Trabajosemiconductor
Upcoming SlideShare
Loading in...5
×
 

Trabajosemiconductor

on

  • 140 views

Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad ...

Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica.

Statistics

Views

Total Views
140
Views on SlideShare
140
Embed Views
0

Actions

Likes
0
Downloads
3
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Trabajosemiconductor Trabajosemiconductor Presentation Transcript

  • LOS SEMICONDUCTORES  INTRINSECOS  DOPADOS CREADO POR: CARLOS F. FLORES C.
  • Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica. INTRINSECOS
  • Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV. http://www.asifunciona.com/fisica/ke_semiconductor/ke_s emiconductor_4.htm
  • Es un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 1,1 eV y 0,7 eV para el silicio y el germanio respectivamente. http://es.wikipedia.org/wiki/Semiconductor#Semiconductores _intr.C3.ADnsecos
  • Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (27ºc): ni(Si) = 1.5 1010cm-3 ni(Ge) = 2.5 1013cm-3 Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
  • Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante. http://www.asifunciona.com/fisica/ke_semiconductor/ke_s emiconductor_4.htm
  • Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica. En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero. La tensión aplicada en la figura forzará a los electrones libres a circular hacia la derecha (del terminal negativo de la pila al positivo) y a los huecos hacia la izquierda.
  • EN LOS ESTO PODEMOS VER EN QUE DIRECCIÓN SE MUEVEN LOS ELECTRONES Y HUECOS EN UN SEMICONDUCTOR INTRÍNSECO. CUANDO LOS ELECTRONES LIBRES LLEGAN LA EXTREMO DERECHO DEL CRISTAL, ENTRAN AL CONDUCTOR EXTERNO (NORMALMENTE UN HILO DE COBRE) Y CIRCULAN HACIA EL TERMINAL POSITIVO DE LA BATERÍA. POR OTRO LADO, LOS ELECTRONES LIBRES EN EL TERMINAL NEGATIVO DE LA BATERÍA FLUIRÍAN HACIA EL EXTREMOS IZQUIERDO DEL CRISTAL. ASÍ ENTRAN EN EL CRISTAL Y SE RECOMBINAN CON LOS HUECOS QUE LLEGAN AL EXTREMO IZQUIERDO DEL CRISTAL. SE PRODUCE UN FLUJO ESTABLE DE ELECTRONES LIBRES Y HUECOS DENTRO DEL SEMICONDUCTOR. http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema 2/Paginas/Pagina4.htm
  • DOPADOS Este tipo de semiconductor se obtiene artificialmente añadiendo impurezas a los semiconductores intrínsecos. Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente a través del circuito. Esta corriente que aparece es de muy pequeño valor, pues son pocos los electrones que podemos arrancar de los enlaces entre los átomos de silicio. Para aumentar el valor de dicha corriente tenemos dos posibilidades: • Aplicar una tensión de valor superior • Introducir previamente en el semiconductor electrones o huecos desde el exterior. http://www.ifent.org/lecciones/semiconductor/dopado.asp
  • EJEMPLO DE UN CASO Impurezas de valencia 5 (Arsénico, Antimonio, Fósforo). Tenemos un cristal de Silicio dopado con átomos de valencia 5. Los átomo de valencia 5 tienen un electrón de más, así con una temperatura no muy elevada (a temperatura ambiente por ejemplo), el 5º electrón se hace electrón libre. Esto es, como solo se pueden tener 8 electrones en la órbita de valencia, el átomo pentavalente suelta un electrón que será libre. Siguen dándose las reacciones anteriores. Si metemos 1000 átomos de impurezas tendremos 1000 electrones más los que se hagan libres por generación térmica (muy pocos). A estas impurezas se les llama "Impurezas Donadoras". El número de electrones libres se llama n (electrones libres/m3). http://www.sc.ehu.es/sbweb/electronica/elec_basica/te ma2/Paginas/Pagina5.htm
  • CLASES Existen dos clase de semiconductores dopados:  semiconductores N  semiconductores P.
  • Se obtiene añadiendo un pequeño número de átomos pentavalentes (con cinco electrones en su última capa) a un semiconductor intrínseco. Estos átomos pueden ser de P, As o Sb. De los cinco electrones, cuatro realizan enlaces covalentes con los átomos del semiconductor intrínseco y el otro será libre. A temperatura ambiente los electrones libres de un semiconductor N provienen de los electrones sobrantes de las impurezas y de los electrones térmicos (o liberados por energía térmica). Así pues, un semiconductor tipo N posee más electrones libres que el correspondiente semiconductor intrínseco y por tanto la conductividad será mayor. También el número de electrones libres es mayor que el de huecos. La corriente eléctrica en el semiconductor N es también debida a electrones y huecos. Los electrones son portadores mayoritarios y los huecos son portadores minoritarios. SEMICONDUCTORES N
  • http://www.uv.es/~navasqui/Tecnologia/Tema3.pdf
  • Es el resultado de añadir un pequeño número de átomos trivalentes (con tres electrones en la última capa) a un semiconductor intrínseco. Estos tres electrones formaran enlaces covalentes con los átomos del semiconductor intrínseco. Queda por lo tanto un electrón del semiconductor intrínseco sin emparejar para formar el enlace covalente. Esto es, habrá un hueco donde cabría un electrón. Los átomos que se añaden pueden ser de Al, B o Bi. En un semiconductor P existen, pues, huecos debidos a la falta de electrones para formar enlaces covalentes, electrones libres térmicos y sus correspondientes huecos. El número de huecos será por lo tanto mayor en un semiconductor dopado P que en el correspondientes semiconductor intrínseco. Al conectar un generador externo, los huecos se moverán hacia el polo negativo del generador y los electrones libres hacia el polo positivo. Los huecos serán los portadores mayoritarios y los electrones térmicos los portadores minoritarios. SEMICONDUCTORES P
  • http://www.uv.es/~navasqui/Tecnologia/Tema3.pdf
  • UNION DE PN Cuando se unen dos semiconductores dopados, P y N, aparece un fenómeno interesante: los electrones libres del semiconductor N que están cerca de la unión saltan a los huecos del semiconductor P para completar los enlaces covalentes que faltaban. Por cada electrón que salta de N a P aparece una carga negativa en la zona P (la carga del electrón que ha saltado) y aparece una carga positiva en N (la del núcleo del átomo al que pertenecía el electrón fugado). Al cabo de un cierto tiempo la zona P, cerca de la unión, se queda cargada negativamente y la zona N cargada positivamente. Estas cargas producen un campo eléctrico dirigido de N a P el cual se opone a que pasen más electrones de N a P. Los electrones que han conseguido saltar a P se mantienen cerca de la unión ya que son atraídos por los núcleos positivos de la zona N
  • REPRESENTACION GRAFICA http://www.uv.es/~navasqui/Tecnologia/Tema3.pdf