SlideShare a Scribd company logo
1 of 10
Tema:             Los 20 aLgoriTmos maTemáTicos mas famosos



División por tentativa

De Wikipedia, la enciclopedia libre



La división por tentativa es el algoritmo de factorización de enteros más sencillo y
fácil de entender.

Dado un entero compuesto n (a lo largo de este artículo, n será "el entero a factorizar"),
la división por tentativa consiste en intentar dividir n entre todo número primo menor o
igual a    . Si se encuentra un número que es divisor de n, en división entera, ese
número es un factor de n.

Es posible determinar un límite para los factores primos. Supón que P(i) es el i-ésimo
primo, de modo que P(1) = 2, P(2) = 3, etc. Entonces el valor del último número primo
probado como un posible factor de n es P(i) donde P(i + 1)2 > n; la igualdad aquí
querría decir que P(i + 1) es un factor. Aunque todo esto está muy bien, normalmente el
inconveniente de inspeccionar un n concreto para determinar el valor correcto de i es
más costoso que simplemente probar con el único candidato innecesario P(i + 1) que
estaría incluido en la tentativa con todos los P(i) tales que               . Puede la
raíz cuadrada de n ser entera, entonces es un factor y n es un cuadrado perfecto, pero no
es esta una manera buena de encontrarlos.

La división por tentativa garantiza encontrar un factor de n, puesto que comprueba
todos los factores primos posibles de n. Por tanto, si el algoritmo no encuentra ningún
factor, es una prueba de que n es primo.

En el peor caso, la división por tentativa es un algoritmo costoso. Si se empieza en 2 y
se va subiendo hasta la raíz cuadrada de n, el algoritmo requiere




tentativas, donde π(x) es la función contador de primos, el número de primos menores
que x. En lo anterior no se ha tenido en cuenta la sobrecarga del test de primalidad para
obtener los números primos candidatos a ser factores. Si se utiliza una variante sin el
test de primalidad, sencillamente dividiendo por todo número impar menor que la raíz
cuadrada de n, ya sea primo o no, puede llegar a necesitarse alrededor de




tentativas, que para un n grande es peor.
Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
Esto significa que para un n con factores primos grandes de tamaños similares (como
aquellos empleados en la criptografía asimétrica), la división por tentativa es
computacionalmente impracticable.

Sin embargo, para un n con al menos un factor pequeño, la división por tentativa puede
ser un método rápido para encontrar ese factor pequeño. Vale la pena percatarse de que
para un n aleatorio, existe un 50% de probabilidad de que 2 sea un factor de n, un 33%
de probabilidad de que 3 sea un factor, y así sucesivamente. Se puede observar que el
88% de todos los enteros positivos tiene un factor menor que 100, y que el 91% tiene un
factor menor que 1000.

Rul: http://es.wikipedia.org/wiki/Divisi%C3%B…



2.- Algoritmo original de Euclides




AB y CD son segmentos conmensurables.




Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
Ejemplo del algoritmo original de Euclides.

En la concepción griega de la matemática, los números se entendían como magnitudes
geométricas. Un tema recurrente en la geometría griega es el de la conmensurabilidad
de dos segmentos: dos segmentos (números) AB y CD son conmensurables cuando
existe un tercer segmento PQ el cual cabe exactamente un número entero de veces en
los primeros dos, es decir, PQ «mide» (mensura: medida) a los segmentos AB y CD.

No cualquier par de segmentos es conmensurable, como encontraron los pitagóricos
cuando establecen que    no es un número racional, pero en el caso de dos segmentos
conmensurables se desea hallar la mayor medida común posible.

Euclides describe en la proposición VII.2 de sus Elementos un método que permite
hallar la mayor medida común posible de dos números (segmentos) que no sean primos
entre sí, aunque de acuerdo a la época tal método se explica en términos geométricos, lo
que se ilustra en la siguiente transcripción.

Para encontrar la máxima medida común de dos números que no sean primos entre
sí.




Sean AB y CD los dos números que no son primos uno al otro. Se necesita entonces
encontrar la máxima medida común de AB y CD.

Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
Si CD mide AB entonces es una medida común puesto que CD se mide a sí mismo. Y es
manifiesto que también es la mayor medida pues nada mayor a CD puede medir a CD.
Pero si CD no mide a AB entonces algún número quedará de AB y CD, el menor siendo
continuamente restado del mayor y que medirá al número que le precede. Porque una
unidad no quedará pues si no es así, AB y CD serán primos uno del otro [Prop. VII.1], lo
cual es lo contrario de lo que se supuso.

Por tanto, algún número queda que medirá el número que le precede. Y sea CD
midiendo BE dejando EA menor que sí mismo y sea EA midiendo DF dejando FC
menor que sí mismo y sea FC medida de AE. Entonces, como FC mide AE y AE mide
DF, FC será entonces medida de DF. Y también se mide a sí mismo. Por tanto también
medirá todo CD. Y CD mide a BE. Entonces CF mide a BE y también mide a EA. Así
mide a todo BA y también mide a CD. Esto es, CF mide tanto a AB y CD por lo que es
una medida común de AB y CD.

Afirmo que también es la mayor medida común posible porque si no lo fuera, entonces
un número mayor que CF mide a los números AB y CD, sea éste G. Dado que G mide a
CD y CD mide a BE, G también mide a BE. Además, mide a todo BA por lo que mide
también al residuo AE. Y AE mide a DF por lo que G también mide a DF. Mide también
a todo DC por lo que mide también al residuo CF, es decir el mayor mide al menor, lo
cual es imposible.

Por tanto, ningún número mayor a CF puede medir a los números AB y CD. Entonces
CF es la mayor medida común de AB y CD, lo cual se quería demostrar.

Rul: http://es.wikipedia.org/wiki/Algoritmo_d…

3.- Algoritmo de eliminación de Gauss-Jordan


   1. Ir a la columna no cero extrema izquierda
   2. Si el primer renglón tiene un cero en esta columna, intercambiarlo con otro que
      no lo tenga
   3. Luego, obtener ceros debajo de este elemento delantero, sumando múltiplos
      adecuados del renglón superior a los renglones debajo de él
   4. Cubrir el renglón superior y repetir el proceso anterior con la submatriz
      restante. Repetir con el resto de los renglones (en este punto la matriz se
      encuentra en la forma de escalón)
   5. Comenzando con el último renglón no cero, avanzar hacia arriba: para cada
      renglón obtener un 1 delantero e introducir ceros arriba de este sumando
      múltiplos correspondientes a los renglones correspondientes

Una variante interesante de la eliminación de Gauss es la que llamamos eliminación de
Gauss-Jordan, (debido al mencionado Gauss y a Wilhelm Jordan), esta consiste en ir
obteniendo los 1 delanteros durante los pasos uno al cuatro (llamados paso directo) así
para cuando estos finalicen ya se obtendrá la matriz en forma escalonada reducida




Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
Ejemplo


Supongamos que es necesario encontrar los números x, y, z, que satisfacen
simultáneamente estas ecuaciones:




Esto es llamado un sistema lineal de ecuaciones. El objetivo es reducir el sistema a otro
equivalente, que tenga las mismas soluciones. Las operaciones (llamadas elementales)
son estas:

   •   Multiplicar una ecuación por un escalar no nulo.
   •   Intercambiar de posición dos ecuaciones
   •   Sumar a una ecuación un múltiplo de otra.

Estas operaciones pueden representarse con matrices elementales que se usan también
en otros procedimientos como la factorización LU o la diagonalización por congruencia
de una matriz simétrica.

En nuestro ejemplo, eliminamos x de la segunda ecuación sumando 3/2 veces la primera
ecuación a la segunda y después sumamos la primera ecuación a la tercera. El resultado
es:




Ahora eliminamos y de la primera ecuación sumando -2 veces la segunda ecuación a la
primera, y sumamos -4 veces la segunda ecuación a la tercera para eliminar y.




Finalmente eliminamos z de la primera ecuación sumando -2 veces la tercera ecuación a
la primera, y sumando 1/2 veces la tercera ecuación a la segunda para eliminar z.




Despejando, podemos ver las soluciones:

Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
Para clarificar los pasos (y es en realidad lo que las computadoras manejan), se trabaja
con la matriz aumentada. Podemos ver los 3 pasos en su notación matricial:

Primero:




Después,




Por último.




Si el sistema fuera incompatible, entonces nos encontraríamos con una fila como esta:




Que representa la ecuación: 0x + 0y + 0z = 1, es decir, 0 = 1 que no tiene solución.

Rul: http://es.wikipedia.org/wiki/Eliminaci%C…


4.- Algoritmo de Horner
De Wikipedia, la enciclopedia libre

En el campo matemático del análisis numérico, el Algoritmo de Horner, llamado así
por William George Horner, es un algoritmo para evaluar de forma eficiente polinomios
de una forma monomial.



Dado el polinomio
Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
donde              son números reales, queremos evaluar el polinomio a un valor
específico de , digamos .

Para llevar a cabo el procedimiento, definimos una nueva secuencia de constantes como
se muestra a continuación:




Entonces    es el valor de      .

Para ver como funciona esto, nótese que el polinomio puede escribirse de la forma




Después, sustituyendo iterativamente la bi en la expresión (después de: "a1+" va x0 y no
x),




url: http://es.wikipedia.org/wiki/Algoritmo_d…


6.- Algoritmo de Strassen
De Wikipedia, la enciclopedia libre




Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
En la disciplina matemática del álgebra lineal, el algoritmo de Strassen, llamado así por
Volker Strassen, es un algoritmo usado para la multiplicación de matrices. Es
asintóticamente más rápido que el algoritmo de multiplicación de matrices estándar,
pero más lento que el algoritmo más rápido conocido, y es útil en la práctica para
matrices grandes.

url http://es.wikipedia.org/wiki/Algoritmo_d…




7.- Test de primalidad AKS
De Wikipedia, la enciclopedia libre

(Redirigido desde Análisis de primalidad AKS)

Saltar a navegación, búsqueda

El test de primalidad AKS o algoritmo AKS es un algoritmo determinista que decide
en tiempo polinómico si un número natural es primo o compuesto. Fue diseñado por los
científicos de computación Manindra Agrawal, Neeraj Kayal y Nitin Saxena del
Instituto tecnológico hindú de Kanpur en el año 2002, y eventualmente mejorado por
otros investigadores del área. Su descubrimiento pone fin a uno de los más grandes
problemas de la teoría de números y teoría de la complejidad computacional.

url: http://es.wikipedia.org/wiki/An%C3%A1lis…


8.- Algoritmo de Risch
De Wikipedia, la enciclopedia libre



El algoritmo de Risch, nombrado en honor a Robert H. Risch, es un algoritmo utilizado
en el cálculo de integrales indefinidas, o sea para encontrar la función primitiva. El
algoritmo transforma el problema de integración en un problema de álgebra. El
algoritmo se basa en la forma de la función que se integra y en el uso de métodos para
integrar funciones racionales, radicales, logaritmos, y funciones exponenciales. Risch
desarrolló el algoritmo en 1968, denominándolo un procedimiento de decisión, porque
es un método para decidir si una función posee como integral indefinida una función
elemental; y en el caso que la tuviera permite calcularla. En 1976 se desarrolló el
algoritmo de Risch-Norman, que aunque es más rápido es una técnica menos
poderosa.

   •   R. H. Risch (1969). «The Problem of Integration in Finite Terms». Transactions
       of the American Mathematical Society 139: pp. 167-189.
       doi:10.2307/1995313.[1]
   •   Maxwell Rosenlicht (1972). «Integration in finite terms». American
       Mathematical Monthly 79: pp. 963-972.
Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
•   Geddes, Czapor, Labahn (1992). Algorithms for Computer Algebra, Kluwer
       Academic Publishers. ISBN 0-7923-9259-0.
   •   Manuel Bronstein (2005). Symbolic Integration I, Springer. ISBN 3-540-21493-3.
   •   Manuel Bronstein(1998)."Symbolic Integration Tutorial".
   •   MathWorld entry on the Risch Algorithm

URL: http://es.wikipedia.org/wiki/Algoritmo_d…

9.- El algoritmos del Fibonacci

El cual permite encontrar el Fibonacci de una serie de números:




10.- El algoritmos de factores:

Este algoritmos permite buacar el factor común con en una operación matematica en
este algoritmo permite hacerlo mediante un program que al final nos va a dar un mismo
resultado.

11.-Algoritmo de matrices:

El cual permite sacar una operación mediante la dirección de matrices indicadas según
el vector o matriz ingresada.

12.- el algoritmo de cálculo potencial

Es el algoritmo en el cual nos permite resolver un calculo matemático según las
especificaciones que requiera.

13.- Algoritmos del e aplicación para los números romanos:

Permite encontrar todos los numero romanos en un numero determinado ingresado.

14.- Algoritmo de geometría de inversión

   1. Pon una jaula esférica en mitad de la selva.
   2. Enciérrate dentro de ella.
   3. Haz un inversión con respecto a la jaula. Ahora, el exterior está dentro
      de la jaula, con TODOS los leones, y tu estás fuera de la jaula.

15.-Algoritmo de teoría de la medida

   1. La selva es un espacio separable, por tanto, existe una sucesión de
      puntos que converge al león.
   2. Seguimos estos puntos silenciosamente para acercarnos al león tanto
      como queramos, con el equipo adecuado, y lo matamos.
Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41
16.-Algoritmo topológico

   1. Observamos que el león tiene, como mínimo, la conectividad de un
      toro.
   2. Por tanto, lo podemos llevar a un espacio cuatri-dimensional.
   3. Lo manipulamos para hacerle un nudo cuando lo devolvamos al espacio
      tridimensional. Estará indefenso.

17.-Algoritmo termodinámico

   1. Construimos una membrana semipermeable, permeable a todo excepto
      a los leones.
   2. La paseamos por la selva.

18.-Algoritmo de Schrödinger

   1. En todo momento existe una probabilidad de que el león esté dentro
      de la jaula.
   2. Ciérrala y siéntate a esperar.

19.-Algoritmo de la geometría proyectiva

   1. Sin pérdida de generalidad, podemos ver la selva como una superficie
      plana.
   2. Proyectamos esta superficie sobre una recta.
   3. Luego, proyectamos esta recta sobre un punto dentro de la jaula.
   4. El león habrá sido aplicado al interior de la jaula.

20.-Algoritmo de Bolzano-Weierstrass

   1. Dividimos la selva en dos partes y las vallamos. El león tiene que estar
      en una de las dos partes.
   2. Identificamos la zona en la que está el león, y volvemos a dividirla en
      dos partes, construyendo otra valla por la mitad.
   3. Procedemos iterativamente construyendo vallas que dividan en dos la
      zona en la que esta el león. Finalmente, tendremos al león encerrado
      por una valla tan pequeña como queramos.

21.-Algoritmo de Peano

   1. Construimos una curva de Peano que recorra toda la selva.
   2. Esta curva puede ser recorrida en un tiempo arbitrariamente pequeño.
      Así que, lo único que tienes que hacer es coger una lanza y recorrer la
      curva en un tiempo menor que el que tarda el león en moverse una
      distancia igual a su tamaño. Seguro que lo pinchas en el camino.

url: http://www.frikipedia.es/friki/Algoritmo


Nombre: Carlos Iván Chicaiza Tamayo+
Curso : Trc260 41

More Related Content

What's hot

Unidad II Datos y Entidades Primitivas
Unidad II Datos y Entidades PrimitivasUnidad II Datos y Entidades Primitivas
Unidad II Datos y Entidades PrimitivasAverkleyCH
 
Memoria Estatica
Memoria EstaticaMemoria Estatica
Memoria EstaticaJ M
 
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanSistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanDaniel Orozco
 
Ejercicios de matrices y vectores en c++
Ejercicios de matrices y vectores en c++Ejercicios de matrices y vectores en c++
Ejercicios de matrices y vectores en c++Diego Maxdj Chicaiza
 
Analisis_Algoritmo_Quicksort
Analisis_Algoritmo_QuicksortAnalisis_Algoritmo_Quicksort
Analisis_Algoritmo_QuicksortVelmuz Buzz
 
Tipos de gramatica y arboles de derivacion
Tipos de gramatica y arboles de derivacionTipos de gramatica y arboles de derivacion
Tipos de gramatica y arboles de derivacionjorge severino
 
TRABAJO DE GRAFOS
TRABAJO DE GRAFOSTRABAJO DE GRAFOS
TRABAJO DE GRAFOSOsirysRock
 
Importacia y ejemplos de ejercicios de plano y rectas en el espacio
Importacia y ejemplos de ejercicios de plano y rectas en el espacioImportacia y ejemplos de ejercicios de plano y rectas en el espacio
Importacia y ejemplos de ejercicios de plano y rectas en el espacioAlejandro Aguilera
 
Matemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de GrafosMatemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de GrafosAngela Janeth Jimenez
 
Manual de PSeInt
Manual de PSeIntManual de PSeInt
Manual de PSeIntCristian C
 

What's hot (20)

Unidad II Datos y Entidades Primitivas
Unidad II Datos y Entidades PrimitivasUnidad II Datos y Entidades Primitivas
Unidad II Datos y Entidades Primitivas
 
Traductor y su estructura
Traductor y su estructuraTraductor y su estructura
Traductor y su estructura
 
Grafos[1]
Grafos[1]Grafos[1]
Grafos[1]
 
Memoria Estatica
Memoria EstaticaMemoria Estatica
Memoria Estatica
 
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss JordanSistemas de ecuaciones homogéneas por el método de Gauss Jordan
Sistemas de ecuaciones homogéneas por el método de Gauss Jordan
 
Enunciado I - Matemática 1
Enunciado I - Matemática 1Enunciado I - Matemática 1
Enunciado I - Matemática 1
 
Teoría de Grafos.
Teoría de Grafos.Teoría de Grafos.
Teoría de Grafos.
 
ALGORITMO RESUELTOS EN PSEINT
ALGORITMO RESUELTOS EN PSEINTALGORITMO RESUELTOS EN PSEINT
ALGORITMO RESUELTOS EN PSEINT
 
Ejercicios de matrices y vectores en c++
Ejercicios de matrices y vectores en c++Ejercicios de matrices y vectores en c++
Ejercicios de matrices y vectores en c++
 
Analisis_Algoritmo_Quicksort
Analisis_Algoritmo_QuicksortAnalisis_Algoritmo_Quicksort
Analisis_Algoritmo_Quicksort
 
Capitulo1 grafos
Capitulo1 grafosCapitulo1 grafos
Capitulo1 grafos
 
Tipos de gramatica y arboles de derivacion
Tipos de gramatica y arboles de derivacionTipos de gramatica y arboles de derivacion
Tipos de gramatica y arboles de derivacion
 
TRABAJO DE GRAFOS
TRABAJO DE GRAFOSTRABAJO DE GRAFOS
TRABAJO DE GRAFOS
 
Importacia y ejemplos de ejercicios de plano y rectas en el espacio
Importacia y ejemplos de ejercicios de plano y rectas en el espacioImportacia y ejemplos de ejercicios de plano y rectas en el espacio
Importacia y ejemplos de ejercicios de plano y rectas en el espacio
 
SUMAS DE RIEMANN
SUMAS DE RIEMANNSUMAS DE RIEMANN
SUMAS DE RIEMANN
 
Matemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de GrafosMatemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de Grafos
 
Teoría de grafos
Teoría de grafosTeoría de grafos
Teoría de grafos
 
Manual de PSeInt
Manual de PSeIntManual de PSeInt
Manual de PSeInt
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejos
 
Gestión de procesos
Gestión de procesosGestión de procesos
Gestión de procesos
 

Similar to Los 20 algoritmos matemáticos

Algoritmo de euclides wikipedia, la enciclopedia libre
Algoritmo de euclides   wikipedia, la enciclopedia libreAlgoritmo de euclides   wikipedia, la enciclopedia libre
Algoritmo de euclides wikipedia, la enciclopedia libreLuis Flores Elias
 
Métodos de eliminación numerica
Métodos de eliminación numericaMétodos de eliminación numerica
Métodos de eliminación numericajose duran
 
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdf
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdfNÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdf
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdfHaleví Rango
 
20 algoritmos
20 algoritmos20 algoritmos
20 algoritmosdiego
 
El sistema de los números reales
El sistema de los números realesEl sistema de los números reales
El sistema de los números realessadiyata
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebrasadiyata
 
Clasifiacion de los numeros
Clasifiacion de los numerosClasifiacion de los numeros
Clasifiacion de los numerosbenitonicolas
 
Clasifiacion de los numeros
Clasifiacion de los numerosClasifiacion de los numeros
Clasifiacion de los numerosbenitonicolas
 
9 Mayo Logaritmos Y Algoritmos
9 Mayo Logaritmos Y Algoritmos9 Mayo Logaritmos Y Algoritmos
9 Mayo Logaritmos Y Algoritmos154874
 
Algebra lineal, Sistemas de ecuaciones y sus métodos.
Algebra lineal, Sistemas de ecuaciones y sus métodos. Algebra lineal, Sistemas de ecuaciones y sus métodos.
Algebra lineal, Sistemas de ecuaciones y sus métodos. Andrés Figueroa
 
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesUNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesCarlos Santos
 
Números Reales Guía 1 (Iparte)
Números Reales Guía 1 (Iparte)Números Reales Guía 1 (Iparte)
Números Reales Guía 1 (Iparte)José Linares
 
Pagina web Análisis Numérico
Pagina web Análisis NuméricoPagina web Análisis Numérico
Pagina web Análisis Numéricochristopheradan50
 

Similar to Los 20 algoritmos matemáticos (20)

Algoritmo de euclides wikipedia, la enciclopedia libre
Algoritmo de euclides   wikipedia, la enciclopedia libreAlgoritmo de euclides   wikipedia, la enciclopedia libre
Algoritmo de euclides wikipedia, la enciclopedia libre
 
Métodos de eliminación numerica
Métodos de eliminación numericaMétodos de eliminación numerica
Métodos de eliminación numerica
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Analisis numerico pag web
Analisis numerico pag webAnalisis numerico pag web
Analisis numerico pag web
 
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdf
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdfNÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdf
NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS.pdf
 
20 algoritmos
20 algoritmos20 algoritmos
20 algoritmos
 
Algebra portafolio
Algebra portafolioAlgebra portafolio
Algebra portafolio
 
El sistema de los números reales
El sistema de los números realesEl sistema de los números reales
El sistema de los números reales
 
Portafolio de algebra
Portafolio de algebraPortafolio de algebra
Portafolio de algebra
 
Clasifiacion de los numeros
Clasifiacion de los numerosClasifiacion de los numeros
Clasifiacion de los numeros
 
Clasifiacion de los numeros
Clasifiacion de los numerosClasifiacion de los numeros
Clasifiacion de los numeros
 
9 Mayo Logaritmos Y Algoritmos
9 Mayo Logaritmos Y Algoritmos9 Mayo Logaritmos Y Algoritmos
9 Mayo Logaritmos Y Algoritmos
 
Unidad 6 metodos
Unidad 6 metodosUnidad 6 metodos
Unidad 6 metodos
 
Algoritmo simplex
Algoritmo simplexAlgoritmo simplex
Algoritmo simplex
 
Algebra lineal, Sistemas de ecuaciones y sus métodos.
Algebra lineal, Sistemas de ecuaciones y sus métodos. Algebra lineal, Sistemas de ecuaciones y sus métodos.
Algebra lineal, Sistemas de ecuaciones y sus métodos.
 
Números reales
Números realesNúmeros reales
Números reales
 
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones LinealesUNIDAD III. Solución de Sistemas de Ecuaciones Lineales
UNIDAD III. Solución de Sistemas de Ecuaciones Lineales
 
Números primos
Números primosNúmeros primos
Números primos
 
Números Reales Guía 1 (Iparte)
Números Reales Guía 1 (Iparte)Números Reales Guía 1 (Iparte)
Números Reales Guía 1 (Iparte)
 
Pagina web Análisis Numérico
Pagina web Análisis NuméricoPagina web Análisis Numérico
Pagina web Análisis Numérico
 

More from Ivan

Diagrama de flujo
Diagrama de flujoDiagrama de flujo
Diagrama de flujoIvan
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turingIvan
 
Al juarismi
Al juarismiAl juarismi
Al juarismiIvan
 
Alan mathison turing
Alan mathison turingAlan mathison turing
Alan mathison turingIvan
 
Diapositiva[1].laboral.1
Diapositiva[1].laboral.1Diapositiva[1].laboral.1
Diapositiva[1].laboral.1Ivan
 
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0Ivan
 

More from Ivan (6)

Diagrama de flujo
Diagrama de flujoDiagrama de flujo
Diagrama de flujo
 
Máquina de turing
Máquina de turingMáquina de turing
Máquina de turing
 
Al juarismi
Al juarismiAl juarismi
Al juarismi
 
Alan mathison turing
Alan mathison turingAlan mathison turing
Alan mathison turing
 
Diapositiva[1].laboral.1
Diapositiva[1].laboral.1Diapositiva[1].laboral.1
Diapositiva[1].laboral.1
 
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0
Windows vista home basic spanish_24e46015-fd4b-4140-8968-326d1f52aeb0
 

Recently uploaded

TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCCarlosEduardoSosa2
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...Ars Erótica
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfapunteshistoriamarmo
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primariaWilian24
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxFernando Solis
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIAFabiolaGarcia751855
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!CatalinaAlfaroChryso
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptAlberto Rubio
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxhenarfdez
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptxCamuchaCrdovaAlonso
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfGruberACaraballo
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxlclcarmen
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Juan Martín Martín
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdfDemetrio Ccesa Rayme
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 

Recently uploaded (20)

TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 

Los 20 algoritmos matemáticos

  • 1. Tema: Los 20 aLgoriTmos maTemáTicos mas famosos División por tentativa De Wikipedia, la enciclopedia libre La división por tentativa es el algoritmo de factorización de enteros más sencillo y fácil de entender. Dado un entero compuesto n (a lo largo de este artículo, n será "el entero a factorizar"), la división por tentativa consiste en intentar dividir n entre todo número primo menor o igual a . Si se encuentra un número que es divisor de n, en división entera, ese número es un factor de n. Es posible determinar un límite para los factores primos. Supón que P(i) es el i-ésimo primo, de modo que P(1) = 2, P(2) = 3, etc. Entonces el valor del último número primo probado como un posible factor de n es P(i) donde P(i + 1)2 > n; la igualdad aquí querría decir que P(i + 1) es un factor. Aunque todo esto está muy bien, normalmente el inconveniente de inspeccionar un n concreto para determinar el valor correcto de i es más costoso que simplemente probar con el único candidato innecesario P(i + 1) que estaría incluido en la tentativa con todos los P(i) tales que . Puede la raíz cuadrada de n ser entera, entonces es un factor y n es un cuadrado perfecto, pero no es esta una manera buena de encontrarlos. La división por tentativa garantiza encontrar un factor de n, puesto que comprueba todos los factores primos posibles de n. Por tanto, si el algoritmo no encuentra ningún factor, es una prueba de que n es primo. En el peor caso, la división por tentativa es un algoritmo costoso. Si se empieza en 2 y se va subiendo hasta la raíz cuadrada de n, el algoritmo requiere tentativas, donde π(x) es la función contador de primos, el número de primos menores que x. En lo anterior no se ha tenido en cuenta la sobrecarga del test de primalidad para obtener los números primos candidatos a ser factores. Si se utiliza una variante sin el test de primalidad, sencillamente dividiendo por todo número impar menor que la raíz cuadrada de n, ya sea primo o no, puede llegar a necesitarse alrededor de tentativas, que para un n grande es peor. Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 2. Esto significa que para un n con factores primos grandes de tamaños similares (como aquellos empleados en la criptografía asimétrica), la división por tentativa es computacionalmente impracticable. Sin embargo, para un n con al menos un factor pequeño, la división por tentativa puede ser un método rápido para encontrar ese factor pequeño. Vale la pena percatarse de que para un n aleatorio, existe un 50% de probabilidad de que 2 sea un factor de n, un 33% de probabilidad de que 3 sea un factor, y así sucesivamente. Se puede observar que el 88% de todos los enteros positivos tiene un factor menor que 100, y que el 91% tiene un factor menor que 1000. Rul: http://es.wikipedia.org/wiki/Divisi%C3%B… 2.- Algoritmo original de Euclides AB y CD son segmentos conmensurables. Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 3. Ejemplo del algoritmo original de Euclides. En la concepción griega de la matemática, los números se entendían como magnitudes geométricas. Un tema recurrente en la geometría griega es el de la conmensurabilidad de dos segmentos: dos segmentos (números) AB y CD son conmensurables cuando existe un tercer segmento PQ el cual cabe exactamente un número entero de veces en los primeros dos, es decir, PQ «mide» (mensura: medida) a los segmentos AB y CD. No cualquier par de segmentos es conmensurable, como encontraron los pitagóricos cuando establecen que no es un número racional, pero en el caso de dos segmentos conmensurables se desea hallar la mayor medida común posible. Euclides describe en la proposición VII.2 de sus Elementos un método que permite hallar la mayor medida común posible de dos números (segmentos) que no sean primos entre sí, aunque de acuerdo a la época tal método se explica en términos geométricos, lo que se ilustra en la siguiente transcripción. Para encontrar la máxima medida común de dos números que no sean primos entre sí. Sean AB y CD los dos números que no son primos uno al otro. Se necesita entonces encontrar la máxima medida común de AB y CD. Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 4. Si CD mide AB entonces es una medida común puesto que CD se mide a sí mismo. Y es manifiesto que también es la mayor medida pues nada mayor a CD puede medir a CD. Pero si CD no mide a AB entonces algún número quedará de AB y CD, el menor siendo continuamente restado del mayor y que medirá al número que le precede. Porque una unidad no quedará pues si no es así, AB y CD serán primos uno del otro [Prop. VII.1], lo cual es lo contrario de lo que se supuso. Por tanto, algún número queda que medirá el número que le precede. Y sea CD midiendo BE dejando EA menor que sí mismo y sea EA midiendo DF dejando FC menor que sí mismo y sea FC medida de AE. Entonces, como FC mide AE y AE mide DF, FC será entonces medida de DF. Y también se mide a sí mismo. Por tanto también medirá todo CD. Y CD mide a BE. Entonces CF mide a BE y también mide a EA. Así mide a todo BA y también mide a CD. Esto es, CF mide tanto a AB y CD por lo que es una medida común de AB y CD. Afirmo que también es la mayor medida común posible porque si no lo fuera, entonces un número mayor que CF mide a los números AB y CD, sea éste G. Dado que G mide a CD y CD mide a BE, G también mide a BE. Además, mide a todo BA por lo que mide también al residuo AE. Y AE mide a DF por lo que G también mide a DF. Mide también a todo DC por lo que mide también al residuo CF, es decir el mayor mide al menor, lo cual es imposible. Por tanto, ningún número mayor a CF puede medir a los números AB y CD. Entonces CF es la mayor medida común de AB y CD, lo cual se quería demostrar. Rul: http://es.wikipedia.org/wiki/Algoritmo_d… 3.- Algoritmo de eliminación de Gauss-Jordan 1. Ir a la columna no cero extrema izquierda 2. Si el primer renglón tiene un cero en esta columna, intercambiarlo con otro que no lo tenga 3. Luego, obtener ceros debajo de este elemento delantero, sumando múltiplos adecuados del renglón superior a los renglones debajo de él 4. Cubrir el renglón superior y repetir el proceso anterior con la submatriz restante. Repetir con el resto de los renglones (en este punto la matriz se encuentra en la forma de escalón) 5. Comenzando con el último renglón no cero, avanzar hacia arriba: para cada renglón obtener un 1 delantero e introducir ceros arriba de este sumando múltiplos correspondientes a los renglones correspondientes Una variante interesante de la eliminación de Gauss es la que llamamos eliminación de Gauss-Jordan, (debido al mencionado Gauss y a Wilhelm Jordan), esta consiste en ir obteniendo los 1 delanteros durante los pasos uno al cuatro (llamados paso directo) así para cuando estos finalicen ya se obtendrá la matriz en forma escalonada reducida Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 5. Ejemplo Supongamos que es necesario encontrar los números x, y, z, que satisfacen simultáneamente estas ecuaciones: Esto es llamado un sistema lineal de ecuaciones. El objetivo es reducir el sistema a otro equivalente, que tenga las mismas soluciones. Las operaciones (llamadas elementales) son estas: • Multiplicar una ecuación por un escalar no nulo. • Intercambiar de posición dos ecuaciones • Sumar a una ecuación un múltiplo de otra. Estas operaciones pueden representarse con matrices elementales que se usan también en otros procedimientos como la factorización LU o la diagonalización por congruencia de una matriz simétrica. En nuestro ejemplo, eliminamos x de la segunda ecuación sumando 3/2 veces la primera ecuación a la segunda y después sumamos la primera ecuación a la tercera. El resultado es: Ahora eliminamos y de la primera ecuación sumando -2 veces la segunda ecuación a la primera, y sumamos -4 veces la segunda ecuación a la tercera para eliminar y. Finalmente eliminamos z de la primera ecuación sumando -2 veces la tercera ecuación a la primera, y sumando 1/2 veces la tercera ecuación a la segunda para eliminar z. Despejando, podemos ver las soluciones: Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 6. Para clarificar los pasos (y es en realidad lo que las computadoras manejan), se trabaja con la matriz aumentada. Podemos ver los 3 pasos en su notación matricial: Primero: Después, Por último. Si el sistema fuera incompatible, entonces nos encontraríamos con una fila como esta: Que representa la ecuación: 0x + 0y + 0z = 1, es decir, 0 = 1 que no tiene solución. Rul: http://es.wikipedia.org/wiki/Eliminaci%C… 4.- Algoritmo de Horner De Wikipedia, la enciclopedia libre En el campo matemático del análisis numérico, el Algoritmo de Horner, llamado así por William George Horner, es un algoritmo para evaluar de forma eficiente polinomios de una forma monomial. Dado el polinomio Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 7. donde son números reales, queremos evaluar el polinomio a un valor específico de , digamos . Para llevar a cabo el procedimiento, definimos una nueva secuencia de constantes como se muestra a continuación: Entonces es el valor de . Para ver como funciona esto, nótese que el polinomio puede escribirse de la forma Después, sustituyendo iterativamente la bi en la expresión (después de: "a1+" va x0 y no x), url: http://es.wikipedia.org/wiki/Algoritmo_d… 6.- Algoritmo de Strassen De Wikipedia, la enciclopedia libre Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 8. En la disciplina matemática del álgebra lineal, el algoritmo de Strassen, llamado así por Volker Strassen, es un algoritmo usado para la multiplicación de matrices. Es asintóticamente más rápido que el algoritmo de multiplicación de matrices estándar, pero más lento que el algoritmo más rápido conocido, y es útil en la práctica para matrices grandes. url http://es.wikipedia.org/wiki/Algoritmo_d… 7.- Test de primalidad AKS De Wikipedia, la enciclopedia libre (Redirigido desde Análisis de primalidad AKS) Saltar a navegación, búsqueda El test de primalidad AKS o algoritmo AKS es un algoritmo determinista que decide en tiempo polinómico si un número natural es primo o compuesto. Fue diseñado por los científicos de computación Manindra Agrawal, Neeraj Kayal y Nitin Saxena del Instituto tecnológico hindú de Kanpur en el año 2002, y eventualmente mejorado por otros investigadores del área. Su descubrimiento pone fin a uno de los más grandes problemas de la teoría de números y teoría de la complejidad computacional. url: http://es.wikipedia.org/wiki/An%C3%A1lis… 8.- Algoritmo de Risch De Wikipedia, la enciclopedia libre El algoritmo de Risch, nombrado en honor a Robert H. Risch, es un algoritmo utilizado en el cálculo de integrales indefinidas, o sea para encontrar la función primitiva. El algoritmo transforma el problema de integración en un problema de álgebra. El algoritmo se basa en la forma de la función que se integra y en el uso de métodos para integrar funciones racionales, radicales, logaritmos, y funciones exponenciales. Risch desarrolló el algoritmo en 1968, denominándolo un procedimiento de decisión, porque es un método para decidir si una función posee como integral indefinida una función elemental; y en el caso que la tuviera permite calcularla. En 1976 se desarrolló el algoritmo de Risch-Norman, que aunque es más rápido es una técnica menos poderosa. • R. H. Risch (1969). «The Problem of Integration in Finite Terms». Transactions of the American Mathematical Society 139: pp. 167-189. doi:10.2307/1995313.[1] • Maxwell Rosenlicht (1972). «Integration in finite terms». American Mathematical Monthly 79: pp. 963-972. Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 9. Geddes, Czapor, Labahn (1992). Algorithms for Computer Algebra, Kluwer Academic Publishers. ISBN 0-7923-9259-0. • Manuel Bronstein (2005). Symbolic Integration I, Springer. ISBN 3-540-21493-3. • Manuel Bronstein(1998)."Symbolic Integration Tutorial". • MathWorld entry on the Risch Algorithm URL: http://es.wikipedia.org/wiki/Algoritmo_d… 9.- El algoritmos del Fibonacci El cual permite encontrar el Fibonacci de una serie de números: 10.- El algoritmos de factores: Este algoritmos permite buacar el factor común con en una operación matematica en este algoritmo permite hacerlo mediante un program que al final nos va a dar un mismo resultado. 11.-Algoritmo de matrices: El cual permite sacar una operación mediante la dirección de matrices indicadas según el vector o matriz ingresada. 12.- el algoritmo de cálculo potencial Es el algoritmo en el cual nos permite resolver un calculo matemático según las especificaciones que requiera. 13.- Algoritmos del e aplicación para los números romanos: Permite encontrar todos los numero romanos en un numero determinado ingresado. 14.- Algoritmo de geometría de inversión 1. Pon una jaula esférica en mitad de la selva. 2. Enciérrate dentro de ella. 3. Haz un inversión con respecto a la jaula. Ahora, el exterior está dentro de la jaula, con TODOS los leones, y tu estás fuera de la jaula. 15.-Algoritmo de teoría de la medida 1. La selva es un espacio separable, por tanto, existe una sucesión de puntos que converge al león. 2. Seguimos estos puntos silenciosamente para acercarnos al león tanto como queramos, con el equipo adecuado, y lo matamos. Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41
  • 10. 16.-Algoritmo topológico 1. Observamos que el león tiene, como mínimo, la conectividad de un toro. 2. Por tanto, lo podemos llevar a un espacio cuatri-dimensional. 3. Lo manipulamos para hacerle un nudo cuando lo devolvamos al espacio tridimensional. Estará indefenso. 17.-Algoritmo termodinámico 1. Construimos una membrana semipermeable, permeable a todo excepto a los leones. 2. La paseamos por la selva. 18.-Algoritmo de Schrödinger 1. En todo momento existe una probabilidad de que el león esté dentro de la jaula. 2. Ciérrala y siéntate a esperar. 19.-Algoritmo de la geometría proyectiva 1. Sin pérdida de generalidad, podemos ver la selva como una superficie plana. 2. Proyectamos esta superficie sobre una recta. 3. Luego, proyectamos esta recta sobre un punto dentro de la jaula. 4. El león habrá sido aplicado al interior de la jaula. 20.-Algoritmo de Bolzano-Weierstrass 1. Dividimos la selva en dos partes y las vallamos. El león tiene que estar en una de las dos partes. 2. Identificamos la zona en la que está el león, y volvemos a dividirla en dos partes, construyendo otra valla por la mitad. 3. Procedemos iterativamente construyendo vallas que dividan en dos la zona en la que esta el león. Finalmente, tendremos al león encerrado por una valla tan pequeña como queramos. 21.-Algoritmo de Peano 1. Construimos una curva de Peano que recorra toda la selva. 2. Esta curva puede ser recorrida en un tiempo arbitrariamente pequeño. Así que, lo único que tienes que hacer es coger una lanza y recorrer la curva en un tiempo menor que el que tarda el león en moverse una distancia igual a su tamaño. Seguro que lo pinchas en el camino. url: http://www.frikipedia.es/friki/Algoritmo Nombre: Carlos Iván Chicaiza Tamayo+ Curso : Trc260 41