应力腐蚀裂纹/硫化物应力开裂实验合格高硬度母材 30HRC 是能接受的.如何达到 22HRC总所周知“质量不是检出来的”生产车间的投入是必要的设备投入也是 成功的关键一个常见的焊接错误是在正常预热焊接,焊接完毕后,在预热温度下直接焊后热处理。这个错误常发生在当焊接出现裂缝的情况下。 AISI A4130 焊接学习互联网书籍
  10. 10. 这个错误往往会加剧裂缝的发生!。焊接完毕后,应当让焊缝完全的冷却低于 Mf 马氏体完全变态温度(甚至用 。干二氧化碳冷却更好).这样确保热处理前没有残余奥氏体和热处理后后的晶体为回火马氏体焊后不冷却直接的热处理,残余奥氏体当热处理冷却后,转变为马氏体而不是回火马氏体。这马氏体也裂缝产生重要因素之一.基本设计要求;ASME B31.3 高压管线: 抗拉 724Mpa 和 屈服 586Mpa 冲击温度 -20°C 母材焊材硬度 22HRC 符合 NACEMR01-75相应的热处理与焊接要求;母材热处理水淬,晶体细粒化,630℃~650℃回火焊后热处理温度不能高于 630℃, 焊后热处理温度一般低于 25℃-用 615℃ (注 1)解说;热处理“保温时间”对机械性能不会有很大的影响,反之“最高温度”对机械性能的影响较大)注:根部与热填充焊接焊材 CHG-55B2 明显的相对低抗拉与屈服是正确的选择.在综合评定试件达到设计基本要求下,降低根部强度能确保根部硬度符合要求. 生产线上非破坏性的测试硬度只能对管线盖面焊接测试对根部焊接因在管线内侧而不能测试.注: AISI A4130 焊接学习互联网书籍
  11. 11. WPS 焊接评定http://bbs.51cysb.com/thread-57376-1-1.htmlWeld / Layer Process Filler Metal Current Travel Inter-pass Heat Name Lot Diameter polarity Ampere Voltage Speed Temperature Input mm A V cm/min °C KJ/cmRoot 根 1 GTAW CHG-55B2 2.4 DCEN 114 15 7.8 207 13.2Fill 填 2* GTAW CHG-55B2 2.4 DCEN 140 16 10.8 208 12.4充 3 SMAW CHE 707 4.0 DCEP 161 24 10 212 23.2 4~8 SMAW CHE 707 4.0 DCEP 171 25 11.4 228 22.3Cap 盖 9 SMAW CHE 707 4.0 DCEP 160 24 17.8 220 12.9面 10 SMAW CHE 707 4.0 DCEP 160 24 17.8 222 12.9 11 SMAW CHE 707 4.0 DCEP 160 24 17.8 230 12.9Note 注 2*: 第二道也叫 hot-pass 和根部焊接同个时候完成以确保一定的强度支撑坡口组对CHG-55B2 化学成分C Mn Si S P Cr Mo Cu0.08 1.10 0.52 0.012 0.015 1.25 0.50 0.17CHG-55B2 机械性能抗拉强度 бb(MPa) 屈服点 б0.2(MPa) 伸长率 δ5(%) 冲击功 Akv(室温)J 试验条件620 505 23 80 690℃×1hCHG-55B2 符合:JIS YGT1CM 相当:GB/T ER55-B2 AWS ER80S-B2 说明:CHG-55B2 是 1.25%Cr-0.5%Mo系珠光体型耐热钢用钨极氩焊丝(TIG 焊丝).该焊丝具有良好的可焊性和综合机械性能.参照本说明书之《MIG、TIG 焊丝及不锈钢弧焊丝》“接注意事项” 应条款及以下说明:1. 保护条件建议:请采用纯氩气体;保护气体流量:电流在 100-200A 时 9-14L/min、电流在 200-300A 时 14-18L/min;钨极伸出长度约为 3-5mm、弧长 1-3mm;风速限制≤1.0M/s;建议在焊接区背面通氩气保护。 预热及道间温度要求控制在 180-300℃之间,焊后热处理温度应在 620-690℃之间。为了保证焊缝金属强度, 在 620℃温度下回火时间不应超过 30h,否则相应降低回火温度。2. 焊接线能量的增大将导致焊接头晶粒粗大,从而严重恶化焊接接头的综合机械性能。建议采用小线能量焊 接达到细化晶粒提高性能的目的(该建议是建立在焊前预热、道间温度控制在≥180℃条件下,目的是预防 马氏体淬硬组织的过多生成。 AISI A4130 焊接学习互联网书籍
  12. 12. 3. 以上 1-3 条之焊接方法、条件及规范的建议仅供参考,用户在将焊丝用于正式产品焊接前应根据自身特点 进行工艺评定。4. 焊丝入厂后应存放在干燥通风环境中。不要随意打开防潮包装,一旦打开应尽快用完。在运输及堆放焊丝 时应小心不要弄坏防潮包装。焊丝存放时间不宜过长。焊接前应严格清除焊接区的油、锈、水分等杂质。CHE707(J707)符合:GB E7015-D2相当:AWS E10015-G说明:CHE707 是低氢钠型药皮的低合金钢焊条,采用直流反接。 用途:用于焊接 15MnMoV、14MnMoVB、18MnMnNb 等。焊后结构可在焊态或回火(550-650℃)条件下工作。 C Mn Si S P Mo ≤0.15 1.65-2.00 ≤0.60 ≤0.035 ≤0.035 0.25-0.45熔敷金属力学性能:(620℃×1h 回火) 抗拉强度 屈服点 伸长率(δ5) Akv 冲击功(J) (бb)MPa (бs)MPa % -30℃ ≥690 ≥590 ≥15 ≥27参考电流:(DC+) 焊条直径 2.0 2.5 3.2 4.0 5.0 5.8 (mm)焊接电流(A) 40-70 60-90 80-110 130-170 160-220 210-260 注意事项:1. 焊前焊条须经 350~380℃烘焙 1 小时,随烘随用。2. 焊前必须对焊件清除铁锈、油污、水份等杂质。3. 焊接时必须用短弧操作,以窄道焊为宜。NACE 01-75 2003 规定对于碳钢和低合金钢要求; 3.2.1 所有碳钢和低合金钢是可以接受的最高硬度为 22HRC在以下条件下(一)含有少于 1%的镍 (二) 冷锻或其他制造工艺,在工件外层纤维永久变形结果大于 5%时必须热应力消除. AISI A4130 焊接学习互联网书籍
  13. 13. WPS No: 2009-001 Welding Procedure Specification Rev 版次:1 焊接工艺规程(WPS) SHEET: 1 OF 2Pre’d 编制人: Date 日期App’d 批准人: Date 日期PQR No. 工艺评定报告编号 : HP2009-001Welding Method 焊接方法:■SMAW ■GTAW □GMAW □FCAW □SAW Other 其它Type 机械化程度 :■Manual 手工 □semi-automatic 半自动 □Automatic 自动Applicable Code 标准: ASME-IX Detail 详图:Joints 焊接接头(QW-402): 接头形式简图: Joint Detail:Joint Design 坡口形式: See Detail 见详图Backing 衬垫: Yes 有□ NO 无■Backing Material(Type)衬垫材料(型式) □金属 □不熔金属 □非金属 □其它材料 Metal Nonfusing Metal Nonmetallic OtherNACE MRO175-2005 Compliance ■YES □NOBase Metal 母材(QW-403):P-No. 类别号 - Group No.组号 - to 与 P-No.与类别号 - Group No.组号 -or 或 Specification type and grade 钢号和等级 ASTM A519 -4130to 与 Specification type and grade 钢号和等级 ASTM A519 -4130or 或 Chem.Analysis and Mech.Prop.化学成分和力学性能 -to 与 Chem.Analysis and Mech.Prop.化学成分和力学性能 -Thickness 厚度范围:Base Metal:Groove 对接焊缝 5~60mm(without CVN) / 16~60mm(with CVN)Fillet 角焊缝 UNLIMITED 不限Pipe Dia. 管径: UNLIMITED 不限 Fillet 角焊缝 UNLIMITED 不限Other 其他 每层焊道不允许超过 13mm ( No Pass Greater than 13mm)Filler Metals 焊接材料(QW-404): SAW SMAWSFA No. AWS A5.28 AWS A5.5AWS NO.分类号 CHG-55B2 (ER80S-B2) CHE707( E10015-D2 )F-NO. 6 4A-NO. 11 11Size of Filler Metals 焊条尺寸: 2.0~3.0mm 2.5~5.0mmWeld Metal Thickness Range 熔敷金属厚度范围:Groove 坡口焊缝 ≤8mm ≤52mmFillet 角焊缝 all allElectrode-Flux(Class)焊丝-焊剂(分类号) - -Flux Trade 焊剂商标 - -Consumable Insert 可熔化嵌条 - -Other 其它 - -
  14. 14. WPS No: Welding Procedure Specification WPS2009-001 Rev 版次:0 焊接工艺规程(WPS) SHEET: 2 OF 2Position 焊接位置(QW-405) PWHT 焊后热处理(QW-407) Temp. Range 温度范围 620~630 ℃Position(s) of Groove 坡口位置:UNLIMITED Time Range 保温时间 Min 2h (1HR/INCH)Welding Progression 焊接方向: ■ Other 其它: Electric heating 电加热带 Uphill 向上 □Downhill 向下Position(s) of Fillet 角焊缝位置: UNLIMITEDPreheat 预热(QW-406) Gas 气体(QW-408) (含量百分比 Per. composition)Preheat Temp. Min.最低的预热温度 165~230 ℃ Gas(es) Mixture Flow RateInterpass Temp. Max 最大层间温度 ≤240 ℃ 气体 混合比 流量Preheat Maintenance 预热保持方式 Shielding 保 护 气 Ar Pure Gas(99.9%) 12-25L-Min Electric heating 电加热带 Trailing 尾部保护气 - - - Backing 背部保护气 - - -Electrical Characteristics 电特性(QW-409)Current 电流种类 ■DC 直流 □AC 交流 Type Polar 极性: ■ EP 正极 ■ EN 正极安培(范围)Amps Range See Table Below 伏特 Volts( Range) See Table Below Filler Metal Current 热输入 Welding Travel Speed (Weld layer s) 焊接材料 焊接电流 Volt. Heat Process 焊接速度 焊缝层数 Class Dia. Polar Amp. 电压 (V) impact 焊接方法 (cm-min) 商标 直径(mm) 极性 电流(A) (KJ/mm) ROOT(1) GTAW CHG-55B2 2.5 DCEN 80~120 10~15 5~8 1.2~2.7 2 GTAW CHG-55B2 2.5 DCEN 80~120 10~15 5~8 1.2~2.7 3 SMAW CHE 707 3.2 DCEP 120~180 20~28 5~10 2.3~2.94-其余 Other SMAW CHE 707 4.0 DCEP 120~180 20~28 5~10 2.4~4.1 CAP SMAW CHE 707 3.2 DCEP 120~180 20~28 5~10 2.3~2.9Tungsten Electrode Size and Type 钨极规格及类型Tungsten Electrode Size 钨极规格: φ2.5 Type 类型: Cerium Tungsten Electrode 铈钨极Mode of Metal Transfer for GMAW 熔化极气体保护焊熔滴过渡形式:□Spray 喷射过渡 □Short 短路过渡Electrode Wire Feed Speed Range 焊丝送进速度范围 - .Technique 技术措施(QW-410)String or Weave Bead 摆动焊或不摆动焊接: □Weave 摆动焊 ■String 不摆动Orifice or Gas Cup Size 喷孔或喷嘴尺寸 - mmInitial and Interpass Cleaning 焊前清理或层间清理:Clean rim of groove,remove dirt 清理坡口边缘,去除铁锈,油污,水分等Method of Back Gouging 背部清根方法 NA .Oscillation 摆动方式: String 不摆动Contact Tube To Work Distance 导电嘴与工件距离: -Pass 多道焊或单道焊 : ■Multiple 多道焊 □ Single 单道焊Electrode 多丝焊或单丝焊: □Multiple 多丝焊 ■Single 单丝焊Peening 锤击: □Yes 有 ■No 无Travel Speed Range 焊接速度范围 5~10cm-minOther 其他
  15. 15. Welding Procedure Qualification Record PQR No: HP2009-001 焊 接 工 艺 评 定 报 告 ( PQR ) SHEET:1 OF 2Welding Process 焊接方法: ■SMAW ■GTAW □GMAW □FCAW □SAW Other 其它Types 机械化程度:■Manual 手工 □Semi-automatic 半自动 □ Automatic 自动Base MetalS 母材(QW-403) 接头形式简图: Joint Detail:Material Spec.材料标准号: ASTM A519Type or Grade 型号和等级: 4130P-No. / to 与 P-No.类 / 相焊Thickness of Test Coupon 厚度: 30mmDiameter of Test Coupon 直径: φ141.3mmOther 其他: /Filler Metals 填充金属(QW-404) Gas 气体(QW-408) 含量百分比 Per. compositionSFA Spec. AWS A5.28 AWS A5.5 Gas(es) Mixture Flow RateAWS Classification CHG-55B2 CHE707 气体 混合比 流量 (ER80S-B2) (E10015-D2 ) Shielding 保护气 Ar Pure Gas(99.9%) 12-22l/minF - NO. 6 4 Trailing 尾部保护气 / / /A - NO. 11 11 Backing 背部保护气 / / /Size 焊材规格: φ2.5m φ3.2/φ4.0mmOther 其它: GTAW SMAWWeld Metal Thickness熔敷金属厚度 GTAW:4.0mm SMAW:27.5mmPosition 焊接位置(QW-405) Electrical Characteristics 电特性(QW-409)Position of Groove 对接焊缝位置: 6G Current 电流种类: ■DC 直流 □AC 交流Welding Progression 焊接方向:■Uphill 向上□Downhill 向下 Polarity 极性: GTAW ■DCEN 直流正接Other 其它: N/A SMAW ■DCEP 直流反接 Amp.焊接电流(A):GTAW:80-120;SMAW:120-180Preheat 预热(QW-406)Preheat Temp. 预热温度: 165 ℃ Volt.电压(V): GTAW10-15;SMAW:20-28Interpass Temp. 层间温度: 165~230 ℃ Tungsten Electrode Size 钨极尺寸: 2.5 mmOther 其它: Electric heating 电加热带 Other 其他 /PWHT 焊后热处理(QW-407) Technique 技术措施(QW-410)Temperture 温度: 620~630 ℃. Travel Speed 焊接速度: 5-10 cm/minTime 恒温时间: 2 h String or Weave Bead■ String 不摆动 :□Weave 摆动Other 其它: Electric heating 电加热带 Oscillation 横摆参数 / Pass 多道焊或单道焊:■Multi 多道焊 □Single 单道焊 Single or Multiple Eletrodes: □Multiple 多丝焊 ■Single 单丝焊 Other 其他: /
  16. 16. Welding Procedure Qualification Record PQR No: HP2009-001 焊 接 工 艺 评 定 报 告 ( PQR ) SHEET:2 OF 2Tensile Test 拉伸试验(QW-150) Ultimate Total δs δb Specimen No. Width Thickness Area Failure Location 2) Load 屈服强度 抗拉强度 试样编号 宽(mm) 厚(mm) 面积(mm 断裂部位和特征 断裂载荷(KN) (Mpa) (Mpa) HP2009-001-1 30.50 19.22 586 429 621 725 Weld Broken/Ductile Fracture HP2009-001-2 29.18 18.78 548 406 623 735 Weld Broken/Ductile FractureGuided Bend Tests 导向弯曲试验(QW-160) Specimen No. 试样编号 Type and Figure 类型 弯心半径(mm)Bend Radius 弯曲角度(°)Bend Angle Result 结论 HP2009-001-3 侧弯 Side Bend 4t 180 合格 Acceptable HP2009-001-4 侧弯 Side Bend 4t 180 合格 Acceptable HP2009-001-5 侧弯 Side Bend 4t 180 合格 Acceptable HP2009-001-6 侧弯 Side Bend 4t 180 合格 AcceptableToughness Tests 冲击试验(QW-170) Impact Values Notch Location Specimen Size Test Temp. 落锤试验 Specimen No. 试样编号 冲击吸收功 缺口位置 试样尺寸 试验温度(℃) (Y/N) J %Shear 剪切面 Mils10-3in. HP2009-001-W-1 焊缝中心 Welding center 10×10×55 -20 28 / / Y HP2009-001-W-2 焊缝中心 Welding center 10×10×55 -20 31 / / Y HP2009-001-W-3 焊缝中心 Welding center 10×10×55 -20 32 / / Y HP2009-001-H-1 热影响 Heat affect zone 10×10×55 -20 217 / / Y HP2009-001-H-2 热影响 Heat affect zone 10×10×55 -20 135 / / Y HP2009-001-H-3 热影响 Heat affect zone 10×10×55 -20 228 / / Y HP2009-001-M-1 母材 Base Metal 10×10×55 -20 196 / / Y HP2009-001-M-2 母材 Base Metal 10×10×55 -20 200 / / Y HP2009-001-M-3 母材 Base Metal 10×10×55 -20 200 / / Y Fillet-Weld Test 角焊缝试验(QW-180)Result-Satisfactory:结果是否满意:Yes 是 □ NO 否□ Penetration into Parent Metal 熔合母材: Yes 是□ NO 否□Macro-Result 宏观检验结果: ACC Other Test 其它试验Type of Test 试验类型: RT:ASME V ACCDeposit Analysis 熔敷金属成分: /Other 其它: Hardness Test ACC Specimen No. Hardness(HB) Remark 试样编号 Material Heat affect zone Welding bead Heat affect zone Material 207 212 221 221 207 203 up HP2009-001-8 205 202 215 212 196 198 center 197 213 218 216 210 214 underComments 说明: The detail data see the hardness test report .Welder 李珍 Ms. Li Zhen Clock No. H472 Weld Date 2009.03.19焊工姓名: 李滨 Mr. Li Bin 焊工代号: 537 焊接日期:Test conducted by 试验执行人: 姜焕锦 Mr Jiang Huanjin Laboratory Test No.实验室编号 2008-462We certify that the statements in this record are correct and that the test welds were prepared,welded,and tested in accordance withthe requirements of Section IX of the ASME Code。兹证明本报告所述均属正确,并且试验是根据 ASME 规范第 IX 卷的要求进行试件的准备、焊接和试验的。 Manufacturer JCCCSH DATE 2009-4-7 By 李学良 Mr. Li Xueliang
  17. 17. AISI 4130-材料复验与评定照片30CrMo 金相图 淬火/回火资料不详100x 条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体400x 条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体 AISI A4130 焊接学习互联网书籍
  18. 18. 国外接受 A4130 材料在上海复验A4130 金相图 淬火/回火资料不详 100x 500x 1000xWidmanstätten ferrite with globular troostite and sorbite and some bainite条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体Widmanstätten ferrite-白色条状魏氏体铁素体.globular troostite-黑色球状费氏体.Sorbite-黑色在条状之间索氏体bainite-少量的贝氏体(回火马氏体状-在白色条状穿插)?A4130; 抗拉 750Mpa 屈服 615Mpa 冲击 -46 Degree C - 15J /4J /14J 硬度:242/242/237 HB注: 此材料拒收因冲击不合格100x 条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体 AISI A4130 焊接学习互联网书籍
  19. 19. 500x 条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体1000x 条状魏氏体铁素体,球状费氏体和索氏体与少量的贝氏体 AISI A4130 焊接学习互联网书籍
  20. 20. 焊接评定进行中焊接评定进行中 AISI A4130 焊接学习互联网书籍
  21. 21. 焊接评定进行中焊接评定进行中 AISI A4130 焊接学习互联网书籍
  22. 22. 焊接评定进行中: 韩工在关注焊接评定进行中 AISI A4130 焊接学习互联网书籍
  23. 23. AISI 4130-制作工艺照片 AISI A4130 焊接学习互联网书籍
  24. 24. AISI A4130 焊接学习互联网书籍
  25. 25. AISI A4130 焊接学习互联网书籍
  26. 26. AISI A4130 焊接学习互联网书籍
  27. 27. AISI A4130 焊接学习互联网书籍
  28. 28. AISI A4130 焊接学习互联网书籍
  29. 29. AISI A4130 焊接学习互联网书籍
  30. 30. AISI A4130 焊接学习互联网书籍
  31. 31. AISI A4130 焊接学习互联网书籍
  32. 32. AISI A4130 焊接学习互联网书籍
  33. 33. AISI A4130 焊接学习互联网书籍
  34. 34. AISI 4130-材料知识Fig. 20 Transmission electron micrograph showing the microstructure of 4130 steel water quenched from 900 °C(1650°F) and tempered at 650 °C (1200 °F) Courtesy of F. Woldow AISI A4130 焊接学习互联网书籍
  35. 35. Properties. Table 2 summarizes the typical properties obtained by tempering water-quenched and oil-quenched 4130steel bars at various temperatures. Because 4130 steel has low hardenability, section thickness must be considered whenheat treating to high strength (see Table 3 ).Table 2 Typical mechanical properties of heat-treated 4130 steel AISI A4130 焊接学习互联网书籍
  36. 36. Fig. 14 Calculated hardness (dashed line) and reported hardness (solid line) from a Jominy test of AISI 4130 steel. Source:Ref 10, 11 AISI A4130 焊接学习互联网书籍
  37. 37. Fig. 9 Isothermal transformation (upper) and CCT (lower) diagrams for AISI 4130 steel containing 0.30% C, 0.64% Mn, 1.0%Cr, and 0.24% Mo. The IT diagram illustrates the input data representation for calculations described in the text. The CCTdiagrams are computed (dashed lines) and experimentally determined (solid lines). Source: Ref 10, 11Table 3 Recommended annealing temperatures for alloy steels (furnace cooling)AISI/SAE Annealing Temperature HardnessSteel °C °F Max HB4130 790-845 1450-1550 174Heating cycles that employ austenitizing temperatures in the upper ends of the ranges given in Table 3 AISI A4130 焊接学习互联网书籍
  38. 38. should result in pearlitic structures. Predominantly spheroidized structures should be obtained when lowertemperatures are used. When alloy steel is annealed to obtain a specific microstructure, greater precision isrequired in specifying temperatures and cooling conditions for annealing. Table 4 presents, for a variety ofstandard alloy steels, typical schedules for such annealing operations.Table 4 Recommended temperatures and time cycles for annealing of alloy steels(a) The steel is cooled in the furnace at the indicated rate through the temperature range shown.(b) The steel is cooled rapidly to the temperature indicated and is held at that temperature for the time specified.TTT Diagrams. TTT curves are usually produced by solution treating (austenitizing) small samples of steelat the appropriate temperature for the alloy, quickly transferring samples to a lead or salt bath, holding forselected periods of time, and water quenching. The microstructure of each sample after quenching isexamined to determine the point in time when the transformation to ferrite, pearlite, or bainite began and therate at which the transformation progressed with increasing isothermal holding time. The start oftransformation in TTT curves is usually defined as the time required to produce 0.1% transformation at thespecified holding temperature. The TTT curve for 4130 steel (see Fig. 35) is usually interpreted to mean thatthe steel must be cooled past 540 °C (1000 °F) and to the start of the martensitic transformation (Ms) in lessthan about 1.5 s to produce a fully martensitic structure or must be cooled from the austenitizingtemperatures and to the Ms in about 10 s to produce a 50% martensitic structure. Slower cooling rates mayresult in less than 50% hardening. AISI A4130 焊接学习互联网书籍
  39. 39. Fig. 35 TTT diagram for 4130 low-alloy steelThe CCT diagram for an AISI 4130 steel is shown in Fig. 36. This diagram indicates that a fully martensiticmicrostructure in this alloy requires a cooling rate above 170 °C/s (300 °F/s) at 705 °C (1300 °F). Achievinga 50% martensitic microstructure requires a minimum cooling rate of about 65 °C/s (120 °F/s) at 705 °C(1300 °F). AISI A4130 焊接学习互联网书籍
  40. 40. Fig. 36 CCT diagram for 4130 low-alloy steel with 0.30C -0.25Si-0.50 Mn-0.020P-0.020 S-1.00Cr-0.20 Mo composition tested at 750 °C (1380 °F). Calculated critical cooling rate is 143 °C/s (258°F/s).Approximate TTP curves have been developed for the compositions of 4130 steel in Table 10. These TTPcurves are illustrated in Fig. 38. These C curves are plotted for times to 1000 s (16.7 min) rather than theusual 106 s (20 days) used in many published diagrams. Transformations that occur over a 20 day period areof little interest in heat-treating operations. At 595 °C (1100 °F), the transformation begins in about 0.15 s inthe low specification composition, in 1 s in the actual composition, and after about 3 s in the highspecification composition. The C curves illustrate the shift in the start of transformation with alloy content.The mathematical expression describing the curves allows hardness predictions to be made under a widevariety of quenching conditions.Table 10 Comparison of actual chemical composition with chemical composition limits of AISI 4130 steel AISI A4130 焊接学习互联网书籍
  41. 41. Fig. 38 Approximate TTP curves for 4130 low-alloy steel compositions in Table 10Fig. 74 Cooling curves obtained in quenching 4130 steel tubing in gas, oil, and still air (normalizing)Grade C% Hardness, HRC, after tempering for 2 h at (°C) Heat treatment 205 260 315 370 425 480 540 595 6504130 0.30 47 45 43 42 38 34 32 26 22 Normalized at 885 °C (1625 °F), water quenched from 800-855 °C (1475-1575 °F); average dew point, 16 °C (60 °F)Table 1 Typical hardness of various carbon and alloy steels after tempering AISI A4130 焊接学习互联网书籍
  42. 42. AISI A4130 焊接学习互联网书籍
  43. 43. Fig. 23 Room-temperature Charpy V-notch impact energy versus tempering temperature for 4130,4140, and 4150 steels austenitized at 900 °C (1650 °F) and tempered 1 h at temperatures shown.Source: Ref 21Fig. 12 CCT diagrams for AISI 4130 steel. (a) Water quench, 0.8 R specimens. (b) Water quench, center of specimen. (c) Oil quench, 0.8 R specimens. (d) Oil quench, center of specimen. Source: Ref 19. AISI A4130 焊接学习互联网书籍
  44. 44. Table 2 Typical heat-treatment temperatures of various medium-carbon low-alloy steels with yield strengthsabove 1380 MPa (200 ksi)Steel Normalizing(a) Annealing(b) Hardening(a) Tempering(c) Stress relief(d) Maximumtype WQ/OQ spheroidizing temperature(e) °C °F °C °F °C °F °C °F °C °F °C °F4130 870 1600 830 1525 845 1550 200 400 650 1200 760 1400 -925 -1700 -870 -1600 -870 -1660 -700 -1300 -675 -1250 -765 -1425 860 1575 -885 -1625Table 3 Typical mechanical properties of heat-treated 4130 /典型机械性能Tempering Temp. Tensile strength Yield strength Elong. in Red. In area Hardness Izod impact energy°C °F MPa ksi MPa ksi 50mm % % HB J Ft.lbWater quenched and tempered(a) 水淬和回火205 400 1765 256 1520 220 10.0 33.0 475 18 13260 500 1670 242 1430 208 11.5 37.0 455 14 10315 600 1570 228 1340 195 13.0 41.0 425 14 10370 700 1475 214 1250 182 15.0 45.0 400 20 15425 800 1380 200 1170 170 16.5 49.0 375 34 25540 1000 1170 170 1000 145 20.0 56.0 325 81 60650 1200 965 140 830 120 22.0 63.0 270 135 100Oil quenched and tempered(b)205 400 1550 225 1340 195 11.0 38.0 450 . .260 500 1500 218 1275 185 11.5 40.0 440 . .315 600 1420 206 1210 175 12.5 43.0 418 . .370 700 1320 192 1120 162 14.5 48.0 385 . .425 800 1230 178 1030 150 16.5 54.0 360 . .540 1000 1030 150 840 122 20.0 60.0 305 . .650 1200 830 120 670 97 24.0 67.0 250 . .(a) 25 mm (1 in.) diameter round bars quenched from 845 to 870 °C (1550 to 1600 °F).(b) 25 mm (1 in.) diameter round bars quenched from 860 °C (1575 °F) AISI A4130 焊接学习互联网书籍
  45. 45. Note: Round bars oil quenched from 845 °C (1550 °F) and tempered at 540 °C (1000 °F); 12.83 mm (0.505 in.)diameter tensile AISI A4130 焊接学习互联网书籍
  46. 46. AISI 4130-视频学习4130配管焊接后,热处理后的检验工作高压配管尺寸校核01-:http://v.youku.com/v_show/id_XMTcyNjU1Mjg4.html高压配管尺寸校核02-:http://v.youku.com/v_show/id_XMTcyNjgxNjM2.html验收硬度检测01-:http://v.youku.com/v_show/id_XMTcyNjkzMzMy.html磁粉检测01-:http://v.youku.com/v_show/id_XMTcyNzE1MzE2.html磁粉检测02-:http://v.youku.com/v_show/id_XMTcyODE4Nzc2.html AISI A4130 焊接学习互联网书籍
  47. 47. AISI 4130规范收集AISI A4130 焊接学习互联网书籍
  48. 48. NACE Standard MR0175-2003 Item No. 21302 Standard Material Requirements Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments This NACE International standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. Its acceptance does not in any respect preclude anyone, whether he has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in conformance with this standard. Nothing contained in this NACE International standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by Letters Patent, or as indemnifying or protecting anyone against liability for infringement of Letters Patent. This standard represents minimum requirements and should in no way be interpreted as a restriction on the use of better procedures or materials. Neither is this standard intended to apply in all cases relating to the subject. Unpredictable circumstances may negate the usefulness of this standard in specific instances. NACE International assumes no responsibility for the interpretation or use of this standard by other parties and accepts responsibility for only those official NACE International interpretations issued by NACE International in accordance with its governing procedures and policies which preclude the issuance of interpretations by individual volunteers. Users of this NACE International standard are responsible for reviewing appropriate health, safety, environmental, and regulatory documents and for determining their applicability in relation to this standard prior to its use. This NACE International standard may not necessarily address all potential health and safety problems or environmental hazards associated with the use of materials, equipment, and/or operations detailed or referred to within this standard. Users of this NACE International standard are also responsible for establishing appropriate health, safety, and environmental protection practices, in consultation with appropriate regulatory authorities if necessary, to achieve compliance with any existing applicable regulatory requirements prior to the use of this standard. CAUTIONARY NOTICE: NACE International standards are subject to periodic review, and may be revised or withdrawn at any time without prior notice. NACE International requires that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of initial publication. The user is cautioned to obtain the latest edition. Purchasers of NACE International standards may receive current information on all standards and other NACE International publications by contacting the NACE International Membership Services Department, 1440 South Creek Dr., Houston, Texas 77084-4906 (telephone +1 [281]228-6200). Revised 2003-01-17 Approved March 1975 NACE International 1440 South Creek Dr. Houston, Texas 77084-4906 +1 (281)228-6200 ISBN 1-57590-021-1 © 2003, NACE International --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`---COPYRIGHT 2003; NACE International Document provided by IHS Licensee=Fluor Corporation/2110503105, User=, 04/09/2003 02:42:32 MDT Questions or comments about this message: please call the Document Policy Management Group at 1-800-451-1584.
  49. 49. MR0175-2003 ________________________________________________________________________ Foreword This NACE standard materials requirement is one step in a series of committee studies, reports, symposia, and standards that have been sponsored by former Group Committee T-1 (Corrosion Control in Petroleum Production) relating to the general problems of sulfide stress cracking (SSC) and stress corrosion cracking (SCC) of metals. Much of this work has been directed toward the oil- and gas-production industry. This standard is a materials requirement for metals used in oil and gas service exposed to sour gas, to be used by oil and gas companies, manufacturers, engineers, and purchasing agents. Many of the guidelines and specific requirements in this standard are based on field experience with the materials listed, as used in specific components, and may be applicable to other components and equipment in the oil-production industry or to other industries, as determined by the user. Users of this standard must be cautious in extrapolating the content of this standard for use beyond its scope. The materials, heat treatments, and metal-property requirements given in this standard represent the best judgment of Task Group 081 (formerly T-1F-1) and its administrative Specific Technology Group (STG) 32 on Oil and Gas Production—Metallurgy (formerly Unit Committee T-1F on Metallurgy of Oilfield Equipment). This NACE standard updates and supersedes all previous editions of MR0175. The original 1975 edition of the standard superseded NACE Publication 1F166 (1973 Revision) titled “Sulfide Cracking-Resistant Metallic Materials for Valves for Production and Pipeline Service,” and NACE Publication 1B163 titled “Recommendation of Materials for Sour Service” (which included Tentative Specifications 150 on valves, 51 on severe weight loss, 60 on tubular goods, and 50 on nominal weight loss). This standard will be revised as necessary to reflect changes in technology. (See Sections 13, 14, and 15.) Whenever possible, the recommended materials are defined by reference to accepted generic (1) (2) (3) (4) descriptors (such as UNS numbers) and/or accepted standards, such as AISI, API, ASTM, (5) or DIN standards. In NACE standards, the terms shall, must, should, and may are used in accordance with the definitions of these terms in the NACE Publications Style Manual, 4th ed., Paragraph 7.4.1.9. Shall --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`--- and must are used to state mandatory requirements. Should is used to state something considered good and is recommended but is not mandatory. May is used to state something considered optional. This NACE International standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. Its acceptance does not in any respect preclude anyone, whether he has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in conformance with this standard. Nothing contained in this NACE International standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by Letters Patent, or as indemnifying or protecting anyone against liability for infringement of Letters Patent. This standard represents minimum requirements and should in no way be interpreted as a restriction on the use of better procedures or materials. (1) Metals and Alloys in the Unified Numbering System (latest revision), a joint publication of ASTM International (ASTM) and the Society of Automotive Engineers Inc. (SAE), 400 Commonwealth Drive, Warrendale, PA 15096. (2) American Iron and Steel Institute (AISI), 1101 17th St. NW, Suite 1300, Washington, DC 20036. (3) American Petroleum Institute (API), 1220 L St. NW, Washington, DC 20005. (4) ASTM International (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959. (5) Deutsches Institut für Normung (DIN), Burggrafenstrasse 6, D-10787 Berlin, Germany. NACE International iCOPYRIGHT 2003; NACE International Document provided by IHS Licensee=Fluor Corporation/2110503105, User=, 04/09/2003 02:42:32 MDT Questions or comments about this message: please call the Document Policy Management Group at 1-800-451-1584.
  50. 50. MR0175-2003 ________________________________________________________________________ NACE International Standard Material Requirements Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments Contents 1. General......................................................................................................................... 1 2. Definitions..................................................................................................................... 5 3. Carbon and Low-Alloy Steels and Cast Irons............................................................... 8 4. Corrosion-Resistant Alloys (CRAs)—All Other Alloys Not Defined as Carbon and Low- Alloy Steels and Cast Irons in Section 3....................................................................... 9 5. Fabrication.................................................................................................................. 14 6. Bolting......................................................................................................................... 15 7. Platings and Coatings................................................................................................. 16 8. Special Components .................................................................................................. 16 9. Wellheads, Christmas Trees, Valves, Chokes, and Level Controllers....................... 17 10. Downhole Casing, Downhole Tubing, and Downhole Equipment .............................. 19 11. Wells, Flow Lines, Gathering Lines, Facilities, and Field Processing Plants ............. 22 12. Drilling and Well-Servicing Equipment ....................................................................... 24 13. Adding New Materials for MR0175 Section 3: Carbon and Low-Alloy Steels and Cast Irons............................................................................................................................ 25 14. Adding New Materials for MR0175 Section 4: Corrosion-Resistant Alloys (CRAs)—All Other Alloys Not Defined as Carbon and Low-Alloy Steels and Cast Irons in Section 3 ........................................................................................ 26 15. Proposing Changes and Making Additions for MR0175 Sections 5 Through 11: Fabrication, Welding, and Specific Equipment........................................................... 27 16. Materials for Application-Specific Cases Without Proposing Adding New Materials to MR0175 ...................................................................................................................... 27 References........................................................................................................................ 28 Appendix A—Sample Calculations of the Partial Pressure of H2S ................................... 30 Appendix B—Sample Test Data Tables ........................................................................... 33 Appendix C—Ballot Submittal Data .................................................................................. 34 Appendix D—Acceptable Materials .................................................................................. 41 FIGURE 1: Road Map for MR0175 .................................................................................... 4 FIGURE A-1: Sour Gas Systems (see Paragraph 1.4).................................................... 31 FIGURE A-2: Sour Multiphase Systems (see Paragraph 1.4) ......................................... 32 ________________________________________________________________________ ii NACE International --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`---COPYRIGHT 2003; NACE International Document provided by IHS Licensee=Fluor Corporation/2110503105, User=, 04/09/2003 02:42:32 MDT Questions or comments about this message: please call the Document Policy Management Group at 1-800-451-1584.
  51. 51. MR0175-2003 ________________________________________________________________________ Section 1: General 1.1 Scope Other forms of corrosion and other modes of failure, although outside the scope of this standard, should also be This standard presents metallic material requirements to considered in design and operation of equipment. Severely provide resistance to sulfide stress cracking (SSC) and/or corrosive conditions may lead to failures by mechanisms stress corrosion cracking (SCC) for petroleum production, other than SSC and/or SCC and should be mitigated by drilling, gathering and flow line equipment, and field corrosion inhibition or materials selection, which are outside processing facilities to be used in hydrogen sulfide (H2S)- the scope of this standard. For example, some lower- --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`--- bearing hydrocarbon service. strength steels used for pipelines and vessels may be subjected to failure by hydrogen-induced cracking This standard is applicable to the materials and/or (blistering and stepwise cracking) as a result of hydrogen equipment specified by the materials standards institutions damage associated with general corrosion in the presence 1,2 listed in Table 1 (or by equivalent standards or of H2S. specifications of other agencies). This standard does not include and is not intended to include design specifications. TABLE 1 Sources of Material Standards 1. Aerospace Material Specifications (AMS): Society of Automotive Engineers Inc. (SAE), 400 Commonwealth Drive, Warrendale, PA 15096. th 2. American Iron and Steel Institute (AISI), 1101 17 St. NW, Suite 1300, Washington, DC 20036. 3. American National Standards Institute (ANSI), 11 West 42nd St., New York, NY 10036. 4. American Petroleum Institute (API), 1220 L St. NW, Washington, DC 20005. 5. ASME International (ASME), Three Park Ave., New York, NY 10016-5990. 6. ASTM International (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959. 7. American Welding Society (AWS), P.O. Box 251040, Miami, FL 33126. 8. British Standards Institution (BSI), British Standards House, 389 Chiswick High Rd., London W4 4AL, United Kingdom. 9. CSA International, 178 Rexdale Blvd., Etobicoke, Ontario, Canada M9W 1R3. 10. Deutsches Institut für Normung (DIN), Burggrafenstrasse 6, D-10787, Berlin, Germany. 1.2 Procurement 1.3 Applicability It is the responsibility of the user to determine the operating This standard applies to all components of equipment (6) conditions and to specify when this standard applies. A exposed to sour environments, where failure by SSC or variety of candidate materials may be selected from this SCC would (1) prevent the equipment from being restored standard for any given component. The manufacturer is to an operating condition while continuing to contain responsible for meeting metallurgical requirements. It is the pressure, (2) compromise the integrity of the pressure- user’s responsibility to ensure that a material will be containment system, and/or (3) prevent the basic function of satisfactory in the intended environment. The user may the equipment from occurring. Materials selection for items select specific materials for use on the basis of operating such as atmospheric and low-pressure systems, water- conditions that include pressure, temperature, handling facilities, sucker rods, and subsurface pumps are corrosiveness, fluid properties, etc. For example, when covered in greater detail in other NACE International and bolting components are selected, the pressure rating of API documents and are outside the scope of this standard. flanges could be affected. The following could be specified at the user’s option: (1) materials from this standard used 1.4 MR0175 Application by the manufacturer, and (2) materials from this standard proposed by the manufacturer and approved by the user. It Sulfide stress cracking (SSC) is affected by the following is always the responsibility of the equipment user to convey factors: the environmental conditions to the equipment supplier, particularly if the equipment will be used in sour service. (1) metallurgical condition and strength, which are affected by chemical composition, heat treatment, cold work, and microstructure; ___________________________ (6) See Section 2 for the definition of user. NACE International 1COPYRIGHT 2003; NACE International Document provided by IHS Licensee=Fluor Corporation/2110503105, User=, 04/09/2003 02:42:32 MDT Questions or comments about this message: please call the Document Policy Management Group at 1-800-451-1584.
  52. 52. MR0175-2003 (2) hydrogen ion concentration (activity) (pH) of the water When the partial pressure of H2S in a wet (water phase; as a liquid) gas phase of a gas, gas condensate, or crude oil system is equal to or exceeds 0.0003 (3) H2S partial pressure, which is a function of the H2S MPa abs (0.05 psia). concentration and total absolute pressure; 1.4.2 MR0175 need not apply (the user shall (4) total tensile stress (applied plus residual); determine) when the following conditions exist: (5) temperature; 1.4.2.1 Low-pressure gas (6) exposure duration; When the total pressure is less than 0.45 MPa abs (65 psia). (7) galvanic effects; 1.4.2.2 Low-pressure oil and gas multiphase (8) chloride or other halide ion concentration; systems (9) oxidants; and When the total pressure is less than 1.83 MPa abs (265 psia), the maximum gas:oil ratio is 142 (10) non-production fluids (including those used for acid SCM:bbl (5,000 SCF:bbl), the H2S content is less stimulation and for packer fluids). than 15 mol%, and the H2S partial pressure is less than 0.07 MPa abs (10 psia). Stress corrosion cracking (SCC) in sour service is affected by the following factors: 1.4.2.3 Salt water wells and salt water handling --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`--- facilities. These are covered by NACE Standard (1) metallurgical condition and strength, which are affected 3 RP0475. by chemical composition, cold work, heat treatment, and microstructure; 1.4.2.4 Refineries and chemical plants. (2) hydrogen ion concentration (activity) (pH) of the water 1.4.2.5 Parts loaded in compression. phase; 1.5 Control of SSC and/or SCC (3) H2S partial pressure, which is a function of the H2S concentration and total absolute pressure; 1.5.1 SSC and/or SCC may be controlled by any or all of the following measures: (4) total tensile stress (applied plus residual); (1) using the materials and processes described in (5) temperature; this standard; (6) exposure duration; (2) controlling the environment; (7) galvanic effects; (3) isolating the components from the sour environment; or (8) chloride or other halide ion concentration; (4) using appropriate anodic or cathodic (9) oxidants; and polarization. (10) non-production fluids (including those used for acid Metals susceptible to SSC and/or SCC have been stimulation and for packer fluids). used successfully by controlling drilling or workover fluid properties, during drilling and workover operations, The user shall determine whether or not the environmental respectively. conditions are such that MR0175 applies. Please see Appendix A for sample calculations. 1.6 Materials Included in MR0175 1.4.1 MR0175 shall apply to conditions containing 1.6.1 Metallic materials have been included in this water as a liquid and H2S exceeding the limits defined standard as acceptable materials based on their in Paragraph 1.4.1.1. Highly susceptible materials may resistance to SSC and/or SCC either in actual field fail in less severe environments. applications, in SSC and SCC laboratory tests, or both. Many alloys included in the first edition of MR0175 had 1.4.1.1 All gas, gas condensate, and sour crude proved to be satisfactory in sour service even though oil (except as noted in Paragraph 1.4.2) they might have cracked in standard SSC and/or SCC laboratory tests, such as those addressed in NACE 4 Standard TM0177. 2 NACE InternationalCOPYRIGHT 2003; NACE International Document provided by IHS Licensee=Fluor Corporation/2110503105, User=, 04/09/2003 02:42:32 MDT Questions or comments about this message: please call the Document Policy Management Group at 1-800-451-1584.

×