Gianluca gilardoni

78 views

Published on

Published in: Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
78
On SlideShare
0
From Embeds
0
Number of Embeds
32
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Gianluca gilardoni

  1. 1. Profumi, sapori e colori: aspetti chimici e sensoriali Bulbo olfattivo Cavità nasale Aroma ortonasale Gusto Aroma retronasale Lingua SAPORE = GUSTO + AROMA RETRONASLE Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  2. 2. Profumi, sapori e colori: aspetti chimici e sensoriali Possiamo dividere le tecniche applicabili allo studio del gusto e degli aromi in:   CHIMICHE cromatografia, spettrometria di massa   SENSORIALI panel di rinoanalisti/assaggiatori   COMBINATE GC-O, naso elettronico, bocca artificiale Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  3. 3. suggested that polyphenol-protein precipitation occurs three stages.15 Here, we have confirmed and expanded t three-stage model (Figure 8): (1) The free proteins exist in a loose, randomly coil conformation. Simultaneous binding of the multidenta polyphenols to several sites on the protein leads to coili of the protein around the polyphenols. This causes t 942 Biomacromolecules 2004, 5, 942-949 physical size to decrease and the structure of the protein Figure 7. Hydrodynamic radius of EGCG/casein mixtures, deterbecome more compact and spherical. Chelated binding mined by NMR PGSE experiments. (A) Unfiltered solutions. The graph in the inset shows the integrated intensity of the casein NMR signals several sites increases the overall binding affinity: in supp relative to the same concentration of free casein,for Astringency Produced by Polyphenol/ Molecular Model which should be of this statement, we note that the affinity of a full-leng constant as long as casein remains soluble. The dashed line indicates PRP (70 residues) for polyphenols is much greater than th Protein Interactions !"#!$%&'(#$)!"*+,-(*./0(#!)/11%1$2!)"#!3/((-)/11%1$2!/,#!$%&'(#!'-(*3/((-*(!#$)#,$!-4!3(56-$#7!!!"#! the ratio at which visible precipitation was first observed. (B) Filtered ',-)-)*'%6/(!3/((-)/11%1!%$!'#1)/3/((-*(!3(56-$#!8!"92:2;2<2=">#1)/3/((-*("!"?"@(56-'*,/1-$#A7!! of a 19-residue single PRP sequence.20 solutions. >#1)/3/((-*(!3(56-$#2!-,!>@@2!"/$!4%B#!%+#1)%6/(!#$)#,!(%1C/3#$!)"/)!%1B-(B#!/(%'"/)%6!"*+,-D*(!3,-5'$!-4! Jobstl,†,‡ John O’Connell,§ J. Patrick A. Fairclough,† and Mike P. Williamson*,‡ Elisabeth ¨ (2) As the polyphenol concentration rises, polypheno )"#!6-,#!$53/,7!!!"#!/('"/!/1-&#,!%$!1-)!6-&&-1!%1!1/)5,#7! Similar behavior is seen, except that the minimum apparent and Department of onto the protein surface cross-link differe complexed Chemistry, University of Sheffield, Department of Molecular Biology and Biotechnology Research, Colworth House, Sharnbrook, size is slightly smallerSheffield S10 2UH, United Kingdom,which and the EGCG/casein ratio at and Unileverprotein molecules and dimerization ensues, causing insolub OH Bedford MK44 1LQ, United Kingdom the minimum occurs is much higher, at approximately 10. ity.15 This phenomenon is similar to the precipitation OH Profumi, sapori e colori: aspetti chimici e sensoriali Received December 8, 2003; Revised Manuscript Received February 6, 2004 O OH HO O OH O O OH O HO OH Polyphenols are responsible for the astringency of many beverages and foods. This is thought to be caused OH by the interaction of polyphenols with basic salivary proline-rich proteins (PRPs). It is widely assumed that O O OH OH O O O O O OH gallic acid OH OH HO OH HO OH the molecular origin of astringency is the precipitation of PRPs following polyphenol binding and the OH consequent change to the mucous layer in the mouth. Here, we use a variety of biophysical techniques on a simple model system, the binding of β-casein to epigallocatechin gallate (EGCG). We show that at low EGCG ratios, small soluble polydisperse particles are formed, which aggregate to form larger particles as EGCG is added. There is an initial compaction of the protein as it binds to the polyphenol, but the particle subsequently increases in size as EGCG is added because of the incorporation of EGCG and then to aggregation and precipitation. These results are shown to be compatible with what is known of astringency in foodstuffs. Introduction A mucous layer composed of salivary proteins and Figure 8. Proposed binding model: The original random coiled PRP binds to multidentate polyphenols on more than one site because ea !-1,2,3,4,6-pentagalloyl-O-D-glucose glycoproteins covers the exposed surface of in mouth to proline and each aromatic ring represents a possible binding site. At a low polyphenol concentration, the protein binds theseveral places to t E%C#!/((!-4!)"#!3/((-)/11%1$2!>@@!"/$!&/1*!%$-&#,$7!!!"#!&-(#65(/,!F#%3")$!-4!/((!)"#!%$-&#,$!-4!>@@! Polyphenolsleading to a contraction of the loose random coil and decrease in the molecular size of the protein. Upon to the of mo are widely distributed in the plant kingdom maintain lubrication. The primary reaction leading addition polyphenol molecules /,#!)"#!$/&#!8G<H!3I&-(A2!05)!6"#&%6/(!',-'#,)%#$!$56"!/$!$5$6#')%0%(%)*!)-!"*+,-(*$%$!/1+! and, intermolecular sensation of astringency is the precipitation of proteins and 6",-&/)-3,/'"%6!0#"/B%-,J!/1+!0%-6"#&%6/(!',-'#,)%#$!$56"!/$!/0%(%)*!)-!',#6%'%)/)#!',-)#%1J!/,#! cross-linking takes place and aggregates are formed that finally precipitate. polyphenols, therefore, commonly found in plant-based foods and $),56)5,#"+#'#1+#1)7!!! beverages.1 They are characterized by containing several phenolic groups (often in the form of galloyl [3,4,5trihydroxybenzoyl] groups) and have been found to have a variety of effects on animals including humans.2,3 Polyphenols of intermediate size have the ability to bind to proteins and precipitate them and, hence, are also known as tannins.1,2 They have been suggested to reduce the nutritional value of some foodstuffs,4-7 but they are also important constituents of many foods and beverages, such as red wine and tea, because it is the astringency of the tannins in these beverages that gives them many of their desirable qualities. It is widely believed that salivary proteins may act as a primary defense mucins by polyphenolic compounds. The essential feature is the cross-linking of polypeptides by surface-exposed phenolic groups on the polyphenols, leading to aggregation and precipitation and, therefore, the occurrence of the astringent response.13-15 Saliva is produced by salivary glands and contains a variety of proteins. The major protein constituent of saliva is a group of proteins consisting of multiple repeats of an unusual amino acid sequence containing a large amount of proline, commonly referred to as Gianluca Gilardoni proline-rich proteins (PRPs).16,17 Of the three groups of PRPs (acidic, basic, and glycosylated), the main function of the Riccagioia, 16 ottobre 2013 basic PRPs seems to be the complexation of polyphe-
  4. 4. Profumi, sapori e colori: aspetti chimici e sensoriali Il colore del vino è dovuto alla presenza di composti non volatili, appartenenti alla classe delle antocianine. OH + O HO OH OH OH Cianidina: ROSSO pH < 3, VIOLA pH 7-8, BLU pH > 11 La tecnica analitica di elezione è la cromatografia liquida. Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  5. 5. Profumi, sapori e colori: aspetti chimici e sensoriali In generale: composti volatili pesanti o polari derivatizzabili composti volatili GC composti non volatili HPLC Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  6. 6. Profumi, sapori e colori: aspetti chimici e sensoriali METODI CHIMICI - LA CROMATOGRAFIA La cromatografia è il metodo attualmente più diffuso ed efficace per operare la separazione delle sostanze in miscela a scopo analitico e preparativo. Particolarmente utile per la separazione dei composti organici, la cromatografia fu introdotta nel 1901 dal botanico italo-russo Mikhail Semyonovich Tsvet (1872-1919), che la applicò alla separazione di pigmenti vegetali quali le clorofille ed i carotenoidi. Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  7. 7. Profumi, sapori e colori: aspetti chimici e sensoriali METODI CHIMICI - LA CROMATOGRAFIA H. Wagner, S. Bladt, E. M. Zgainsky PLANT DRUG ANALYSIS – A Thin Layer Chromatography Atlas Springer-Verlag 1984 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  8. 8. Profumi, sapori e colori: aspetti chimici e sensoriali METODI CHIMICI - LA CROMATOGRAFIA Classificazione per stato fisico delle fasi e conformazione del supporto:   cromatografia liquida (LC): la fase mobile è liquida, la fase stazionaria può essere solida, liquida o liquida supportata su solido;   cromatografia in fase supercritica (SFC): la fase mobile è un fluido supercritico, la fase stazionaria è una specie organica supportata;   gascromatografia (GC): la fase mobile è gassosa, la fase stazionaria è un solido o un liquido supportato (GLC);   cromatografia su colonna: la fase stazionaria è confinata all’interno di una struttura tubolare;   cromatografia planare: la fase stazionaria è distesa su di una superficie piana. Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  9. 9. Profumi, sapori e colori: aspetti chimici e sensoriali METODI CHIMICI - LA CROMATOGRAFIA Classificazione per meccanismo di interazione:   cromatografia di ripartizione: si instaura tra le fasi un equilibrio analogo alla es. fase inversa (RP) solubilità   cromatografia di adsorbimento: si instaura tra le fasi un equilibrio basato su interazioni aspecifiche tra analiti e struttura molecolare della fase stazionaria es. gel di silice (solida)   cromatografia ionica: si instaura tra le fasi un equilibrio basato su interazioni elettrostatiche tra analiti ionici e gruppi funzionali carichi elettricamente sulla fase es. resine a scambio ionico stazionaria   cromatografia di esclusione dimensionale: si instaura tra le fasi un equilibrio basato sull’analogia dimensionale tra le molecole degli analiti e le cavità della fase es. destrani (LH-20, G-20, ecc.) stazionaria Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  10. 10. Profumi, sapori e colori: aspetti chimici e sensoriali METODI CHIMICI - LA CROMATOGRAFIA La cromatografia strumentale, sia preparativa che analitica, prevede che gli analiti in uscita dalla colonna cromatografica siano rivelati da opportuni dispositivi, detti rivelatori, e rappresentati graficamente su di un tracciato detto cromatogramma. Abundance Sull’asse delle ascisse è rappresentato il tempo trascorso dall’inizio dell’eluizione, sull’asse delle ordinate un valore proporzionale all’intensità del segnale elettrico del rivelatore. All’uscita di un analita dalla colonna, il rivelatore produce un picco di segnale che varia nel tempo con andamento gaussiano; il tempo a cui corrisponde il vertice della gaussiana è detto tempo di ritenzione. TIC: 90316_01.D 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 16.50 17.00 17.50 18.00 18.50 19.00 19.50 Time--> Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  11. 11. Profumi, sapori e colori: aspetti chimici e sensoriali LA GASCROMATOGRAFIA Skoog D. A., Leary J. J. – CHIMICA ANALITICA STRUMENTALE – EdiSES 1995 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  12. 12. Profumi, sapori e colori: aspetti chimici e sensoriali R R R R Si O Si O Si R R LA GASCROMATOGRAFIA R n R   lunghezza: 10 – 100 metri   diametro: 0.25 – 0.75 mm   spessore della fase stazionaria: ≤ 5µ m Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  13. 13. Profumi, sapori e colori: aspetti chimici e sensoriali LA GASCROMATOGRAFIA TDS: Thermal Desorption System CIS: Cooled Injection System http://www.gerstel.com/pdf/TDS_eng.pdf Skoog D. A., Leary J. J. – CHIMICA ANALITICA STRUMENTALE – EdiSES 1995 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  14. 14. Profumi, sapori e colori: aspetti chimici e sensoriali RIVELATORE FID (Flame Ionization Detector) ECD (Electron Capture Detector) PID (PhotoIonization Detector) VANTAGGI SVANTAGGI universale, economico distruttivo, aspecifico, richiede due gas di alimentazione specifico per alogenati, non distruttivo, non richiede gas radioattivo, specifico non richiede gas, parzialmente specifico distruttivo, parzialmente specifico TCD non richiede gas, non poco sensibile distruttivo (Thermal Conductivity Detector) permette molto costoso, l’identificazione degli distruttivo (Mass Spectrometric Detector) analiti senza standard MSD Skoog D. A., Leary J. J. – CHIMICA ANALITICA STRUMENTALE – EdiSES 1995 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  15. 15. Profumi, sapori e colori: aspetti chimici e sensoriali LA GASCROMATOGRAFIA – Rivelatore spettrometro di massa (MSD) Diverse tipologie di spettrometri di massa possono essere accoppiati alla gascromatografia come rivelatori. Il più diffuso è lo spettrometro di massa a quadrupolo, grazie alle dimensioni ed ai costi relativamente contenuti, ma rivestono grande importanza anche gli spettrometri a settore magnetico ed a tempo di volo. Skoog D. A., Leary J. J. – CHIMICA ANALITICA STRUMENTALE – EdiSES 1995 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  16. 16. Profumi, sapori e colori: aspetti chimici e sensoriali TABLE 4.1. Common GC/MS Conditions Used for Analysis of Grape Grape TABLE 4.1. Common GC/MS Conditions Used for Analysis of AromaAroma Compounds Compounds GC column GC column Poly(ethylene)glycol (PEG) (PEG) -bound-fused-silica capillary Poly(ethylene)glycol bound phase phase fused-silica capillary (30 m × 0.25 mm i.d.; 0.25-µm film m film thickness) (30 m × 0.25 mm i.d.; 0.25-µ thickness) CarrierCarrier gas He Column head pressure 12 psi 12 psi gas He Column head pressure Injector Injector Temperature 200 °C,200 °C, sample volume injected 0.5 µL, splitless Temperature sample volume injected 0.5 µL, splitless injection injection 104 GRAPE AROMA COMPOUNDS Oven program Oven program °C Isotherm for 3 min, 2 °C/min°to 160 °C,160 °C, 3 °to 230 °C,230 °C, 60 60 °C Isotherm for 3 min, 2 C/min to 3 °C/min C/min to 230 °C 230 °C Isotherm for 5 min Isotherm for 5 min Abundance MS conditions MS conditions Ionization energy energy transfer line temperature 280 °C,280 °C, SCAN Ionization 70 eV, 70 eV, transfer line temperature SCAN 900,000 mode mode LA GASCROMATOGRAFIA 10 800,000 Abundance Abundance 71 700,000 Abundance Abundance 43 9000 9000 8500 6500 6000 6000 5500 5500 5000 1500 1000 500 500 2 200,000 14000 2000 53 1500 57 1000 8-Hydroxy-dihydrolinalool 8-Hydroxy-dihydrolinalool 16000 16000 2500 2000 18000 400,000 300,000 (E,E)-2,6-Dimethylocta-2,6-dien-2,8-diol (E,E)-2,6-Dimethylocta-2,6-dien-2,8-diol 3000 2500 OH 3500 3000 20000 68 100,000 68 12000 93 53 57 77 64 8000 93 121 77 107 64 97 121 107 137 97 0 0 m/z--> 30 m/z-->50 60 70 80 90 100 110 120 130 140 40 30 40 50 60 70 80 90 100 110 120 8000 220000 210000 210000 200000 59 190000 190000 180000 180000 170000 170000 43 160000 160000 150000 140000 130000 130000 120000 120000 59 OH OH 43 110000 110000 100000 100000 90000 90000 80000 80000 OH OH Hydroxy-geraniol Hydroxy-geraniol 150000 140000 83 OH 4 3 43 15.00 20.00 25.00 30.00 9 7 MASS SPECTROMETRY IN GRAPE AND 8 WINE CHEMISTRY 40 55 35.00 40.00 45.00 50.00 55 50 60 70 80 90 100 110 120 130 120 130 30 40 50 60 70 80 90 100 110 43 The dichloromethane solution is concentrated to 2–3 mL by distil6500 lation 6500 using a 40-cm length Vigreux MASS SPECTROMETRY column, and finally to 200 µL 6000 59 OH OH under 6000 nitrogen flow prior to GC/MS analysis. TheAND profile a 59 IN GRAPE GC/MS OH OH 69 81 69 81 5500 5500 of free aroma compounds of a Muscat grape CHEMISTRY WINE skin extract is shown 93 93 5000 5000 in Fig. 4.6. Abundance Abundance 43 69 220000 200000 OH Figure 4.6. The GC/MS–EI (70 eV) chromatogram recorded in SCAN mode of free 6000 6000 RICCARDO FLAMINI aroma compounds of a Muscat grape skins extract. I.S., internal per la Viticoltura, Conegliano (TV), Italy standard (1-heptanol); CRA, Centro di Ricerca 31 31 81 4000 1. linalool; peak 81 trans-pyranlinalool oxide; peak 3. cis-pyranlinalool oxide; peak 4000 peak 2. 137 PIETRO TRALDI 96 96 4. nerol; peak 5. 44 79 95 79109 111121 109 111121 geraniol; peak 6. Ho-diendiol I;Istituto di Scienze e Tecnologie Molecolari, Padova,8. 2000 2000 CNR, peak 7. Ho-diendiol II; peak Italy 95 44 59 59 hydroxycitronellol; peak 9. 7-hydroxygeraniol; peak 10. (E)-geranic acid. 130 140 m/z--> 0 m/z--> 0 30 Abundance Abundance 69 5 1 12000 43 0 84 OH 14000 10000 Time--> 10000 84 OH I.S. 500,000 4000 3500 OH OH 4500 4000 OH 5000 4500 22000 18000 7000 6500 22000 20000 7500 7000 6 24000 600,000 8000 7500 71 24000 8500 8000 43 Hydroxy-nerolHydroxy-nerol 4500 4500 4000 4000 83 RICCARDO FLAMINI CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy 4.2.3 3500 Analysis of Glycoside Compounds TRALDI PIETRO 3500 121 121 CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy The methanolic solution is evaporated to dryness under vacuum at 79 79 2500 40 °C, 2500 53residue is dissolved in 5 mLA JOHNaWILEY & SONS, INC., PUBLICATION the of citrate–phosphate buffer 70000 70000 53 136 136 2000 2000 121 121 60000 60000 136 93 93 (pH 5), then it is added to 107 mg of a glycosidic enzyme with strong 200 136 107 31 31 50000 50000 1500 1500 40000 40000 glycosidase activity 98 (e.g., 98 AR 2000, Gist Brocades) and kept at 40 °C 31 31 53 53 30000 30000 1000 1000 20000 20000 overnight (15 h). The next day the solution is centrifuged, added to 500 500 10000 10000 109 111 109 111 153154 175177 154 175177 200 µL of a 1-octanol 180-mg/L solution as an internal standard, and 153 0 0 Gianluca Gilardoni m/z--> m/z--> 60 4080 60 0 0 100 80 120 100 140 120 160 140 180 160 180 40 m/z--> m/z--> 30 40 503060 705080609070 100 110 100 110 120 the resulting40solution80is90120 130 140 through a 1-g C18 cartridge previously passed 130 140 Riccagioia, 16 ottobre and Figure Figure 4.9. The GC/MS–eV) mass spectraspectra of principal terpenol and norisopren4.9. The GC/MS–EI (70 EI (70 eV) mass of principal terpenol andof 6-mL dichloromethane, 6-mL methanol, 2013 activated by passage norisoprenoid compounds identifiidentified inand not reported in the mainAfter libraries commercially with 5-mL water, the fraction oid compounds ed in grape grape and notmL water. libraries commercially reported in the main cartridge washing 63000 3000
  17. 17. Profumi, sapori e colori: aspetti chimici e sensoriali LO SPAZIO DI TESTA STATICO spazio di testa H3C matrice H3C H3C S S S S H3C S S S S CH3 CH3 CH3 CH3 bagno termico www.microglass.it/3_HAMILTON/3_HAMILTON_SCHEDE/SERIE_1000.htm Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  18. 18. Profumi, sapori e colori: aspetti chimici e sensoriali LO SPAZIO DI TESTA STATICO – SPME (Solid Phase MicroExtraction)  polidimetilsilossano (PDMS) – apolare  poliacrilato (PA) – polare  carbopack (carbone grafitato) – polarità intermedia  carboxen/polidimetilsilossano (CAR/PDMS) – polarità media e bassa  polidimetilsilossano/divinilbenzene (PDMS/DVB) – apolare e aromatica  divinilbenzene/carboxen/polidimetilsilossano (DVB/ CAR/PDMS) – polivalente  carbowax/glicole polietilenico – polare  carbowax/resina templata (CW/TPR) - polare ulceet.com/site30.php Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  19. 19. Profumi, sapori e colori: aspetti chimici e sensoriali SPME in matrici acquose La già trattata tecnica di microestrazione in fase solida, molto valida per l’analisi dello spazio di testa statico, è in teoria applicabile anche agli analiti organici in soluzione acquosa. Si tratta di immergere direttamente la fibra nel campione liquido. VANTAGGI: •  permette di evidenziare le sostanze meno volatili, •  aumenta la sensibilità perché concentra gli analiti. SVANTAGGI: •  può adsorbire sostanze fisse che non si desorbono e si decompongono sulla fibra (accorciamento della vita). www2.mst.dk/common/Udgivramme/Frame.asp?http://www2.mst.dk/Udgiv/publikationer/2000/87-7944-147-5/html/bil02.htm Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  20. 20. Profumi, sapori e colori: aspetti chimici e sensoriali SBSE (Stir Bar Sorptive Extraction) E’ una tecnica appositamente sviluppata per il campionamento delle sostanze organiche in campioni liquidi; si applica quindi alle stesse problematiche della SPME in matrici acquose, rispetto alla quale tuttavia è più efficiente. Si tratta di un agitatore magnetico esternamente rivestito di una guaina in materiale adsorbente, normalmente PDMS. L’agitatote, messo in rotazione all’interno di un campione liquido sigillato, adsorbe gli analiti organici fino alla concentrazione di equilibrio. Al termine del campionamento, le sostanze adsorbite possono essere analizzate in GC per desorbimento termico. www.gerstel.com/en/twister-stir-bar-sorptive-extraction.htm Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  21. 21. Profumi, sapori e colori: aspetti chimici e sensoriali LO SPAZIO DI TESTA DINAMICO Nello spazio di testa dinamico il campione è arricchito dallo spostamento dell’equilibrio verso la fase aeriforme, come conseguenza del principio di Le Châtelier. Gli analiti sono asportati dallo spazio di testa da un flusso di azoto ed intrappolati nelle consuete fasi solide adsorbenti. LA SENSIBILITA’ RISPETTO A L L O S PA Z I O D I T E S TA S TA T I C O E ’ NOTEVOLMENTE INCREMENTATA: POSSONO ESSERE CAMPIONATI SVARIATI LITRI DI SPAZIO DI TESTA ANCHE PER CAMPIONI DI PICCOLO VOLUME. Se il campione è attraversato dal flusso di campionamento, il contributo all’arricchimento potrebbe derivare non solo dal principio di Le Châtelier ma anche dall’innalzamento della tensione di vapore degli analiti (vedi distillazione in corrente di vapore). In campioni liquidi il metodo è noto come “purge and trap”. Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  22. 22. Profumi, sapori e colori: aspetti chimici e sensoriali METODI SENSORIALI AROMA ORTONASALE – La misura sensoriale dell’odore si attua tramite la valutazione di un “panel” di analisti selezionati. Qualora lo scopo dell’analisi fosse la misura della soglia di percezione olfattiva di un campione aeriforme, il panel si dovrebbe avvalere di un olfattometro a diluizione dinamica. Il campione, all’interno di sacchetti in Nalophan, viene proposto al panel a concentrazione crescente; i volontari segnalano con un pulsante la percezione dell’odore, evitando di segnalare i “bianchi” casuali introdotti dal programma. Il risultato è una concentrazione d’odore, ottenuta statisticamente. http://www.ecoma.de/en/index_frameset.php?id=198 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  23. 23. Profumi, sapori e colori: aspetti chimici e sensoriali METODI SENSORIALI AROMA ORTONASALE E RETRONASALE – Qualora lo scopo dell’analisi fosse una valutazione qualitativa dell’odore, il panel potrebbe procedere anche senza olfattometro, scomponendo mentalmente la percezione sensoriale in componenti descrivibili con altrettanti aggettivi detti descrittori. I descrittori e le relative intensità sono normalmente rappresentate in un grafico radiale, a dare un poligono la cui forma identifica sensorialmente il campione. LO STESSO PROCEDIMENTO SI APPLICA A QUALUNQUE ANALISI SENSORIALE, IN PARTICOLARE AL SAPORE. www.beverfood.com/v2/modules/smartsection/item.php?itemid=127 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  24. 24. Profumi, sapori e colori: aspetti chimici e sensoriali MEODI COMBINATI – IL NASO ELETTRONICO IL NASO ELETTRONICO PERMETTE DI ASSOCIARE UN EMISSIONE ODOROSA AD UNA SORGENTE, ALL INTERNO DI UN GRUPPO DI CAMPIONI DIFFERENZIATI. www.alibaba.com/product-free/10822337/PEN_II_GAS_Sensor_Array_With.html Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  25. 25. Profumi, sapori e colori: aspetti chimici e sensoriali METODI COMBINATI La gascromatografia-olfattometria è una tecnica che combina la separazione gascromatografica delle sostanze volatili alla possibilità di percepirne l odore in tempo reale. L analista segnala la percezione con un pulsante, generando un grafico detto aromagramma che può essere sovrapposto al cromatogramma. basilico A 1200 solfuro Terra bagnata Erba tagliata 1000 Resina di pino Agrumato, menta muffa, erbaceo mV 800 balsamico Sgradevole, acre 600 400 200 0 0.0 2.0 4.0 6.0 8.0 10.0 tempo (min) cromatogramma aromagramma Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  26. 26. Profumi, sapori e colori: aspetti chimici e sensoriali LA CROMATOGRAFIA LIQUIDA AD ALTE PRESTAZIONI (HPLC) Skoog D. A., Leary J. J. – CHIMICA ANALITICA STRUMENTALE – EdiSES 1995 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  27. 27. Profumi, sapori e colori: aspetti chimici e sensoriali LA CROMATOGRAFIA LIQUIDA AD ALTE PRESTAZIONI (HPLC) RIVELATORE UV-VIS DAD (Diode Array Detector) MS RID (Refractive Index Detector) Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  28. 28. Profumi, sapori e colori: aspetti chimici e sensoriali NH2 LA CROMATOGRAFIA LIQUIDA AD ALTE PRESTAZIONI (HPLC) PFP F bifenile H3C Si CH3 O F OH fenile H3C Si CH3 X3 O C18 fenil propile O Si O O F H3C Si CH3 F F O C18 acquoso H3C Si CH3 O Fase diretta PFP propile CN P F F ciano C8 ammino F F IBD F H3C Si CH3 H3C Si CH3 O O O Si O O H3C Si CH3 H3C Si CH3 O O O H3C Si CH3 Si O P H3C Si CH3 O O Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  29. 29. Profumi, sapori e colori: aspetti chimici e sensoriali SPE (Solid Phase Extraction) www.biotage.com/DynPage.aspx?id=35833 Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  30. 30. ounds, as further discussed below. In only a few cases individual character impact compounds (see Fig. 2) been fied and associated with specific varietal aroma attributes e 2) (an impact compound is a single compound that ys the named flavor6). Most of the impact compounds In general, the fermentation-derived volatiles make up the largest percentage of the total aroma composition of wine. Fermentation by Saccharomyces cerevisiae leads to formation of many alcohols (predominantly ethanol and the C3–C5 straight chain and branched n-alcohols, and 2-phenylethanol) Profumi, sapori e colori: aspetti chimici e sensoriali View Article O CRITICAL REVIEW www Wine flavor: chemistry in a glass 1 Fig. 1 White and red wine production. Indicates steps that are optional and/or not done on every variety or wine style. 2If skins are removed ´ ´ from red grape must, a blush or rose juice is obtained; color is dependant on grape varietal and contact time with´ , Julian Herszage and Pavla Polasˇ kovaskins. c The Royal Society of Chemistry 2008 White and red wine production. 1Indicates steps that are optional ´ ed grape must, a blush or rose juice is obtained; color is dependant Chem. Soc. Rev., 2008, 37, Received 13th May 2008 2478–2489 | 2479 First published as an Advance Article on the web 12th August 2008 DOI: 10.1039/b714455p Published on 12 August 2008. Downloaded by Universita di Pavia on 24/09/2013 12:49:14. This journal is Susan E. Ebeler* Although hundreds of chemical compounds have been identified in grapes and w compounds actually contribute to sensory perception of wine flavor. This critical on volatile compounds that contribute to wine aroma and provides an overview o developments in analytical techniques for volatiles analysis, including methods us compounds that make the greatest contributions to the overall aroma. Knowledg composition alone is not enough to completely understand the overall wine arom to complex interactions of odorants with each other and with other nonvolatile m components. These interactions and their impact on aroma volatility are the focu current research and are also reviewed here. Finally, the sequencing of the grapev genomes in the past B10 years provides the opportunity for exciting multidiscipl aimed at understanding the influences of multiple genetic and environmental fact wine flavor biochemistry and metabolism (147 references). Introduction contribute to ta the compounds From Pasteur’s discoveries of the role of microorganisms in on those compo fermentation and his studies on the analytical separations of aromas such as chiral organic acids in grape juice1,2 to Kepler’s development As fermentation of early calculus theories to measure wine barrel volumes,3 decreased, and grapes and wines have provided a rich basis for many disfocus toward u coveries that have had fundamental impacts on mathematics, contribute to microbiology, and chemistry over the past several centuries. different grapes The chemistry of grape and wine flavor, in particular, has been wines, port, Sa the focus of much research due to the complexity of the enabled by imp volatile aromas that contribute to flavor and the nuanced Gianluca Gilardoni chromatograph variations that arise from different grape varieties, growing commercial cap and/or not done on every variety oryears. Instyle. 2If skins part of the regions, and vintage wine the 19th and early are removed will first sum Riccagioia, 16 ottobre 2013 we on grape varietal and contact time with skins. of wine flavor chemistry 20th centuries, much of the focus flavor, focusing
  31. 31. t f g e s n s t s that have been identified are present at low concentrations in grapes and wines, however because of their very low (ng LÀ1) sensory thresholds they can have a large impact on the overall grape/wine aroma. In general, the fermentation-derived volatiles make up the largest percentage of the total aroma composition of wine. Fermentation by Saccharomyces cerevisiae leads to formation of many alcohols (predominantly ethanol and the C3–C5 straight chain and branched n-alcohols, and 2-phenylethanol) Profumi, sapori e colori: aspetti chimici e sensoriali View Article Online / Journal Homepage / Table of Contents for this issue CRITICAL REVIEW www.rsc.org/csr | Chemical Society Reviews Wine flavor: chemistry in a glass tional and/or not done on every variety or wine style. 2If skins are removed ´ ndant on grape varietal and contact time with´ , Julian Herszage and Pavla Polasˇ kovaskins. Susan E. Ebeler* /2013 12:49:14. Chem. Soc. Rev., 2008, 37, Received 13th May 2008 2478–2489 | 2479 First published as an Advance Article on the web 12th August 2008 DOI: 10.1039/b714455p Although hundreds of chemical compounds have been identified in grapes and wines, only a few compounds actually contribute to sensory perception of wine flavor. This critical review focuses on volatile compounds that contribute to wine aroma and provides an overview of recent developments in analytical techniques for volatiles analysis, including methods used to identify the compounds that make the greatest contributions to the overall aroma. Knowledge of volatile Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  32. 32. analysis of wine volatiles by triphase fiber is shown in Fig. 5.1, the experimental conditions are reported in Table 5.1. A list of wine volatiles detectable by this method is reported in Table 5.2. CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy PIETRO TRALDI Profumi, sapori e colori: aspetti chimici e sensoriali CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy MASS SPECTROMETRY IN GRAPE AND WINE CHEMISTRY Abundance 6 2 8,500,000 8,000,000 7,500,000 RICCARDO FLAMINI 7,000,000 CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy PIETRO TRALDI 121 HIGHER ALCOHOLS AND ESTERS FORMED FROM YEASTS CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy TABLE 5.2. Wine Volatiles Detectable by HS–SPME Using a CAR–PDMS–DVB A JOHN WILEY SONS, INC., Fiber and Their Principal m/z Signalsa PUBLICATION Compound m/z 70;41;83 (E)-2-Nonenal 81;41;39 (E,E)-2,4-Decadienal 1,1,6-Trimethyl-1,2157;142;172 dihydronaphthalene 1-Hexanol 56;43;69 1-Octen-3-ol 72;57;85 2-Methyl-1-butanol 57;41;70 A JOHN WILEY SONS, INC., PUBLICATION 2-Octanone 43;58;71 2-Phenylethanol 91;92;122 2-Phenylethyl acetate 104;43;91 3-Methyl-1-butanol 55;42;70 Acetic acid 43;45;60 67;41;55 cis-3-Hexenol 59;94;111 cis-Furanlinalool oxide Decanoic acid 60;73;129 Diethylsuccinate Ethyl 2-methylbutanoate Ethyl 3-hexenoate Ethyl 9-decenoate Ethyl acetate 101;129;55 102;85;74 69;41;68 41;55;88 61;70;73 Ethyl Ethyl Ethyl Ethyl Ethyl Ethyl 71;43;88 88;61;155 88;101;183 88;99;60 43;29;71 29;57;88 a butanoate decanoate dodecanoate hexanoate isobutanoate isovalerate Compound Ethyl octanoate Ethyl propanoate Ethyl lactate m/z 88;101;127 29;57;27 45;29;75 6,500,000 5 6,000,000 5,500,000 5,000,000 4,500,000 9 4,000,000 3,500,000 3,000,000 2,500,000 13 1 14 10 2,000,000 Geranyl ethylether Hexanoic acid Hexyl acetate Isoamyl acetate Isoamyl alcohol Isoamyl octanoate Isobutyl alcohol Linalool Linalyl ethyletherb Methyl decanoate Methyl heptanoate (I.S.) Methyl hexanoate Methyl octanoate Octanoic acid Propanol trans-Furanlinalool oxide Vitispiranes α-Ionone α-Terpineol β-Damascenone β-Ionone Furfural 69;93;121 60;73,87 43;56;61 43;70;55 55;42;70 70;127;43 43;41;42 71;93;55 71;43;99 74;87;155 74;43;87 74;87;99 74;87;127 60;73;101 31;29;42 59;43;68 4 1,500,000 3 1,000,000 7 500,000 0 Time-- 5.00 10.00 15.00 20.00 11 8 25.00 30.00 12 35.00 40.00 (min) Figure 5.1. HS (headspace)–SPME–GC/MS chromatogram recorded in the analysis of a Gewürztraminer wine volatiles performed using a CAR–PDMS–DVB fiber and the experimental conditions reported in Table 5.1. (1) ethyl hexanoate; (2) 2- and 3-methyl1-butanol (isoamyl alcohols); (3) ethyl lactate; (4) 1-hexanol; (5) ethyl octanoate; (6) 1-heptanol (internal standard); (7) benzaldehyde; (8) linalool; (9) ethyl decanoate; (10) diethyl succinate; (11) α-terpineol; (12) 2-phenylethyl acetate; (13) 2-phenylethanol; (14) octanoic acid. 192;177;121 121;93;192 59;93;136 69;121;190 177;178;135 96;95;39 EI 70 eV. Versini et al., 2008; Ferreira and de Pinho, 2003; Bosch-Fusté, 2007. Data kindly provided by Prof. R. Di Stefano. b TABLE 5.3. Wine Volatiles Detectable by HS–SPME Using a 100-µm PDMS Fiber and Their Principal m/z Signalsa Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  33. 33. Profumi, sapori e colori: aspetti chimici e sensoriali 132 TABLE 5.8. Mean Contents of Carbonyl Compounds Identified in Chardonnay and Cabernet Sauvignon Winesa and Grappa Samplesb Wine Compound (µg/L)c (E)-2-Hexenal (E)-2-Nonenal (E)-2-Octenal (E)-2-Pentenal (E,E)-2,6-Nonadienal 2,3-Butanedione 3-Hydroxy-2-butanone Acetaldehyde (mg/L) Benzaldehyde Butyraldehyde Decanal Glycolaldehyded Glyoxal Heptanal Hexanal Isovaleraldehyde+ 2-Methylbutyraldehyde Methylglyoxald Nonanal Octanal Propanal Vanillin a Cabernet Sauvignon Before MLF After MLF Chardonnay Before MLF After MLF 3.43 trace 0.58 0.18 0.82 0.18 13.78 250 1620 52.01 0.27 2820 4560 5.02 n.f. 50 5030 46.54 n.f. 940 10910 67.04 12.36 0.34 48.43 41.33 3.36 94.63 19.99 1.56 391.6 106.01 0.56 91.67 25.69 10.96 1.30 0.82 45.51 14.37 1.85 0.77 Cabernet Sauvignon (µg/100 mL a.e.) 1.09 0.29 Before and after Malolactic fermentation. Not found, n.f., a.e., anhydrous ethanol. c Amounts expressed as internal standard o-chlorobenzaldehyde (I.S.). d Quantified on basis of one of the two PFBOA syn–anti oxime peaks. b Grappa Chardonnay (µg/100 mL a.e.) 71.2 8.7 n.f. 15.7 73.3 12.8 4.4 28.5 179.2 892.1 33.2 1117.2 189.4 384.9 20.8 699.5 8.48 5.08 1.84 4.13 38.51 110.87 6.1 MASS SPECTROMETRY 49.11 95.92 0.2 IN GRAPE AND 0.35 1.99 52.3 WINE CHEMISTRY 1093.5 10.79 89.94 50.6 45.85 24.46 11.5 RICCARDO FLAMINI CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy 0.3 34.73 71.55 PIETRO TRALDI 1.05 Istituto di Scienze e Tecnologie Molecolari, Padova, Italy 11.2 2.92 CNR, 0.39 0.80 4.7 53.8 1.30 6.0 0.1 116.2 1563.2 148.6 18.2 0.2 32.5 13.6 90.4 1.8 MASS SPECTROMETRY IN GRAPE AND WINE CHEMISTRY RICCARDO FLAMINI CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy PIETRO TRALDI CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy A JOHN WILEY SONS, INC., PUBLICATION Gianluca Gilardoni Riccagioia, 16 ottobre 2013
  34. 34. * * OH * O O Profumi, sapori e colori: aspetti chimici e sensoriali 31 30 29 O 98 HO HO O * O OH 1 35 * * 2 4 5 39 * OH OH OH OH * OH 6 OH OH 9 OH OH 11 * OH 12 OH 15 14 OH OH * O * 17 18 O * * O * O * OH 33 OH 43 OH * 19 O O * * * * O OH 46 * * 24 OH HO CH3 O O H3C CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy OH O OCH3 CH3 CH3 HO 47 48 OCH3 benzenoid O OH 23 43 OCH 4.3. Principal flavoring compounds in grape. 3 44) zingerone; (45) 44 45 MASS( SPECTROMETRY zingerol; (46) vanillin; (47) ethyl vanillate; and (48) methyl salicylate. O Figure OH 42 OH PIETRO TRALDI 20 OH HO O 41 OH O * Figure 4.2. Principal norisoprenoid compounds inOH grape SPECTROMETRY O MASS and wine. (29) TDN (1,1,6trimethyl-1,2-dihydronaphthalene); (30) β-damascone; (31) β-damascenone; (32) vomCH3 CH3 ifoliol; (33) dihydrovomifoliol; (34) 3-hydroxyIN GRAPE -AND -β-damascone; (35) 3 oxo-α-ionol; (36) 3-hydroxy-7,8-dihydro-β-ionol; (37) α-ionol; WINE CHEMISTRYβ(38) β-ionol; (39) α-ionone; (40) HO HO ionone; (41) actinidols; (42) vitispiranes (spiro [4.5]-2,10,10-trimethyl-6-methyleneOCH OCH 44 45 1-oxa-7-decene); 3(43) Riesling acetal (2,2,63-tetramethyl-7,11-dioxatricyclo[6.2.1.01,6] undec-4-ene). RICCARDO FLAMINI O O OH OH 22 O * O 32 OH 42 40 OCH3 OH 21 39 OH * 16 OH 41 40 * * * * * Figure 4.2. Principal norisoprenoid compounds in grape and wine. (*29) TDN (1,1,6* * * trimethyl-1,2Odihydronaphthalene); (30) β-damascone; (31) β-damascenone; (32) vomH O HO ifoliol; (33) dihydrovomifoliol; (34) 3-hydroxy-β-damascone; (35) 3-oxo-α-ionol; (36) 38 34 35 36 37 OH 3-hydroxy-7,8-dihydro-β-ionol; (37) α-ionol; (38) β-ionol; (39) α-ionone; (40) βionone; (41) actinidols; O ) vitispiranes O (42 (spiro [4.5]-2,10,10-trimethyl-6-methylene110 -7-decene); (43) Riesling acetal (2,2,6-tetramethyl-7,11-dioxatricyclo[6.2.1.01,6] -oxa * * * O * O undec-4-ene). * * * * OH OH 13 O* * O 31 * OH O * * O OH 8 7 * O * * OH OH OH OH * * 38 OH * 30 * 37 O O 29 OH * * O * OH 3 36 O O * OH * HO * * * 33 OH * GRAPE AROMA COMPOUNDS * O HO 34 OH 32 OH 100 GRAPE AROMA COMPOUNDS * OH 25 O O IN GRAPE AND CH3 O O H3C WINE CHEMISTRY OH reported in Fig. 4.3 (Williams et al., 1983; 1989; Winterhalter et al., OCH3 OCH3 RICCARDO FLAMINI * * 1990; López et al., 2004). OH OH * OH 3-Alkyl-2-methoxypyrazines are compounds present in skin, pulp, PIETRO TRALDI 46 47 48 and bunch stems of grape, and contribute with very characteristic OH OH Figure 4.3. Principal flavoring benzenoid compounds in vegetative, herbaceous, bell pepper, or earthy ) methylgrape. (44aroma notes to the ) zingerone; (45) 28 26 27 zingerol; (46) vanillin; (47) ethyl vanillate; andA(JOHN WILEY salicylate. 48 SONS, INC., PUBLICATION Figure 4.1. Principal monotepenes in grape and wine. (1) The cis- and transof Cabernet Sauvignon, Sauvignon blanc, Semillon, and other wines -linalool OH OH CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy oxide (5-ethenyltetrahydro-α,α,5-trimethyl-2-furanmethanol) (furanic form); (2) linalool (3,7-dimethyl-1,6-octadien-3-ol); (3) α-terpineol (α,α,4-trimethyl-3-cycloexene1-methanol); (4) cis- and trans-ocimenol [(E- and Z-)2,6-dimethyl-5,7-octen-2-ol]; (5) cis- and trans-linalool oxide (6-ethenyltetrahydro-2,2,6-trimethyl-2H-pyran-3-ol) (pyranic form); (6) hydroxycitronellol (3,7-dimethyloctane-1,7-diol); (7) 8-hydro- reported in Fig. 4.3 (Williams et al., 1983;Gianluca Gilardoni al., 1989; Winterhalter et 1990; López et al., 2004). Riccagioia, 16 ottobre 2013 3-Alkyl-2-methoxypyrazines are compounds present in skin, pulp,
  35. 35. Published on 12 August 2008. Downloaded by Universita di Pavia on 24/09/2013 12:49:14. Catechin Linalool Profumi, sapori e colori: aspetti chimici e sensoriali Banana-like aroma Isoamyl acetate components from the skins (e.g., anthocyanins, polyphenols, Chemesthesis Mouth-warming/heat Ethanol flavor compounds) are extracted into the juice/wine during the Tactile Viscosity Glycerol, fermentation. The complex aromas of the final wine are polysaccharides therefore derived from the grape, the yeast fermentation Astringency Tannins Vision Red Malvidin-3-glucoside (typically Saccharomyces cerevisiae), any secondary microbial Table 2 Impact odorantsthat occur, and theto varietal aromas of selected wines contributing aging/storage conditions. fermentations There are clear sensory differences in the aromas of most that have been identified are present at low concentrations in Characteristic odorantsgrapes and wines, however because of their very low (ng LÀ1) Odor quality Varietya grape varieties, however the overall volatile composition of most varieties is similar, with the varietal aroma deriving sensory thresholds they can have a large impact on the overall largely from differences in relative ratios of many volatile grape/wine aroma. Muscat Linalool, Floral compounds, as further discussed below. In only e.g. geraniol, nerol a few cases In general, the fermentation-derived volatiles make up the Terpenols, Citrus, floral have individual character impact compounds (see Fig. 2) been largest percentage of the total aroma composition of wine. Riesling TDN (1,1,6-trimethyl-1,2-dihydronaphthalene) cerevisiae leadsbottle age Kerosene, to formation identified and associated with specific varietal aroma attributes Fermentation by Saccharomyces Cabernet Sauvignon,2) (an impact compound is a single compound that of many alcohols (predominantly ethanol and the C3–C5 Bell pepper (Table Sauvignon blanc, 3-Isobutyl-2-methoxypyrazines (IBMP) Cabernet franc,conveys the Carmenere). Most of the impact compounds straight chain and branched n-alcohols, and 2-phenylethanol) Merlot, named flavor6 Gewurztraminer ¨ Sensory threshold Ref. 170 ng LÀ1 (in water) 7,8 9,10 20 mg LÀ1 View Article O 11–14 2 ng LÀ1 (in water) 15–20 Geranium oil, carrot 200 ng LÀ1 of diacetyl leaves (2,3-butanedione), which contributes a buttery Wine lactone Coconut, woody, sweet 0.02 pg LÀ1 (in air) aroma to these wines. The effects400 ng LÀ1 of fermentation condition 21,22 o-Aminoacetophenone Foxy, sweet 16,18 4-Methyl-4-mercaptopentan-2-one and reviews of the biochemical ng LÀ1 in Blackcurrant 0.6 processes involved in water–ethanol formation of the fermentation-derived w/w) aromas have been (90 : 10, 29–31 reviewed by others. 3-Mercapto-1-hexanol Grapefruit/citrus peel 50 ng LÀ1 23 (R isomer) in concentrations of many aroma Finally, changes Passion fruit (S isomer) 60 ng LÀ1 24 À1 compoundsBlack pepper storage and wine aging. Many wine occur during Rotundone 16 ng L (in wine) 25,26 cis-Rose oxide Vitis labrusca, Vitis rotundifolia Sauvignon blanc, Scheurebe ´ Grenache rose, Sauvignon blanc, Semillon Shiraz View the mos are stored or fermented in oak barrels and one of Article On important volatiles extracted from the wood is b-methyl g-octalactone (known as oak- which contributes which con of diacetyl (2,3-butanedione), or whiskey-lactone) a buttery c 2480 | Chem. Soc. Rev., 2008, 37, 2478–2489 This tributes these journal is The Royal Society of Chemistry 2008 aroma to a woody, oaky, coconut-like aroma to the wine. Thi wines. The effects of fermentation conditions compound of as biochemical processes involved in and reviewsoccursthe two isomers, cis- and trans-, and lik many isomeric compounds, the sensory aromas have been formation of the fermentation-derived properties are depen View Article Online / Journal dent on the isomeric reviewed by others.29–31structure. As reviewed by Waterhous and Towey,32 the cis-oak lactone isomer manyan aroma aroma CRITICAL REVIEW www.rsc.org/csr Finally, changes in concentrations of has À1 À threshold occur during storage , wine aging. 460 wines compounds reported as 92 mg L andcompared toMany mg L Wine flavor: chemistry oak barrels forstored or fermented in in a glass and one of the varie areeverythe trans-isomer and the ratio of the two isomers most Fig. 1 White and red wine production. Indicates steps that are optional and/or not done on variety or wine style. If skins are removed with oak with Julian extracted Susan the wood is b-methyl´ ´ from red grape must, a blush or rose juice is obtained; color is dependant on grape varietal and contact timespecies and origin. Interestingly, several studies hav Pavla Pola volatiles importantsˇ kova´,skins. Herszage and from E. Ebeler* shown13th May 200837, 2478–2489 |also adsorb some aroma compound that (known can 2479 g-octalactonethe wood as oak- or whiskey-lactone) which conThis journal is The Royal Society of Chemistry 2008 Chem. Soc. Rev., 2008, Received First published as an Advance Article on the web 12th August 2008 (2-phenylethanol, ethyl decanoate)33–35 changing wine. This tributes a woody, oaky, coconut-like aroma to thetheir concen DOI: 10.1039/b714455p Gianluca Gilardoni tration in occurs as two adsorption reactions appear to be compound solution. These isomers, cis- and trans-, and like a 2013 Although hundredsthe ratio of wood surface area/solution volum in functionactuallyofcompounds, Riccagioia, 16flavor.grapescritical depen-fe of chemical compounds have beenofidentifiedottobre and wines, only a Fig. 2 Structures of compounds from Table 2: (a) linalool, (b) geraniol, many isomeric contribute to sensorythe sensory properties arereview focuse compounds perception wine This All varieties are Vitis vinifera except where indicated. 1 c 2 49:14. a niversita di Pavia on 24/09/2013 12:49:14. 3 12:49:14. Universita di Pavia on 24/09/2013 12:49:14. Bitter shown in Fig. 1, with the main distinction being that red wines Floral, lily-of-the fermentation) are fermentedresult may present so that more chemical Smell/aroma is undesirable.valley and as a with the skins contain high concentrations aroma
  36. 36. Profumi, sapori e colori: aspetti chimici e sensoriali View Article Online Table 3 Important odorants in several varietal wines identified using GC-O techniques as reported in selected literature sources Variety Scheurebe View Article Online 4-Mercapto-4-methylpentan-2-one, ethyl 2-methylbutyrate, 3-methylbutanol, 2-phenylethanol, 3-ethylphenol, 3-hydroxy-4,5-dimethyl-2(5H)-furanone and wine lactone Grape and wine flavor is complex and many different sensory Example chemical Gewurztraminer cis-Rose oxide, ethyl 2-methylbutyrate, 3-methylbutanol, 2-phenylethanol, ¨ modalities and chemical compounds influence flavor percepSensory modality Attribute compounds in wine tion (Table 1).5 However, aroma (smell) is the major contri3-ethylphenol, 3-hydroxy-4,5-dimethyl-2(5H)-furanone and wine lactone Taste Sweet Glucose, fructose, butor to overall flavor perception and this review will focus glycerol, ethanol ´ Grenache rose 3-Mercapto-1-hexanol, furaneol, homofuraneol largely on the volatile aroma compounds that contribute to Sour Tartaric acid grape and wine flavor. Salty Sodium chloride, Chardonnay Ethyl butanoate, octanoic acid, 2-phenylacetaldehyde, 4-vinyphenol, potassium chloride The basic processes for producing red and white wines are d-decalactone, 2-methyltetrahydrothiophen-3-one, 3-methylbutyl acetate, Bitter Catechin shown in Fig. 1, with the main distinction being that red wines Smell/aroma Floral, lily-of-the valley Linalool decanoic acid, 4-vinyl-2-methoxyphenol and linalool are fermented with the skins present so that more chemical aroma Banana-like Isoamyl acetate components from the skins (e.g., Spanish Rioja (blend of Tempranillo, aroma 4-Ethylguaiacol, (E)-whiskey lactone, 4-ethylphenol, b-damascenone, anthocyanins, polyphenols, Chemesthesis Mouth-warming/heat Ethanol flavor compounds) are extracted into the juice/wine during the Viscosity Glycerol, Grenache and are Tactile fusel alcohols, isovaleric and hexanoic acids, eugenol, fatty acid ethyl esters, fermentation. The complex aromas of the final wineGraciano grape varieties) polysaccharides therefore derived from the grape, the yeast fermentation ethyl esters of isoacids, furaneol, 2-phenylacetic acid and (E)-2-hexenal Astringency Tannins Vision Red Malvidin-3-glucoside (typically Saccharomyces cerevisiae), any secondary microbial Zalema conditions. Mainly fatty acids and their ethyl esters, b-damascenone and fermentations that occur, and the aging/storage There are clear sensory differences in the aromas of most that have been identified are present atb-ionone, isoamyl alcohol and 2-phenylethanol, 4-mercapto-4-methyl-2-pentanone, low concentrations in grape varieties, however the overall volatile composition of grapes and wines, however because of their very low (ng LÀ1) 3-mercaptohexyl acetate, 3-mercapto-1-hexanol, acetaldehyde and 2-phenylacetaldehyde most varieties is similar, with the varietal aroma deriving sensory thresholds they can have a large impact on the overall Castanal b-Ionone, 3-methyl-1-butanol, benzyl alcohol, 2-phenylethanol, largely from differences in relative ratios ˜ of many volatile grape/wine aroma. compounds, as further discussed below. In only a few cases In general, the fermentation-derived ethyl acetate, isoamyl acetate, ethyl lactate, ethyl butyrate, ethyl hexanoate volatiles make up the have individual character impact compounds (see Fig. 2) been largest percentage of the total aroma composition of wine. and ethyl octanoate identified and associated with specific varietal aroma attributes Fermentation by Saccharomyces cerevisiae leads to formation 2-Phenylethanol, 3-methyl-1-butanol, 2-methylpropanoate, (Table 2) (an impact compound Pinot Noir is a single compound that of many alcohols (predominantly ethanol and the C3–C5 6 conveys the named flavor ). Most of the impact compounds straight chain and branched n-alcohols,ethyl butanoate, 3-methylbutyl acetate, ethyl hexanoate, benzaldehyde, and 2-phenylethanol) Cabernet Sauvignon and Merlot Methylbutanols, 2-phenylethanol, 2-methyl-3-sulfanylfuran, from Bordeaux acetic acid, 3-(methylsulfanyl)propanal, methylbutanoic acids, b-damascenone, 3-sulfanylhexan-1-ol, furaneol, homofuraneol Cabernet Sauvignon and Merlot 3-Methyl-1-butanol, 3-hydroxy-2-butanone, octanal, ethyl hexanoate, from USA and Australia ethyl 2-methylbutanoate, b-damascenone, 2-methoxyphenol, 4-ethenyl-2-methoxyphenol, ethyl 3-methylbutanoate, acetic acid and 2-phenylethanol Madeira (Malvazia, Boal, Verdelho Sotolon, 2-phenylacetaldehyde, (Z)-whiskey lactone and Sercial varieties) Riesling (from Croatia) 2-Phenylethanol, 3-methyl-1-butanol, 3-(methylthio)-1-propanol, ethyl propanoate, ethyl butanoate, ethyl 3-methylbutanoate, 3-methyl-1-butanol acetate, ethyl hexanoate, ethyl octanoate, ethyl 3-hydroxybutanoate, 2-phenylethyl acetate, hexanoic acid, 3-methylbutanoic acid, butanoic acid, b-damascenone, g-undecalactone and 4-vinylguaiacol Riesling (from US) b-Damascenone, 2-phenylethanol, linalool, fatty acids, ethyl 2-methyl butyrate, trans-2-hexenol, cis-3-hexenol, geraniol, ethyl butyrate, carvone, ethyl hexanoate, isoamyl acetate Seyval blanc o-Aminoacetophenone, b-damascenone, C4 fatty acids, linalool, 1-octen-3-ol, vanillinView Article Online / Journal Homepage / Table of Contents for this issue Vidal blanc b-Damascenone, 2-phenylethanol, methyl anthranilate, vanillin CRITICAL REVIEW www.rsc.org/csr | Chemical Society Reviews Cayuga White b-Damascenone, vanillin, 2-phenylethanol, geraniol, hexanal Published on 12 August 2008. Downloaded by Universita di Pavia on 24/09/2013 12:49:14. Chemical components contributing to flavor Published on 12 August 2008. Downloaded by Universita di Pavia on 24/09/2013 12:49:14. Most important odorants identified by Various GC-O methods c 16 Table 1 Sensory modalities and selected chemical components contributing to grape and wine flavor Wine flavor: chemistry in a glass on a point interval scale as it elutes from the GC column. E. Ebeler* An Susan advantage of the TI methods relative to other GC-O methods The Royal Society of Chemistry 2008 Chem. Soc. Rev., 2008, 37, Received 13th May 2008 2478–2489 | 2479 is that more sniffers/assessors can evaluate the same web 12th August 2008 sample in First published as an Advance Article on the DOI: 10.1039/b714455p a given time span since intensity is measured during a single Fig. 1 White and red wine production. 1Indicates steps that are optional and/or not done on every variety or wine style. 2If skins are removed ´ ´ from red grape must, a blush or rose juice is obtained; color is dependant on grape varietal and contact time with´ , Julian Herszage and Pavla Polasˇ kovaskins. This journal is Ref. 16 23 94,95 96 97 98 70 99 100 101 102 103 103 103 103 compounds can change with changing concentration so that Gianluca Gilardoni perceptual differences may occur as peaks elute from the GC Riccagioia, 16 ottobre column and as odorant concentrations in solution change. If 2013 peaks are poorly resolved, odor perception may be dependent
  37. 37. Feuillat, 1999; Ibern-Gómez et al., 2001; Chatonnet et al., 1992). Main compounds characterized by sensorial proprieties are vanillin (45) Profumi, sapori e colori: aspetti chimici e sensoriali TABLE 7.1. The GC/MS Qualitative and Semiquantitative Data of Volatile Compounds Identified in 50% Hydroalcohol Extract of Different Types of Wood Used in Making Barrels for Wine and Spirits Aginga 228 Compound Compound Acacia Chestnut Cherry Mulberry Oak COMPOUNDS RELEASED IN WINE FROM WOOD TABLE 7.1. (Continued) Acacia Aldehydes and Ketones Furfural Benzaldehyde Methylbenzaldehyde Hydroxybenzaldehyde Anisaldehyde Cinnamaldehyde Vanillin Syringaldehyde Coniferaldehyde Acetophenone Benzophenone Acetovanillone 3-Methoxyacetovanillone 2-Butanone-4-guaiacol 2,4-Dihydroxybenzaldeide 3-Buten-2-one-4-phenyl * * ** * * ** *** ** * *** *** ** ** ** ** * * ** ** ** * * * ** *** ** * * ** ** ** *** ** Alcohols and Phenols α-Terpineol 3-Oxo-α-ionol β-Phenylethanol Benzenepropanol α-Methylbenzenepropanol Coniferyl alcohol Benzotriazole 4-Methylphenol 4-Ethylphenol 4-Methylguaiacol Ethylguaiacol Vinylguaiacol Eugenol Methoxyeugenol 3-Methoxyphenol Dimethoxyphenol Trimethoxyphenol 1,2,3-Trimethoxybenzene * * * ** ** * ** Cherry Mulberry Oak Acids and Esters * * * Chestnut Ethyl benzoate 2,5-Dihydroxy ethyl benzoate Methyl salicylate trans-β-Methyl-γ-octalactone cis-β-Methyl-γ-octalactone Homovanillic acid Capronic acid Caprylic acid Lauric acid Myristic acid Pentadecanoic acid Palmitic acid Margaric acid Stearic acid Oleic acid Linoleic acid Linolenic acid * ** ** ** * ** ** ** *** * ** ** ** ** * * ** ** *** ** ** * ** * * * * * * * ** * ** * * * *** *** ** * ** * ** * ** ** ** ** * *** *** ** * MASS SPECTROMETRY ** ** IN GRAPE AND* ** * WINE CHEMISTRY *** ** ** (Not subjected to any toasting treatment). Data expressed as µg/g of 1-heptanol (internal RICCARDO FLAMINI CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy standard). PIETRO TRALDI *0.1–0.9 µg/g wood; CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy **1–10 µg/g wood; INTRODUCTION 229 ***10 µg/g wood; tr, trace (De Rosso et al., 2008). a * ** * * ** * * * * * * * ** * * ** O O O OH HO OH MASS SPECTROMETRY IN GRAPE ANDspicy; HO (vanilla note;OH sensory threshold 0.3 ppm) and eugenol (35)CHEMISTRY (clove, WINE sensory threshold 0.5 ppm; CH Boidron et O 1988). Toasting of wood al., CH O 3 3 O CH3 * made for making barrels induces formation of a great number of vola* 2 3 tile and 1odoriferous compounds. In general, furan and pyran derivatr * formed with heating wood are characterized from a toasty caramel tr *** tivesHO O O O aroma (Cutzach et al., 1997; OH Chatonnet, 1999). Among the compounds ** * formed with toasting were (1) 3,5-dihydroxy-2-methyl-4H-pyran-4-one, OH ** (2) 3-CH O -2-methyl-4H-pyran-4-oneormaltol, (3) 2,3-dihydro-3,5-dihydroxyhydroxy CH3 O CH3 ** * 3 6-methyl-4H-pyran-4-one (DDMP), (4)CH-3hydroxy-2,5-dimethylfuran4 4 5 6 3(2H)-one (furaneol), (5) 2,3-dihydro-5-hydroxy-6-methyl-4H-pyran-4Figure 7.1. one (dihydromaltol), (6) 2-hydroxy-3-methyl-2toasty caramel”-1-one (or Structures of volatile compounds characterized from “ -cyclopenten aroma released in wine and 5-(acetoxymethyl)furfural. 1) 3,5-dihydroxy-2- of comcyclotene) from toasted woods during aging. ( The structures Gianluca Gilardoni methyl-4H-pyran-4-one; 62) 3-hydroxy-2in Fig. -7.1-pyran-4-one; (3) 2,3-dihydro-3,5pounds 1– ( are shown -methyl 4H . Formation of these molecules in the dihydroxy-6-methyl-4H-pyran-4-one (DDMP); (4) Maillard -2,5-dimethylfuran-3 The GC/ 4-hydroxy reactions occur. presence of proline infers that Riccagioia, 16 ottobre 2013 (2H)-one (furaneol); (5) 2,3-dihydro-5-hydroxy-6-methyl-4H-pyran-4-one (dihydroMS–EI (70methyl-2-cyclopenten-ofone (or of them are reportedal., the Table eV) mass spectra 1- some cycloteme) (Cutzach et in maltol); (6) 2-hydroxy-3RICCARDO FLAMINI * * *** *** CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy PIETRO TRALDI tr * CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy A JOHN WILEY SONS, INC., PUBLICATION ** ** ** A JOHN WILEY SONS, INC., PUBLICATION
  38. 38. RICCARDO FLAMINI THE SPME–GC/MS/MS ANALYSIS OF TCA AND TBA IN WINE 253 CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy 8.2.2 The Profumi, sapori e colori: aspetti chimici eGC/MS Analysis TCA, 2,3,4,6-tetrachloroanisole, sensoriali Chloroanisoles (2,4-dichloroanisole, PIETRO TRALDI CNR, Istituto di Scienze e Tecnologie Molecolari, Padova, Italy ETHYL AND VINYL PHENOLS IN pentachloroanisole, TCP, 2,3,4,6-tetrachlorophenol, pentachlorophe- WINES nol) in wines or cork stopper extracts are usually analyzed using a 5% HO O diphenyl–95% dimethyl polysiloxane GC column (e.g., 30 m × 0.25 mm HS S S S S MASS SPECTROMETRY i.d., 0.25-µm film thickness). By using a singular quadrupole mass specS IN GRAPE AND Hydroxycinnamate Vinylphenol trometer recording signals in SIM mode, TCA is quantified on the sum decarboxilase reductase O WINE CHEMISTRY 15 16 17 18 19 of signals m/z 195+197+199+210+212+214, with the last two coming CH3O CH3O CH Figure 5.11. Mechanism of AAP formation proposed by Hoenicke (2002b). (Reprinted from molecules containing one or two 37Cl atoms, respectively. 3O OH OH OH of 2-aminoacetofrom Journal of Chromatography A signals recorded2007analysis of TCP are at m/z 196, 198 and 200, S S S HS RICCARDO FLAMINI The 1150, Schmarr ( for ) Analysis OH S Ferulic acid 4-Vinylguaiacol 4-Ethylguaiacol CRA, Centro di Ricerca per la Viticoltura, Conegliano (TV), Italy OH phenone in wine using a stable isotope dilution assay and multidimensional gas for tetrachlorophenol at m/z 229, 231, 244 and 246. By performing O chromatography–PIETRO TRALDI eSPME-GC/MS-Italy mass spectrometry, p. 79, Copyright © 2006, HO O analysis the LOD and LOQ with permission from CNR, Istituto di Scienze Tecnologie Molecolari, Padova, SIM single quadrupole 20 21 22 23 Elsevier.) SH achieved for TCA are 0.2 and 0.4 ng/L, respectively (Lizarraga et al., S S OH 2004). PUBLICATION A JOHN WILEY SONS, INC.,The GC/MS–electron impact (EI 70 eV) fragmentation spectra Hydroxycinnamate Vinylphenol OH HO decarboxilase reductase of TCA is reported in Fig. 8.7. 24 25 26 A GC/MS–EI chromatogram recorded in the analysis of TCA and O O SH N HS TCP in wine is shown in Fig. 8.8; below the chromatographic conditions OH OH OH p-Coumaric acid 4-Vinylphenol 4-Ethylphenol used are reported. O S Figure 5.10. Formation of ethylphenols from hydroxycinnamic The TCA can be determined using an ion trap system performing acids. 27 28 29 collision-induced dissociation (CID). Quantification is based on the OH daughter ion signals of the M+• species at m/z 210 and 212 used as precurS N OH O Couto et al., 2006). Figure 5.10 performed in either sor ions. Depending on the system used, CID can beshows a scheme for formation CH3 A JOHN WILEY SONS, INC., PUBLICATION S S ethylphenols from hydroxycinnamic acids. resonant or non-resonant mode. In the former condition, the most Volatile phenols greatly influence the aroma of wine, the m 30 31 32 intense daughter ions are at m/z 195 and 197, in non-resonant mode the important167 and-169. The CID of a wine vinylguaiacol (4-VG), principal signals are at m/z are 4 vinylphenol (4-VP), 4- spiked with Figure 5.2. Volatile sulfur compounds of wines: (15) dimethyl sulfide, (16) ethylmer- 124 VOLATILE AND AROMA COMPOUNDS IN WINES Relative abundance ethylphenol (4-EP), and 4-ethylguaiacol (4-EG) (Chatonnet et captan, (17) diethyl sulfide, (18) methyl thioacetate, (19) dimethyl disulfide, (20) ethyl 1992). The 4-EP compound was reported in wine for the first tim thioacetate, 258 ) diethyl disulfide, (22) 2-mercaptoethanol, (23) 2-(methylthio)-1(21 COMPOUNDS RESPONSIBLE FOR WINE DEFECTS 1967 by Webb and co-workers and its presence, together with the ot ethanol, (24) 3-(methylthio)-1-propanol, (25) 4-(methylthio)-1-butanol, (26) 3-mercapphenols cited, was confirmed in 1970 by 195 Dubois and Brulé (We tohexan-1-ol, (27) 4-methyl-4-mercaptopentan-2-one, (28) 3-mercaptohexanol acetate, Relative 100 H3C 1967; Dubois and Brulè, 1970). intensity O Figure 5.12. The MS–EI (29) benzothiazole, (30) 5-(2-hydroxyethyl)-4-methylthiazole, (31) trans-2-methylthio- (70 eV) mass spectrum of 2′-aminoacetophenone (AAP). Oligomer proanthocyanidins inhibit Saccharomyces cerevisiae 112 Cl Cl phan-3-ol, (32)100% 2-methyltetrahydrothiophen-3-one. namate decarboxylase (Chatonnet et al., 1990),210 justifying the very amounts of vinylphenols in red wines; on the contrary, Brettanomy 167 HO decarboxylase is not inhibited by proanthocyanidines (Chatonnet et 50 n-heptane as a cosolvent, then dichloromethane 97 evaporated at roomanthocyanin adducts can ar is Cl 1993). Formation of stable vinylphenol– temperature in order to have a residual the successiven-heptane (Schmarr in red wines (Fulcrand et extract in formation of ethylphenols 55 109 97 62 74 Also, derivates of vinylcatechol (Schwarz et al., 2003; Hayas 1996). 41 et al., 2007 addition of 5-g Na2SO4 67 50 mL of the sample, extraction).was perto 83 36 125 and Asenstorfer, 2002), were found in wine. 83 29 132 145 160 Alternatively, a direct-immersion49 SPME method with DVB/CAR/in concentrations up to sev formed with 2 × 5 mL of ethyl acetate. The GC/MS–EI (70 eV) mass 181 White wines can contain vinylphenols 135 149 167 182 0 spectrum of bis(2-hydroxyethyl)disulfide is reported in Fig. 5.3(50/30 µm, 2 cm length) 50 60 been proposed.130 140aliquot of 190 200 210 220 230 ethylphen PDMS fiber . m/z hundreds of a 110 120 An 150 160 170 180 20 30 40 has 70 80 90 100 microgram per liter, but they usually lack 50 75 100 125 150 175 On the and equilibrated at 30 °C red 15 mL geosmin [octahydro-4,8aof wine is transferred into a 20-mL vial contrary, inm/z wine ethylphenols can reach some milligra Figure 8.11. The GC/MS–EI (70 eV) mass spectrum of per liter (Chatonnet et al., 1992; 19932,4,6-trichloroanisole. Figure 8.7. The GC/MS–EI fragmentation spectrum (70 eV) of ; Chatonnet, 1993). for (Reproduced from dimethyl- a(2H) naphthalenol, C12 of Volatile Sulfur Compounds Journal of 5.2.2 HS–SPME4–GC/-MS Analysis H22O, MW 82.30248].5 min, then the fiber is immerged into the solution forlevels Gianluca Gilardoni with disagreea In red wines, high 30 min4under associated of -EP are Agricultural and Food Chemistry, 2000, 48 p. 4837, Darriet etThe fiber is then desorbed into the GC injection port at 250 °C al., with permission of stirring. odors described as “phenolic”, “leather”ottobre sweat”, “stable” Riccagioia, 16 , “horse 2013 American Chemical Society.) The carboxen–polydimethylsiloxane–divinylbenzene (CAR/PDMS/ (Fan et al., 2007).
  39. 39. Grazie per l’attenzione

×