Your SlideShare is downloading. ×
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Calculo1 aula01
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Calculo1 aula01

61

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
61
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Aula 1Velocidade instant^nea e derivadas a1.1 Velocidade instant^nea aUm ponto m¶vel M desloca-se ao longo de uma linha reta horizontal, a partir de um oponto O. ∆s O M s=0 s = s(t) s 0 = s(t 0) s1 = s(t 0+ ∆t) s O deslocamento s, de M , em rela»~o ao ponto O, ¶ a dist^ncia de O a M , se M ca e aest¶ µ direita de O, e ¶ o negativo dessa dist^ncia se M est¶ µ esquerda de O. Assim, s ¶ aa e a aa epositivo ou negativo, conforme M se encontre, respectivamente, µ direita ou µ esquerda a ade O. Com estas conven»~es, a reta passa a ser orientada, o que chamamos de eixo, cosendo O sua origem. O deslocamento s depende do instante de tempo t, ou seja, s ¶ uma fun»~o da e cavari¶vel t: a s = s(t) Em um determinado instante t0 , o deslocamento de M ¶ s0 = s(t0 ). Em um einstante posterior t1 , o deslocamento de M ¶ s1 = s(t1 ). eA velocidade m¶dia do ponto M , no intervalo de tempo [t0 ; t1 ] ¶ dada por e e s1 ¡ s0 s(t1 ) ¡ s(t0 ) vm = = t1 ¡ t0 t1 ¡ t0 Podemos tamb¶m escrever t1 = t0 + ¢t, ou seja, ¢t = t1 ¡ t0 , e tamb¶m e e¢s = s(t1 ) ¡ s(t0 ) = s(t0 + ¢t) ¡ s(t0 ). 1
  • 2. ^Velocidade instantanea e derivadas 2Teremos ent~o a s(t0 + ¢t) ¡ s(t0 ) ¢s vm = = ¢t ¢t Por exemplo, vamos supor que s(t) = 1 at2 (ponto m¶vel uniformemente ace- 2 olerado). Assim, no instante t = 0 o ponto m¶vel est¶ em s(0) = 1 a ¢ 02 = 0. o a 2 A partir de um certo instante t0 , temos uma varia»~o de tempo ¢t. Seja t1 = cat0 + ¢t. Podemos ter ¢t > 0 ou ¢t < 0 (quando ¢t < 0, t1 antecede t0 ). Teremosent~o a 1 1 ¡ ¢ s(t1 ) = s(t0 + ¢t) = a(t0 + ¢t)2 = ¢ at2 + 2at0 ¢t + a(¢t)2 0 2 2A varia»~o do deslocamento do ponto m¶vel, nesse intervalo de tempo, ser¶ ca o a 1 1 1 ¢s = s(t1 ) ¡ s(t0 ) = at2 + at0 ¢t + a(¢t)2 ¡ at2 0 2 2 2 0ou seja, a(¢t)2 ¢s = at0 ¢t + 2 A velocidade m¶dia do ponto, no intervalo de tempo [t0 ; t1 ], ser¶ dada por e a 2 ¢s at0 ¢t + a(¢t) 2 a¢t = = at0 + ¢t ¢t 2 a(¢t)2 Se ¢t ¼ 0, ent~o tamb¶m teremos ¢s = at0 ¢t + a e 2 ¼ 0. No entanto, ¢s a¢t = at0 + ¼ at0 ¢t 2De um modo geral, de¯nimos a velocidade instant^nea v(t0 ), do ponto M , no instante at0 , como sendo o limite da velocidade m¶dia no intervalo de t0 a t0 + ¢t, quando ¢t etende a zero (esta foi uma id¶ia de Isaac Newton), e escrevemos e ¢s v(t0 ) = lim ¢t!0 ¢t No nosso exemplo, µ ¶ a¢t v(t0 ) = lim at0 + = at0 ¢t!0 21.2 Derivada de uma fun»~o caUma fun»~o f ¶ uma lei que associa cada valor x de um certo conjunto A (o dom¶ ca e ³niode f ), um ¶nico valor f (x) de um certo conjunto B (o contra-dom¶ de f ). Neste u ³nio
  • 3. ^Velocidade instantanea e derivadas 3curso, teremos sempre A ½ R e B ½ R. Veja tamb¶m a observa»~o 1.1, mais adiante e canesta aula. Muitas vezes diremos fun»~o f(x)", em lugar de fun»~o f ". ca ca Dada uma fun»~o f (x), a fun»~o derivada f 0 (x) (leia-se f linha de x") ¶ a fun»~o ca ca e cade¯nida quando consideramos, para cada x, sujeito a uma varia»~o ¢x 60, a varia»~o ca = cacorrespondente de y = f (x), ¢y = ¢f = f (x + ¢x) ¡ f(x)e ent~o calculamos o valor limite da raz~o a a ¢f f (x + ¢x) ¡ f(x) = ¢x ¢xquando ¢x se aproxima inde¯nidamente de 0. Ou seja, ¢f f (x + ¢x) ¡ f (x) f 0 (x) = lim = lim ¢x!0 ¢x ¢x!0 ¢x ³¯co de x, digamos x = x0 ,Para um valor espec¶ f (x0 + ¢x) ¡ f (x0 ) f 0 (x0 ) = lim ¢x!0 ¢x¶ a derivada de f (ou de f (x)), no ponto x0 .e Como primeiro e importante exemplo, temosRegra 1.1 Se f (x) = xn , n inteiro positivo, ent~o f 0 (x) = nxn¡1 aDemonstra»~o. Da ¶lgebra elementar, temos as seguintes f¶rmulas de fatora»~o: ca a o ca b2 ¡ a2 = (b ¡ a)(b + a) b3 ¡ a3 = (b ¡ a)(b2 + ab + a2 ) b4 ¡ a4 = (b ¡ a)(b3 + ab2 + a2 b + a3 )que o leitor pode veri¯car, simplesmente efetuando os produtos µ direita, e ent~o sim- a apli¯cando. De um modo geral, para n ¸ 4, vale a seguinte f¶rmula: o bn ¡ an = (b ¡ a)(bn¡1 + abn¡2 + a2 bn¡3 + ¢ ¢ ¢ + an¡3 b2 + an¡2 b + an¡1 ) (1.1)Sendo f (x) = xn , temos para ¢x = 0, 6 ¢f = f(x + ¢x) ¡ f (x) = (x + ¢x)n ¡ xn (1.2)Substituindo b = x + ¢x e a = x, em 1.1, temos b ¡ a = ¢x, e ent~o obtemos a ¢f = ¢x ¢ ((x + ¢x)n¡1 + x ¢ (x + ¢x)n¡2 + ¢ ¢ ¢ + xn¡2 (x + ¢x) + xn¡1 )
  • 4. ^Velocidade instantanea e derivadas 4do que ent~o a ¢f = (x + ¢x)n¡1 + x ¢ (x + ¢x)n¡2 + ¢ ¢ ¢ + xn¡2 (x + ¢x) + xn¡1 ¢xDa¶ lim ¢f = xn¡1 + xn¡1{z ¢ ¢ ¢ + xn¡1 = nxn¡1 . ³, ¢x | + } ¢x!0 n parcelas Portanto, (xn )0 = nxn¡1 .1.2.1 Nota»~es simb¶licas para derivadas, habitualmente usadas co oSendo y = f (x), tamb¶m escrevemos ¢y = ¢f = f (x + ¢x) ¡ f (x), e denotamos e dy ¢y = (derivada de y em rela»~o a x) = lim ca dx ¢x!0 ¢x dy Assim temos = f 0 (x). Indicamos ainda dx µ ¶ ¯ 0 dy dy ¯ ¯ f (x0 ) = = dx x=x0 dx ¯x=x0A raz~o a ¢y f(x0 + ¢x) ¡ f (x0 ) = ¢x ¢x¶ a taxa de varia»~o m¶dia de y, em rela»~o a x, no intervalo [x0 ; x0 + ¢x] (ou noe ca e caintervalo [x0 + ¢x; x0 ], se ¢x < 0).O valor µ ¶ 0 dy ¢y f (x0 ) = = lim dx ¢x!0 ¢x x=x0¶ chamado de taxa de varia»~o (instant^nea) de y em rela»~o a x, no ponto x = x0 .e ca a ca Outras nota»~es freqÄentemente utilizadas para as derivadas (os s¶ co u ³mbolos abaixotem o mesmo signi¯cado): f 0 (x) (nota»~o de Lagrange) ca (f (x))0 df (nota»~o de Leibniz, leia-se d^ f d^ x") ca e e dx dy (sendo y = f (x)) dx d (f (x)) dx _ x(t) (nota»~o de Newton, derivada de x em rela»~o µ vari¶vel t (tempo)) ca ca a a
  • 5. ^Velocidade instantanea e derivadas 5 Tamb¶m tem o mesmo signi¯cado as nota»~es para a derivada de f no ponto x0 , e co df f 0 (x0 ) (f (x))0jx=x0 (x0 ) ¯ dx dy ¯ ¯ d (f (x))jx=x0 dx ¯x=x0 dxExemplo 1.1 De acordo com a regra 1.1, temos (x)0 = (x1 )0 = 1x1¡1 = x0 = 1, ou seja (x)0 = 1. (x2 )0 = 2x2¡1 = 2x. (x3 )0 = 3x3¡1 = 3x2 . (x100 )0 = 100x99 .Observa»~o 1.1 (Intervalos da reta, e dom¶ ca ³nios das fun»~es que estudaremos) coAqui, e no restante do texto, estaremos assumindo sempre que nossas fun»~es s~o fun»oes co a c~de uma vari¶vel real x, com valores f (x) reais, e est~o de¯nidas em intervalos ou reuni~es a a ode intervalos de R, ou seja, tem os valores de x tomados em intervalos ou reuni~es deointervalos. Os intervalos de R s~o conjuntos de uma das formas: a [a; b] = fx 2 R j a · x · bg (intervalo fechado de extremos a e b); ]a; b[ = fx 2 R j a < x < bg (intervalo aberto de extremos a e b); [a; b[ = fx 2 R j a · x < bg (intervalo de extremos a e b, semi-aberto em b); ]a; b] = fx 2 R j a < x · bg (intervalo de extremos a e b, semi-aberto em a):sendo a e b n¶meros reais, com a < b. Os intervalos acima s~o os intervalos limitados. u a Os intervalos ilimitados s~o conjuntos de uma das formas: a [a; +1[ = fx 2 R j x ¸ ag (intervalo fechado de a a +1); ]a; +1[ = fx 2 R j x > ag (intervalo aberto de a a +1); ]¡ 1; b] = fx 2 R j x · bg (intervalo fechado de ¡1 a b); ]¡ 1; b[ = fx 2 R j x < bg (intervalo aberto de ¡1 a b); ]¡ 1; +1[ = R (intervalo aberto de ¡1 a +1);sendo a e b n¶meros reais. u Assim, por exemplo, p 1. f (x) = x ¶ uma fun»~o que est¶ de¯nida para os valores reais de x para os p e ca a quais x existe e ¶ um n¶mero real, ou seja, para x ¸ 0. Assim, dizemos que o e u dom¶ ou campo de de¯ni»~o de f ¶ o intervalo D(f ) = [0; +1[. ³nio ca e
  • 6. ^Velocidade instantanea e derivadas 6 2. f (x) = 1=x ¶ uma fun»~o que est¶ de¯nida para os valores reais de x para os e ca a quais 1=x existe e ¶ um n¶mero real, ou seja, para x 60. Assim, o dom¶ ou e u = ³nio campo de de¯ni»~o de f ¶ o conjunto D(f) = R ¡ f0g, ou seja, a reuni~o de ca e a intervalos ]¡ 1; 0[ [ ]0; +1[. p 1 3. f (x) = 2 ¡ x + px¡1 est¶ de¯nida para os valores reais de x para os quais a p p 2 ¡ x e 1= x ¡ 1 existem e s~o n¶meros reais, ou seja, para x · 2 (2 ¡ x ¸ 0) a u e x > 1 (x ¡ 1 > 0). Assim, o dom¶ ou campo de de¯ni»~o de f ¶ o intervalo ³nio ca e D(f) =]1; 2]. ³¯co de x, digamos x = x0 , no dom¶ de uma fun»~o f , ao Para um valor espec¶ ³nio cacalcularmos o limite f (x0 + ¢x) ¡ f(x0 ) f 0 (x0 ) = lim ¢x!0 ¢xestamos supondo que algum intervalo aberto, contendo x0 , tamb¶m ¶ parte do dom¶ e e ³niode f, de modo que x0 + ¢x tamb¶m estar¶ no dom¶ de f quando ¢x for n~o nulo e a ³nio ae su¯cientemente pequeno.1.3 Primeiras regras de deriva»~o (ou diferencia»~o) ca caDiferencia»~o ou deriva»~o de uma fun»~o ¶ o processo de c¶lculo da derivada da fun»~o. ca ca ca e a caRegra 1.2 Se f (x) ¶ uma fun»~o e c ¶ uma constante, ent~o e ca e a (cf (x))0 = cf 0 (x):Ou seja, a derivada de uma constante vezes uma fun»~o ¶ a constante vezes a derivada ca eda fun»~o. caRegra 1.3 Sendo f(x) e g(x) duas fun»~es, co (f(x) + g(x))0 = f 0 (x) + g 0 (x):Ou seja, a derivada de uma soma de duas fun»oes ¶ a soma das respectivas derivadas. c~ eDemonstra»~es das propriedades 1.2 e 1.3. Alguns fatos sobre limites s~o assumidos co aintuitivamente. cf(x + ¢x) ¡ cf (x) f (x + ¢x) ¡ f (x) (cf (x))0 = lim = lim c ¢ ¢x!0 ¢x ¢x!0 ¢x f(x + ¢x) ¡ f (x) = c ¢ lim ¢x!0 ¢x ¢f = c ¢ lim = cf 0 (x) ¢x!0 ¢x
  • 7. ^Velocidade instantanea e derivadas 7 [f (x + ¢x) + g(x + ¢x)] ¡ [f (x) + g(x)] [f (x) + g(x)]0 = lim ¢x!0 ¢x [f (x + ¢x) ¡ f (x)] + [g(x + ¢x) ¡ g(x)] = lim ¢x!0 · ¢x ¸ f (x + ¢x) ¡ f (x) g(x + ¢x) ¡ g(x) = lim + ¢x!0 ¢x ¢x f(x + ¢x) ¡ f (x) g(x + ¢x) ¡ g(x) = lim + lim ¢x!0 ¢x ¢x!0 ¢x ¢f ¢g = lim + lim = f 0 (x) + g 0 (x) ¢x!0 ¢x ¢x!0 ¢xExemplo 1.2 Sendo f(x) = 2x3 ¡ 3x5 , temos f 0 (x) = (2x3 ¡ 3x5 )0 = (2x3 + (¡3)x5 )0 = (2x3 )0 + ((¡3)x5 )0 ((f + g)0 = f 0 + g 0 ) = 2(x3 )0 + (¡3)(x5 )0 ((cf)0 = cf 0 ) = 2 ¢ 3x2 + (¡3) ¢ 5x4 ((xn )0 = nxn¡1 ) = 6x2 ¡ 15x4Observa»~o 1.2 Por um argumento tal como no exemplo acima, temos tamb¶m ca e(f (x) ¡ g(x))0 = f 0 (x) ¡ g 0 (x).Regra 1.4 A derivada de uma fun»~o constante ¶ 0: se f (x) = c = constante, ca e 0 0ent~o f (x) = (c) = 0. aDemonstra»~o. Sendo f (x) = c = constante, ent~o ca a ¢f = f(x + ¢x) ¡ f (x) = c ¡ c = 0. Portanto, ¢f = ¢x = 0 ( ¢f ¶ 0 mesmo antes de calcularmos o limite). Logo ¢x 0 ¢x e ¢flim ¢x = lim 0 = 0.¢x!0 ¢x!0 Assim, se c ¶ uma constante, (c)0 = 0. e dyExemplo 1.3 Sendo y = ¡3t6 + 21t2 ¡ 98, calcular . dt Aplicando as regras acima estabelecidas, indicando por u0 a derivada de u emrela»~o a t, ca dy = (¡3t6 + 21t2 ¡ 98)0 dt = ¡18t5 + 42t
  • 8. ^Velocidade instantanea e derivadas 8 1 dyExemplo 1.4 Sendo y = , calcular . x dx 1 Temos y = , e ent~o a x 1 1 x ¡ (x + ¢x) ¢x ¢y = ¡ = =¡ x + ¢x x x(x + ¢x) x(x + ¢x) ¢y 1 =¡ ¢x x(x + ¢x) dy ¢y 1 1 = lim = lim =¡ 2 dx ¢x!0 ¢x ¢x!0 x(x + ¢x) x1.4 Problemas 1. A posi»~o de um ponto P sobre um eixo x, ¶ dada por x(t) = 4t2 + 3t ¡ 2, com ca e t medido em segundos e x(t) em cent¶ ³metros. (a) Determine as velocidades m¶dias de P nos seguintes intervalos de tempo: e [1; 1; 2], [1; 1; 1], [1; 1; 01], [1; 1; 001]. (b) Determine a velocidade de P no instante t = 1 seg. (c) Determine os intervalos de tempo em que P se move no sentido positivo e aqueles em que P se move no sentido negativo. (P se move no sentido positivo ou negativo se x(t) aumenta ou diminui, respectivamente, µ medida a em que t aumenta.) 2. Se um objeto ¶ lan»ado verticalmente para cima, com velocidade inicial 110 m/seg, e c sua altura h(t), acima do ch~o (h = 0), ap¶s t segundos, ¶ dada (aproximada- a o e 2 mente) por h(t) = 110t ¡ 5t metros. Quais s~o as velocidades do objeto nos a instantes t = 3 seg e t = 4 seg? Em que instante o objeto atinge sua altura m¶xima? Em que instante atinge o ch~o? Com que velocidade atinge o ch~o? a a a 3. Calcule f 0 (x), para cada uma das fun»~es f (x) dadas abaixo, cumprindo as co seguintes etapas i. Primeiro desenvolva a express~o ¢f = f (x + ¢x) ¡ f (x), fazendo as simpli- a ¯ca»~es cab¶ co ³veis. ¢f f (x+¢x)¡f (x) ii. Em seguida obtenha, uma express~o simpli¯cada para a ¢x = ¢x . ¢f iii. Finalmente, calcule o limite lim . ¢x!0 ¢x (a) f(x) = 17 ¡ 6x (b) f(x) = 7x2 ¡ 5
  • 9. ^Velocidade instantanea e derivadas 9 (c) f(x) = x3 + 2x p (d) f(x) = x 1 (e) f(x) = x+5 (f) f(x) = x5 6 (g) f(x) = 2 x 4. Usando as regras de deriva»~o estabelecidas, calcule as derivadas das seguintes ca fun»~es. co (a) f(t) = ¡6t3 + 12t2 ¡ 4t + 7 (b) f(t) = (3t + 5)2 Sugest~o: Primeiro desenvolva o quadrado. a (c) f(x) = (¡2x + 1)32 Sugest~o: Primeiro desenvolva o cubo. a (d) f(x) = (3x ¡7x+1)(x2 +x¡1) Sugest~o: Primeiro desenvolva o produto. 2 a (e) f(x) = x3 ¡ x2 + 15 5. Determine o dom¶ de cada uma das seguintes fun»~es. Represente-o como um ³nio co intervalo ou uma reuni~o de intervalos de R. No nosso contexto, o dom¶ de a ³nio uma fun»~o f ¶ o conjunto de todos os n¶meros reais x para os quais f(x) ¶ um ca e u e n¶mero real. u (a) f(x) = x3 ¡ 5x + 3 p (b) f(x) = ¡ 4 ¡ x p (c) f(x) = ¡ 4 ¡ x2 p (d) f(x) = x2 ¡ 5x + 4 1 (e) f(x) = p 2x ¡ x21.4.1 Respostas e sugest~es o 1. (a) 11; 8; 11; 4; 11; 04; 11; 004 (cm/seg). (b) 11 cm/seg (c) P se move no sentido positivo quando t > ¡3=8, e no sentido negativo quando t < ¡3=8 2. 80 m/seg e 70 m/seg. Em t = 11 seg. Em t = 22 seg, com a velocidade de ¡110 m/seg. 3. (a) i. ¢f = ¡6¢x ii. ¢f = ¡6 ¢x iii. f 0 (x) = ¡6 (b) i. ¢f = 14x¢x + 7(¢x)2 ii. ¢f = 14x + 7¢x ¢x
  • 10. ^Velocidade instantanea e derivadas 10 iii. f 0 (x) = 14x (c) i. ¢f = (3x2 + 2)¢x + 3x(¢x)2 + (¢x)3 ii. ¢f = 3x2 + 2 + 3x(¢x) + (¢x)2 ¢x iii. f 0 (x) = 3x2 + 2 p p (d) i. ¢f = x + ¢x ¡ x p p ¢f x+¢x¡ x ii. ¢x = ¢x 1 ¢f iii. f 0 (x) = 2px . Sugest~o. a Ao calcular o limite lim , o leitor chegar¶ a ¢x!0 ¢x µ express~o 0=0, que n~o tem signi¯cado matem¶tico. Para contornar este a a a a problema, devemos ajeitar" ¢f , atrav¶s das simpli¯ca»~es dadas abaixo. ¢x e co p p p p p p ¢f x + ¢x ¡ x x + ¢x ¡ x x + ¢x + x = = ¢p p ¢x ¢x ¢x x + ¢x + x (x + ¢x) ¡ x 1 = p p =p p ¢x ¢ ( x + ¢x + x) x + ¢x + x p p p p Aqui ¯zemos uso da identidade ( a ¡ b)( a + b) = a ¡ b. 1 1 ¡¢x (e) i. ¢f = x+¢x+5 ¡ x+5 = (x+¢x+5)(x+5) ¢f ¡1 ii. ¢x = (x+¢x+5)(x+5) 1 iii. f 0 (x) = ¡ (x+5)2 (f) f 0 (x) = 5x4 12 (g) f 0 (x) = ¡ 3 x 4. (a) f 0 (t) = ¡18t2 + 24t ¡ 4 (b) f 0 (t) = 18t + 30 (c) f 0 (x) = ¡48x5 + 48x3 ¡ 12x (d) f 0 (x) = 12x3 ¡ 12x2 ¡ 18x + 8 (e) f 0 (x) = 3x2 ¡ 2x 5. (a) R (b) ]¡ 1; 4] (c) [¡2; 2] (d) ]¡ 1; 1] [ [4; +1[ (e) ]0; 2[

×