LTE World Summit 2012 grimley agilent-technologies-m_asterclass-1_wed

1,325 views

Published on

LTE World Summit Barcelona May 2012
MASTERCLASS

Published in: Business, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,325
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
64
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

LTE World Summit 2012 grimley agilent-technologies-m_asterclass-1_wed

  1. 1. Greater insight. Greater confidence. Accelerate next-generation wireless. Verify and Visualize your LTE MIMO Beamforming Signals Craig Grimley, R&D Developer Electronic Measurement Group, Agilent Technologies LTE World Summit, May 2012 © Agilent Technologies1
  2. 2. Verify and Visualize yourLTE MIMO Beamforming Signals What is MIMO Beamforming ?  Multi-antenna techniques  Introduction to beamforming What are benefits ?  Benefits for cellular network  Use within LTE transmission modes What are the test verification challenges ?  Typical TD-LTE eNB test configuration  Agilent 8-Chan N7109A SA + 89600 VSA test solution LTE World Summit, May 2012 © Agilent Technologies2
  3. 3. Multi-Antenna Techniques SISO SIMO - No diversity protection - Rx diversity against channel fading Tx Rx Tx : Rx - Rx smart antenna (beamforming) - Improved SINR MISO MIMO - Tx diversity - Tx/Rx diversity Tx : Rx - Tx smart antenna Tx : : Rx - Tx/Rx smart antenna (beamforming) (beamforming) - Improved SINR - Spatial multiplexing - Improved SINR or Improved Spectral Efficiency / Data Rates LTE World Summit, May 2012 © Agilent Technologies3
  4. 4. Multi-Antenna Techniques Tx Diversity • Orthogonally modified redundant copies Tx0 S0 S1 transmitted across multiple antenna’s Tx1 -S1* S0* • Robustness to channel fading / noise Frequency domain Spatial Multiplexing • Simultaneous unique data streams Tx0 S0 transmitted across multiple antenna’s Tx1 S1 • Improved spectral efficiency / throughput Beamforming • Per antenna weighted signal copies S0.w0 Tx0 transmitted across multiple antenna’s Tx1 S0.w1 • Coherent beamforming gain (dB) at receiver LTE World Summit, May 2012 © Agilent Technologies4
  5. 5. Introduction to BeamformingRelative field strength example Main Lobe = omnidirectional 0 deg -30 deg +30 deg -60 deg +60 deg -90 deg +90 deg | 1 Antenna Element LTE World Summit, May 2012 © Agilent Technologies5
  6. 6. Introduction to BeamformingRelative field strength example Main Lobe = 0deg azimuth Number of Nulls = 1 Constructive 0 deg Interference -30 deg +30 deg Power Gain -60 deg +60 deg Destructive Interference Power Null -90 deg +90 deg || 2 Antenna Elements Co-polarized 0.5 wavelength separation 0deg phase shift per element LTE World Summit, May 2012 © Agilent Technologies6
  7. 7. Introduction to BeamformingRelative field strength example Main Lobe = 0deg azimuth Number of Nulls = 2 0 deg Improved -30 deg +30 deg Beam Selectivity -60 deg +60 deg -90 deg +90 deg ||| 3 Antenna Elements Co-polarized 0.5 wavelength separation 0deg phase shift per element LTE World Summit, May 2012 © Agilent Technologies7
  8. 8. Introduction to BeamformingRelative field strength example Main Lobe = 0deg azimuth Number of Nulls = 3 0 deg Improved -30 deg +30 deg Beam Selectivity -60 deg +60 deg -90 deg +90 deg |||| 4 Antenna Elements Co-polarized 0.5 wavelength separation 0deg phase shift per element LTE World Summit, May 2012 © Agilent Technologies8
  9. 9. Introduction to BeamformingRelative field strength example Main Lobe = -30deg azimuth Number of Nulls = 3 0 deg -30 deg +30 deg -60 deg +60 deg -90 deg +90 deg |||| 4 Antenna Elements Beam Co-polarized 0.5 wavelength separation Control 90deg phase shift per element LTE World Summit, May 2012 © Agilent Technologies9
  10. 10. Introduction to Beamforming• Used in many technologies:  radar, sonar, seismology, wireless communications, radio astronomy, acoustics• Takes advantage of multi-antenna interference patterns Constructive (in-phase) Destructive (out-of-phase) 0 deg interference interference -30 deg +30 deg Power Gain Power Nulling -60 deg +60 deg -90 deg +90 deg |||| Antenna array geometry 4 Antenna Elements + Co-polarized 0.5 wavelength separation 90deg phase shift per element Relative mag / phase weightings LTE World Summit, May 2012 © Agilent Technologies10
  11. 11. Benefits for Cellular Network• Coherent Beamforming Gain (dB) UE3  Improved SINR observed at UE device  Increased throughput at cell-edge  Increased cell coverage or size eNB3 UE4• Spatial Selectivity  Mitigate intra-cell interference UE1 Null  Mitigate inter-cell interference Null  Improve spectrum efficiency (SDMA, Space Division Multiple Access) eNB1 UE2 eNB2 LTE World Summit, May 2012 © Agilent Technologies11
  12. 12. LTE DL Transmission Modes 3GPP Release 8: TM1: SISO single antenna transmissions TM2 : Tx Diversity using 2 or 4 antennas TM3: Open-Loop SU-MIMO (Spatial Multiplexing) TM4: Closed-Loop SU-MIMO TM5: Closed-Loop MU-MIMO TM6: Rank 1 Spatial Multiplexing TM7: Single Layer Beamforming on Port 5 TM7 & TM8 Beamforming is current TD-LTE 3GPP Release 9: market focus TM8: Dual Layer Beamforming on Ports 7 & 8 3GPP Release 10: TM9: Up to 8 layer transmissions using Ports 7 to 14 LTE World Summit, May 2012 © Agilent Technologies12
  13. 13. LTE Signal Processing (TM7 & TM8)(Adapted from 3GPP 36.211 and 36.212) a0 , a1 ,..., a A 1 PDSCH (Data) Transport block  Channel encoded and mapped onto 1 or 2 codewords (layers) CRC attachment  BF precoding is non-codebook based b0 , b1 ,..., bB 1 Code block segmentation  BF precoding can vary per RB & per Subframe (TTI) Code block CRC attachment cr 0 , cr1 ,..., cr K r 1 UE-specific RS (Reference Signal) Channel coding  Mapped to associated TM7 / TM8 PDSCH RB allocations  Same BF precoding as per associated PDSCH RB d r(i0) , d r(1) ,..., d r(i) i r 1 D Rate matching Cell-specific RS (Reference Signal)  Can be weighted to produce sector wide common control Broadcast pattern er 0 , er1 ,..., er Er 1  Possible when Num Physical Ports > Num CRS Ports Code block UE-specific pattern concatenation codewords layers antenna ports f 0 , f1 ,..., f G 1 Modulation Resource element OFDM signal UE1 Scrambling mapper mapper generation Layer Precoding mapper Modulation Resource element OFDM signal Scrambling mapper mapper generation UE-specific RS Cell-specific RS Broadcast pattern LTE World Summit, May 2012 © Agilent Technologies13
  14. 14. LTE Signal Processing (TM7 & TM8)(Adapted from 3GPP 36.211 and 36.212)TM7Single LayerUE-specific RS Port 5TM8Dual LayerUE-specific RS Port 7 Port 8CommonCell-specific RS Port 0 Port 1 Port 2 Port 3 LTE World Summit, May 2012 © Agilent Technologies14
  15. 15. Typical TD-LTE eNB Test Configuration A1 A2 A3 A4 A5 A6 A7 A8 UL RF Channel ~0.5 * RF carrier wavelength spacing Uplink feedback Emulator 2x8 (SRS, CQI, PMI, RI)A1, A2, A3, A4 = +45 degree polarizationA5, A6, A7, A8 = -45 degree polarization ~10dB Ant 1 Ant 2 Ant 3 Ant 4 DL RF eNB eNB CAL CAL Channel BB RRH Ant 5 Coupler Emulator UE1 Ant 6 8x2 Ant 7 Ant 8 Common customer problem, need to verify: eNB RF antenna calibration accuracy BB beamforming weighting algorithm correctness RF Circulator RF & EVM modulation quality for MIMO single or RF Atten dual layer LTE World Summit, May 2012 © Agilent Technologies15
  16. 16. Typical TD-LTE eNB Test Configuration A1 A2 A3 A4 CALIBRATION A5 A6 A7 A8 REFERENCE UL RF SIGNAL Channel Uplink feedback ~0.5 * RF carrier wavelength spacing Emulator RF SOURCE & SPLITTER 2x8 (SRS, CQI, PMI, RI)A1, A2, A3, A4 = +45 degree polarizationA5, A6, A7, A8 = -45 degree polarization ~10dB Ant 1 Ant 2 Ant 3 Ant 4 DL RF eNB eNB CAL CAL Channel BB RRH Ant 5 Coupler Emulator UE1 Ant 6 8x2 Ant 7 Ant 8 Agilent 89600B VSA Agilent 8-Chan N7109A RF Splitter Analyzer RF Circulator RF Atten ~20dB LTE World Summit, May 2012 © Agilent Technologies16
  17. 17. Typical TD-LTE eNB Test Configuration A1 A2 A3 A4 CALIBRATION A5 A6 A7 A8 REFERENCE UL RF SIGNAL Channel Uplink feedback ~0.5 * RF carrier wavelength spacing Emulator RF SOURCE & SPLITTER 2x8 (SRS, CQI, PMI, RI)A1, A2, A3, A4 = +45 degree polarizationA5, A6, A7, A8 = -45 degree polarization ~10dB Ant 1 Ant 2 Ant 3 Ant 4 DL RF eNB eNB CAL CAL Channel BB RRH Ant 5 Coupler Emulator UE1 Ant 6 8x2 Ant 7 Ant 8 Agilent 89600B VSA Agilent 8-Chan N7109A RF Splitter Analyzer RF Circulator RF Atten ~20dB LTE World Summit, May 2012 © Agilent Technologies17
  18. 18. Agilent 8-Chan N7109A SA + 89600 VSA 8 Channel 8 Channel RF Spectrum RF Time LTE World Summit, May 2012 © Agilent Technologies18
  19. 19. Agilent 8-Chan N7109A SA + 89600 VSA UE-specific RS Weights IQ Constellations Detected Resource Allocations Cell-specific RS Weights & Impairments UE-specific & EVM Common Broadcast Metrics Antenna Beampatterns LTE World Summit, May 2012 © Agilent Technologies19
  20. 20. Agilent 8-Chan N7109A SA + 89600 VSA Ant Group 0 pattern 8 Channel UE-specific RS Mag/Phase Weights Ant Group 1 pattern LTE World Summit, May 2012 © Agilent Technologies20
  21. 21. Agilent 8-Chan N7109A SA + 89600 VSA Ant Group 0 pattern Ant Group 0 Cell-RS Weights 8 Channel Cell-RS MIMO Ant Group 1 Impairments pattern & Weights Ant Group 1 Cell-RS Weights LTE World Summit, May 2012 © Agilent Technologies21
  22. 22. Agilent 8-Chan N7109A SA + 89600 VSA IQ Polar LogMag (dB) Beamforming Gain (dB) LTE World Summit, May 2012 © Agilent Technologies22
  23. 23. Agilent 8-Chan N7109A SA + 89600 VSATD-LTE (TM7 & TM8) measurement solutionProvides an 8-channel phase coherent measurement solution to enableverification and visualization of TD-LTE base station RF antennabeamforming signals. LTE World Summit, May 2012 © Agilent Technologies23
  24. 24. For more information… Application Note: http://www.agilent.com/find/LTE-Forward Youtube Video: http://www.youtube.com/watch?v=mj58aSOZ1Kc 8-Chan N7109A: http://www.agilent.com/find/N7109A 89600 VSA: http://www.agilent.com/find/89600 LTE: http://www.agilent.com/find/LTE LTE World Summit, May 2012 © Agilent Technologies24
  25. 25. Thank you ! LTE World Summit, May 2012 © Agilent Technologies25

×