Published on

1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • If the patient’s duodenum was removed as part of the bariatric surgery, which nutrients are the most likely to be malabsorbed? Iron, Ca++ and Mg++.
  • Which nutrients are most likely to be affected by achlorhydria associated with aging?
  • Name 3 good food sources of iron.
  • Name 3 good food sources of magnesium.
  • Name 3 good food sources of Calcium.
  • Who should be taking vitamin D supplements?

    2. 2. Learning Objectives <ul><li>The learner will be able to identify patient populations that may benefit from vitamin/mineral supplementation. </li></ul><ul><li>The learner will be familiar with the research about the benefits of micronutrient supplementation to minimize the risk of certain chronic diseases. </li></ul><ul><li>The learner will understand how to modify dietary intake in order to meet the RDA for vitamins and minerals for adults. </li></ul>
    3. 3. Learning Objectives <ul><li>The learner will be able to identify those micronutrients which are unlikely to be found in sufficient quantities in the standard U.S. diet. </li></ul><ul><li>The learner will be familiar with the U.S. D.R.I. categories and their implications in assessing dietary intake. </li></ul>
    4. 4. What are DRI’s? <ul><li>“ Dietary Reference Intakes are the best available evidenced-based nutrient standards for estimating optimal intakes.” </li></ul><ul><li>4 DRI’s </li></ul><ul><ul><li>RDA </li></ul></ul><ul><ul><li>AI </li></ul></ul><ul><ul><li>EAR </li></ul></ul><ul><ul><li>UL </li></ul></ul>
    5. 5. Recommended Dietary Allowance <ul><li>Serves as intake goals for healthy individuals </li></ul><ul><li>Meets or exceeds the estimated requirements of 97-98% of the population </li></ul>
    6. 6. Adequate Intake <ul><li>Used when data is insufficient to determine an RDA </li></ul><ul><li>Likely to exceed the actual requirements of almost all healthy people </li></ul>
    7. 7. Estimated Average Requirement <ul><li>The amount estimated to meet the needs of 50% of individuals </li></ul><ul><li>RDA = 2 standard deviations above EAR </li></ul>
    8. 8. Upper Tolerable Intake Level <ul><li>Above which toxicity is likely to occur </li></ul>
    9. 9. ADA Position Paper <ul><li>Each individual’s true requirement for a nutrient is unknown. </li></ul><ul><li>Intakes that fall below RDA or AI should not be interpreted as inadequate w/out also assessing clinical status & biochemical indices. </li></ul><ul><li>Intakes that meet the RDA or AI should not necessarily be considered adequate w/out also taking into account other clinical factors. </li></ul>
    10. 10. ADA Position Paper <ul><li>A healthy diet that provides adequate nutrients is more likely to promote healthy outcomes than will supplementation of individual nutrients. </li></ul>
    11. 11. ADA Position Paper <ul><li>Intake of dietary supplements to make up for poor diet have not been proven to be effective in preventing chronic disease with the exceptions of Ca++ and Vitamin D in bone health. </li></ul>
    12. 12. Most Likely Deficiencies in US Diets <ul><li>Calcium </li></ul><ul><li>Potassium </li></ul><ul><li>Magnesium </li></ul><ul><li>Vitamins A, C, D & E </li></ul><ul><li>Vitamin B-12 in older adults </li></ul>
    13. 13. Most Likely to be Deficient <ul><li>Iron in adolescent females & premenopausal women </li></ul><ul><li>Folic acid in pregnant women </li></ul><ul><li>B-6 for older adults </li></ul><ul><li>Zinc for older adults & adolescent females </li></ul><ul><li>Phosphorus for peri-adolescent females </li></ul>
    14. 14. High Risk for Nutrient Deficiencies: <ul><li>Restricted food intake </li></ul><ul><li>Elimination of 1 or more food groups from diet </li></ul><ul><li>Diet low in nutrient rich foods </li></ul><ul><li>Older adults </li></ul><ul><li>Pregnant women </li></ul>
    15. 15. High Risk for Nutrient Deficiencies <ul><li>People who are food insecure </li></ul><ul><li>ETOH dependency </li></ul><ul><li>Strict vegetarians and vegans </li></ul><ul><li>Increased nutrient needs due to a health condition </li></ul><ul><li>Use of medication that decreases absorption, metabolism or excretion of a nutrient </li></ul>
    16. 16. Bariatric Surgery <ul><li>Potential for vitamin/mineral deficits despite supplementation. </li></ul><ul><ul><li>Especially Iron, B12, Folate, D, C, B6, Thiamine, Ca++, Mg++, Zn & Se </li></ul></ul><ul><li>At risk for osteoporosis, neuropathy, Wernicke’s encephalopathy & anemias </li></ul>
    17. 17. Bariatric Surgery <ul><li>Deficiencies mostly occur due to malabsorption from bypassing segments of the GI tract, but also can occur with simply restrictive procedures as well. </li></ul><ul><li>May also be due to decreased intake and poor tolerance to certain foods. </li></ul>
    18. 18. Bariatric Surgery <ul><li>Not all patients are prescribed or are compliant with supplements. </li></ul><ul><li>Bariatric vitamin preps may not provide enough B12, Folate, or Fe </li></ul><ul><li>F/U evaluations of micronutrient status are inconsistent </li></ul>
    19. 19. Bariatric Surgery <ul><li>Incidence of anemia S/P bariatric surgery as high as 74% </li></ul><ul><li>Chronic inflammation of obesity creates “iron block” </li></ul><ul><ul><li>Up to 20% of patients are anemic before surgery </li></ul></ul><ul><ul><li>Ferritin >200ng/dL suggests Inflammation </li></ul></ul><ul><ul><li>Ferritin <40ng/dL suggests iron deficiency </li></ul></ul>
    20. 20. Pop Quiz!
    21. 21. Geriatrics <ul><li>Highest risk population for nutrition deficiencies. </li></ul><ul><li>87% of older adults have one or more nutrition related disorders </li></ul><ul><ul><li>HTN, DM and/or dyslipidemia </li></ul></ul><ul><li>Nutrition status affects quality of life as well as health. </li></ul>
    22. 22. Geriatrics <ul><li>Chronic undernutrition in elderly may be due to </li></ul><ul><ul><li>Decreased access to food </li></ul></ul><ul><ul><li>Problems chewing and/or swallowing </li></ul></ul><ul><li>Poor dentition </li></ul><ul><li>Oral lesions/infections </li></ul><ul><li>Periodontal disease </li></ul><ul><li>Neurological disorders </li></ul>
    23. 23. Geriatric Nutrition Risk Factors <ul><li>Decreased ability to smell and taste flavors </li></ul><ul><ul><li>Also affected by diseases & medical treatments </li></ul></ul><ul><li>Decreased saliva production </li></ul><ul><li>Decreased appetite & early satiety </li></ul><ul><li>Poor gastric motility </li></ul>
    24. 24. Geriatric Nutrition Risk Factors <ul><li>Reduced vision </li></ul><ul><li>Depression </li></ul><ul><li>Chronic pain </li></ul><ul><li>Effects of chronic diseases </li></ul><ul><ul><li>Altered absorption, transport, metabolism or excretion of nutrients </li></ul></ul><ul><ul><li>Dietary restrictions </li></ul></ul><ul><ul><li>Drug-nutrient interactions </li></ul></ul>
    25. 25. Geriatrics <ul><li>Common micronutrient deficiencies in the elderly </li></ul><ul><li>Vitamins A, B12, C, D </li></ul><ul><li>Folate </li></ul><ul><li>Calcium </li></ul><ul><li>Magnesium </li></ul><ul><li>Zinc </li></ul>
    26. 26. Consequences of Deficits: <ul><li>Poor wound healing </li></ul><ul><li>Impaired vision </li></ul><ul><li>Increased risk for diseases: </li></ul><ul><ul><li>Certain cancers </li></ul></ul><ul><ul><li>Osteoporosis </li></ul></ul><ul><ul><li>Heart disease </li></ul></ul><ul><ul><li>Hypertension </li></ul></ul>
    27. 27. Consequences of Deficits <ul><li>Impaired immune function </li></ul><ul><li>Altered glucose and lipid metabolism </li></ul><ul><li>Decreased mental acuity/dementia </li></ul><ul><li>Depression </li></ul><ul><li>Bone fractures </li></ul><ul><li>Declining muscle function </li></ul>
    28. 28. Consequences of Deficits <ul><li>Reduced ability to taste </li></ul><ul><li>Anemia </li></ul><ul><li>Poor appetite </li></ul><ul><li>Fatigue </li></ul><ul><li>Insomnia </li></ul>
    29. 29. Geriatrics <ul><li>May benefit from Vitamins B12 & D +/- Ca++ supplements even if eating a healthy diet. </li></ul><ul><li>Standard multivitamin supplement may decrease risk of heart disease, improve immune function & decrease healthcare costs. </li></ul><ul><li>Avoid supplements providing high doses of Vitamin E, beta-carotene, & Vitamin A as may increase mortality risk. </li></ul>
    30. 30. Pop Quiz!
    31. 31. Iron <ul><li>Most common nutrient deficiency worldwide </li></ul><ul><li>Microcytic, hypochromic anemia is a late sign of, and indicates severe Fe deficiency </li></ul><ul><ul><li>Use of Hgb for diagnosing Fe deficiency delays detection of IDA </li></ul></ul>
    32. 32. Consequences of Fe Deficiency <ul><li>Diminished work capacity </li></ul><ul><li>Impaired thermoregulation </li></ul><ul><li>Immune dysfunction </li></ul><ul><li>GI disturbances </li></ul><ul><li>Neurocognitive impairment in children </li></ul>
    33. 33. Consequences of Fe Deficiency <ul><li>In pregnancy increased risk for: </li></ul><ul><ul><li>LBW </li></ul></ul><ul><ul><li>Preterm delivery </li></ul></ul><ul><ul><li>Perinatal mortality </li></ul></ul><ul><ul><li>Infant & young child mortality </li></ul></ul><ul><ul><li>Maternal mortality </li></ul></ul>
    34. 34. Consequences of Fe Deficiency <ul><li>Anemia in CHF + CKD (cardiorenal anemia syndrome) increases risk of poor outcomes </li></ul><ul><li>Early treatment of anemia in CHF and CKD has been shown to decrease LOS and improve patient outcomes and QOL </li></ul>
    35. 35. Risk for Iron Deficiency <ul><li>Premenopausal women </li></ul><ul><li>Young children </li></ul><ul><li>Elderly hospitalized patients requiring frequent lab draws </li></ul><ul><li>GIB or any blood loss (including blood donation) </li></ul><ul><li>Malabsorption </li></ul>
    36. 36. Risk for Iron Deficiency <ul><li>Gastric cancer </li></ul><ul><li>Gastric resection & bariatric surgery </li></ul><ul><li>Celiac disease </li></ul><ul><li>Poor intake/vegetarianism </li></ul><ul><li>IBD </li></ul><ul><li>CHF </li></ul><ul><li>Chronic use of NSAIDS </li></ul>
    37. 37. Risk for Iron Deficiency <ul><li>CKD </li></ul><ul><li>Athletes </li></ul><ul><li>Low income pregnant women </li></ul><ul><li>African American & Hispanic females </li></ul><ul><li>Elderly </li></ul><ul><li>Chronic illness (ACD) </li></ul>
    38. 38. Risk for Iron Deficiency <ul><li>H Pylori infection </li></ul><ul><li>Use of H2 blockers, proton pump inhibitors or antacids </li></ul><ul><li>Altered hepatic function & protein malnutrition (altered absorption) </li></ul>
    39. 39. Stages of Fe Deficiency <ul><li>Negative iron balance </li></ul><ul><li>Iron depletion </li></ul><ul><li>Iron deficient RBC synthesis – only after stores are completely depleted </li></ul><ul><li>IDA </li></ul>
    40. 40. Diagnosis of Fe Deficiency <ul><li>Ser Ferritin measures body stores of iron </li></ul><ul><ul><li>Low value unequivocally identifies IDA </li></ul></ul><ul><ul><li><25ug/L suggests early negative iron balance </li></ul></ul><ul><li>Decreased ser ferritin combined with low transferrin saturation & microcytic, hypochromic RBC is definitive confirmation of IDA </li></ul><ul><li>Problem: Ferritin is elevated in inflammation </li></ul>
    41. 41. Diagnosis of Fe Deficiency <ul><li>Evaluate ser Ferritin, serum transferrin receptor (STfr), & CRP </li></ul><ul><ul><li>IDA = Low ser Ferritin + elevated STfr + WNL CRP </li></ul></ul><ul><ul><li>ACD = Normal to elevated ser Ferritin + Normal STfr + CRP >30 </li></ul></ul><ul><ul><li>Concurrent IDA & ACD indicated by elevated STfr and CRP </li></ul></ul>
    42. 42. Treating Iron Deficiency <ul><li>Oral supplementation + iron rich food sources </li></ul><ul><li>Ferrous sulfate or gluconate taken with a source of vitamin C </li></ul><ul><ul><li>GI side effects common – need to follow for tolerance and compliance </li></ul></ul><ul><li>Avoid medications and foods that reduce iron absorption </li></ul><ul><ul><li>Tea tannins/phytates </li></ul></ul>
    43. 43. Indications for Parenteral Fe <ul><li>High iron requirements </li></ul><ul><li>Iron malabsorption </li></ul><ul><li>Intolerance to oral therapy </li></ul>
    44. 44. Parenteral Iron <ul><li>Calculation of parenteral iron replacement dose: </li></ul><ul><ul><li>Dose(mg)=0.3 X wt(#) X (100 – [actual Hgb(g/dL) X 100/desired Hgb(g/dL]) </li></ul></ul>
    45. 45. Pop Quiz
    46. 46. Magnesium <ul><li>Pregnant women with diets higher in fiber, K+, Ca++, and Mg++ may have reduced risk for developing preeclampsia </li></ul><ul><li>Mg++ deficiency has been implicated in pathogenesis of cardiac arrhythmias, ischemic heart disease, HTN, CHF, CVAs, and vascular disease associated with DM </li></ul>
    47. 47. Magnesium <ul><li>Link between low intakes and HTN </li></ul><ul><li>Deficiency may be common, especially in the elderly </li></ul><ul><li>K+ and Mg++ important in the preservation of bone structure with aging. </li></ul>
    48. 48. Magnesium <ul><li>Inverse relationship between dietary intake of Mg++ and risk for DM2. </li></ul><ul><li>Inverse relationship between dietary intake of Mg++ and metabolic syndrome. </li></ul><ul><li>Important to address Mg++ levels whenever treating hypokalemia and hypocalcemia. </li></ul>
    49. 49. Magnesium <ul><li>Consumption of hard vs soft water may decrease cardiovascular risk </li></ul><ul><li>MgCl & Mg Lactate are more bioavailable than MgO4 </li></ul><ul><ul><li>Enteric coating can decrease absorption & bioavailability </li></ul></ul><ul><li>Lag of up to 6 days between IV Mg++ infusion and rise in serum levels </li></ul>
    50. 50. Pop Quiz
    51. 51. Calcium <ul><li>Majority of Americans of all age groups do not meet RDA’s </li></ul><ul><li>Osteoporosis is prevented by lifelong adequate intake </li></ul><ul><ul><li>Supplementation in females during pubertal growth spurt can significantly increase bone accretion </li></ul></ul>
    52. 52. Calcium <ul><li>Absorption increased by: </li></ul><ul><ul><li>Adequate vitamin D </li></ul></ul><ul><ul><li>Higher BMI </li></ul></ul><ul><ul><li>Fat intake </li></ul></ul><ul><li>Absorption decreased by: </li></ul><ul><ul><li>High dietary Ca++ intake </li></ul></ul><ul><ul><li>Dietary fiber </li></ul></ul><ul><ul><li>Alcohol intake </li></ul></ul><ul><ul><li>Physical activity </li></ul></ul>
    53. 53. Calcium Supplements <ul><li>CaCitrate </li></ul><ul><ul><li>more bioavailable than CaCarbonate </li></ul></ul><ul><ul><li>contains 21% Ca++ (have to take more pills) </li></ul></ul><ul><ul><li>supplement of choice in patients using H2 blockers or PPI, IBD, achlorhydria or absorption disorders. </li></ul></ul>
    54. 54. Calcium Supplements <ul><li>CaCarbonate </li></ul><ul><ul><li>contains 40% Ca++ </li></ul></ul><ul><ul><li>Best absorbed when taken with a meal </li></ul></ul><ul><li>Ca Lactate contains 13% elemental Ca++ </li></ul><ul><li>Ca Gluconate contains 9% elemental Ca++ </li></ul><ul><li>Bone meal Ca++ not currently recommended as supplement </li></ul>
    55. 55. Calcium Supplements <ul><li>Dosing: absorption best when taken in doses of 500mg or less </li></ul><ul><li>Look for supplements that have been verified by USP ( ) or CL ( ) </li></ul><ul><li>High calcium intakes (>1500mg/day) may increase risk of prostate CA </li></ul>
    56. 56. Calcium Fortified Foods <ul><li>Bioavailability varies considerably </li></ul><ul><ul><li>Calcium citrate malate more bioavailable than tricalcium phosphate/calcium lactate </li></ul></ul><ul><li>Ca can precipitate out and settle to the bottom of the container (soy & rice milk) </li></ul><ul><li>High calcium mineral water may be a good source of Ca++ </li></ul>
    57. 57. Pop Quiz!
    58. 58. Vitamin D <ul><li>Promotes Ca++ absorption </li></ul><ul><li>Maintains ser Ca++ and Phos levels </li></ul><ul><li>Enables normal bone mineralization </li></ul><ul><li>Prevents hypocalcemic tetany </li></ul><ul><li>Promotes bone growth & bone remodeling </li></ul>
    59. 59. Vitamin D Functions <ul><li>Modulation neuromuscular function </li></ul><ul><li>Modulation of immune function </li></ul><ul><li>Suppression of inflammation </li></ul><ul><li>Modulation of many genes that encode proteins and regulate cell proliferation, differentiation and apoptosis </li></ul>
    60. 60. Vitamin D <ul><li>Humans have evolved to meet the majority of their vitamin D needs by cutaneous synthesis </li></ul><ul><ul><li>Found in high amounts in only a few foods </li></ul></ul><ul><ul><li>Highly unlikely to achieve adequate intake from food alone </li></ul></ul><ul><li>Studies have shown prevalence of hypovitaminosis D to be 36-100% in various populations around the world. </li></ul>
    61. 61. Risk of Vitamin D Deficiency <ul><li>Limited exposure to sunlight </li></ul><ul><ul><li>Use of sunscreen </li></ul></ul><ul><ul><li>Residing north of LA </li></ul></ul><ul><li>Kidneys disease </li></ul><ul><li>Dark skin </li></ul><ul><li>Elderly </li></ul><ul><li>Obesity (sequestering of vitamin in subQ fat) </li></ul>
    62. 62. Vitamin D – Recent Research <ul><li>Hypovitaminosis D associated with increased risk for mortality due to cardiovascular disease </li></ul><ul><li>Association between deficiency and poor LE muscle performance, gait imbalance and increased risk of falls </li></ul><ul><ul><li>Supplementation shown to reduce the risk of falls among older individuals by > 20% </li></ul></ul>
    63. 63. Vitamin D – Recent Research <ul><li>Vitamin D may have an important role in regulating the immune system </li></ul><ul><ul><li>Preadmission vitamin D status may affect the risk and severity of hospital-acquired infections </li></ul></ul><ul><li>Link between low vitamin D levels and the incident of DM2 and cardiovascular disease. </li></ul><ul><li>May also play a role in preventing DM1. </li></ul><ul><li>  </li></ul>
    64. 64. Vitamin D – Recent Research <ul><li>Vitamin D status may protect against certain cancers. </li></ul><ul><li>Link between sunlight exposure and cancer incidence or survival. </li></ul><ul><li>The risk of developing and dying of prostate, breast, colon, ovarian, esophageal, NHL, stomach, pancreatic, rectal, kidney, lung & bladder cancer correlates with living at higher latitudes. </li></ul>
    65. 65. Vitamin D – Recent Research <ul><li>Hypovitaminosis D may increase risk of developing IBD. </li></ul><ul><ul><li>IBD incidence higher in northern climates. </li></ul></ul><ul><li>Inverse relationship between vitamin D status and development of MS. </li></ul><ul><ul><li>Women with the highest vitamin D intakes had a 40% reduction in risk for developing MS. </li></ul></ul>
    66. 66. Vitamin D – Recent Research <ul><li>Evidence that vitamin D deficiency associated with musculoskeletal pain in both children and adults </li></ul><ul><ul><li>Adults and children w/ persistent musculoskeletal pain who did not meet criteria for fibromyalgia are often vitamin D deficient. </li></ul></ul>
    67. 67. Vitamin D – Cutaneous Synthesis <ul><li>Adequate synthesis can be achieved by exposing arms and legs to sunlight 2-3 times per week for about 5-10 minutes </li></ul><ul><ul><li>Depending on where you live & time of year. </li></ul></ul><ul><li>Synthesis in elderly reduced by up to 70%. </li></ul><ul><li>People with dark skin color require 5-10 times longer exposure to sunlight. </li></ul><ul><li>SPF 8 sunscreen reduces synthesis by 95%. </li></ul>
    68. 68. Vitamin D <ul><li>Anticipated new DRI’s for Vitamin D </li></ul><ul><ul><li>RDA increased to 1,000 IU/day for adults </li></ul></ul><ul><ul><li>UL increased from 2000 IU to 10,000 IU </li></ul></ul><ul><ul><li>Goal serum levels of D (25[OH] >30ng/mL with optimal levels being 36-40ng/mL </li></ul></ul><ul><li>Vitamin D3 better than D2 </li></ul>
    69. 69. Vitamin D Supplementation <ul><li>Enteral formulas inadequate in Vitamin D. </li></ul><ul><li>Vitamin D content of CPN likely inadequate as well. </li></ul><ul><ul><li>No high dose form of parenteral vitamin D. </li></ul></ul><ul><ul><li>No individual form of parenteral vitamin D. </li></ul></ul><ul><li>Patients may benefit from exposure to UVB light from a tanning bed </li></ul>
    70. 70. Pop Quiz!
    71. 71. Micronutrients in CPN <ul><li>ASPEN recommendations: </li></ul><ul><li>Magnesium 8-24mEq/Day </li></ul><ul><li>Potassium 1-2mEq/kg/Day </li></ul><ul><li>Sodium 1-2mEq/kg/Day </li></ul><ul><li>Phosphorus 15-30mMole/Day </li></ul><ul><li>Calcium 10-20mEq/Day </li></ul>
    72. 72. Micronutrients in ANS <ul><li>Transient decrease in ionized Ca++ increases PTH levels and resorption of bone </li></ul><ul><li>Chronic inadequate Ca++ intake in CPN can lead to secondary hyperparathyroidism & bone disease. </li></ul>
    73. 73. Micronutrients in ANS <ul><li>Critically ill patients often have preexisting micronutrient deficiencies </li></ul><ul><ul><li>Zn, Fe, Se, and vitamins A, B & C </li></ul></ul><ul><li>Deficiencies may also occur due to inadequate concentrations in TF/PN formulas or because of increased losses/ requirements . </li></ul>
    74. 74. Micronutrients in ANS <ul><li>Micronutrient requirements in critically ill patients are not known. </li></ul><ul><li>Serum levels of some micronutrients are decreased in critical illness/inflammatory response: </li></ul><ul><ul><li>Vitamins E, C & A </li></ul></ul><ul><ul><li>Se, Cu, Fe & Zn decreased due to sequestration </li></ul></ul>
    75. 75. Micronutrients in ANS <ul><li>Serum levels of vitamins 25(OH)D, B12 & folate are the only ones easily available and of clinical use in assessing vitamin status </li></ul><ul><li>Interactions between vitamins are complex </li></ul><ul><ul><li>Vitamin C recycles vitamin E, thus vitamin C deficiency decreases the function of vitamin E </li></ul></ul><ul><ul><li>Vitamin A function is antagonized by excess vitamin E </li></ul></ul><ul><ul><li>Requirements for niacin are increased in vitamin B6 and riboflavin deficiencies </li></ul></ul>
    76. 76. Micronutrients in ANS <ul><li>Composition of commercially available TE preps far from ideal. </li></ul><ul><li>Recent autopsy of patients on long term CPN: </li></ul><ul><ul><li>Tissue levels of Cu, Mn & Cr elevated </li></ul></ul><ul><ul><ul><li>Recommended decreased doses </li></ul></ul></ul><ul><ul><li>Recommended higher levels of Se (60-100ug) </li></ul></ul>
    77. 77. Manganese (Mn) <ul><li>Risk of toxicity w/ long-term CPN. </li></ul><ul><ul><li>More likely to occur in cholestatic patients. </li></ul></ul><ul><ul><ul><li>Primary route of excretion is bile </li></ul></ul></ul><ul><ul><li>Deposition in the brain has been reported in patients w/ and w/out cholestasis. </li></ul></ul><ul><ul><li>Mn contamination in PN solutions </li></ul></ul><ul><ul><li>Current TE produces provides 2-8X the recommended intake </li></ul></ul>
    78. 78. Manganese (Mn) <ul><li>Whole blood manganese the most accurate indicator of tissue level </li></ul><ul><li>Recommendation: </li></ul><ul><ul><li>Monitor every 3 months in patients w/out cholestasis. </li></ul></ul><ul><ul><li>Monitor monthly in patients with T Bili >3.5 </li></ul></ul>
    79. 79. Selenium (Se) <ul><li>Deficiency may be as high as 16% despite addition of Se to CPN </li></ul><ul><ul><li>Increased risk of deficiency w/ SB resection, IBD & other GI disorders. </li></ul></ul><ul><li>Risk of toxicity low. </li></ul><ul><li>Best indicators of recent Se intake & deficiency: Serum selenium, RBC-glutathione peroxidase & urinary Se levels. </li></ul>
    80. 80. Selenium (Se) <ul><li>No reliable indicator for toxicity. </li></ul><ul><li>Recommendation: </li></ul><ul><ul><li>Add Se to all PNs. </li></ul></ul><ul><ul><li>Check serum Se prior to starting PN if deficiency is suspected or is being treated. </li></ul></ul><ul><ul><li>Monitor every 3 months if deficiency found. </li></ul></ul>
    81. 81. Zinc (Zn) <ul><li>Deficiency more common in patients w/ increased pancreatic or GI fluid losses </li></ul><ul><li>Zn balance achieved with 3mg/day in PN </li></ul><ul><ul><li>Add 17mg/kg of ileostomy or stool output in patients w/ intact SB </li></ul></ul><ul><ul><li>Add 12mg/kg of fluid losses from proximal SB fistula or duoden- or jejunostomy </li></ul></ul>
    82. 82. Zinc (Zn) <ul><li>Serum or plasma Zn not good indicators of status </li></ul><ul><ul><li>Sequestered by liver during sepsis </li></ul></ul><ul><li>Recommendation: Check ser Zn if deficiency is suspected or being treated. </li></ul>
    83. 83. Chromium (Cr) <ul><li>Present as a significant contaminant of PN solutions </li></ul><ul><li>No known cases of Cr toxicity in PN patients </li></ul><ul><li>Excreted in urine, therefore may need to restrict in patients with renal failure </li></ul><ul><li>Plasma and serum Cr not good indicators of status. </li></ul>
    84. 84. Chromium (Cr) <ul><li>Optimal amount to add to PN unknown. </li></ul><ul><li>Recommendations: </li></ul><ul><ul><li>Consider smaller doses of for patients with renal failure </li></ul></ul><ul><ul><li>Patients who develop hyperglycemia and neuropathy should be treated with Cr and monitored for resolution of symptoms. </li></ul></ul>
    85. 85. Copper (Cu) <ul><li>Risk of toxicity in cholestatic liver disease </li></ul><ul><ul><li>~80% excreted in bile </li></ul></ul><ul><li>Risk of deficiency with prolonged, excessive GI losses </li></ul><ul><li>Current TE additives provide > twice the Cu requirement </li></ul><ul><li>Deficiency can occur in 1-30 months on Cu-free CPN even in cases of cholestasis </li></ul>
    86. 86. Copper (Cu) <ul><li>Serum Cu is reliable indicator of Cu deficiency but not toxicity </li></ul><ul><ul><li>However, Cu typically removed or decreased in CPN if ser Cu elevated in cholestatic patients </li></ul></ul><ul><li>Recommendation: Check serum Cu if deficiency or toxicity is suspected and every 3 months for patients with elevated T Bili. </li></ul>
    87. 87. Iron (Fe) <ul><li>Not typically provided in PN solutions. </li></ul><ul><li>Not stable in 3-in-1 admixtures. </li></ul><ul><li>If patient has functional stomach and duodenum can likely supplement orally, taken with a source of vitamin C. </li></ul><ul><li>Recommendation: Check iron status every 3 months </li></ul>
    88. 88. Molybdenum (Mo) <ul><li>May be present as contaminant in PN solutions. </li></ul><ul><li>Deficiency in PN patients rare. </li></ul><ul><li>Ser Mo may not be a reliable indicator of status. Elevated plasma methionine may indicate Mo deficiency. </li></ul>
    89. 89. Conclusions <ul><li>Assessing micronutrient intake and status of patients is difficult </li></ul><ul><li>Probably safe to assume that micronutrient status of majority of our patients is far from optimal </li></ul><ul><li>Understand that many will be unable to improve their dietary intake substantially and consistently </li></ul><ul><li>When in doubt – supplement! </li></ul>
    90. 90. Conclusions <ul><li>Helpful websites: </li></ul><ul><ul><li> </li></ul></ul><ul><ul><li>Up to date information on micronutrients </li></ul></ul><ul><ul><li> </li></ul></ul><ul><ul><li>Individual’s DRI’s based on age, gender and weight </li></ul></ul>
    91. 91. Conclusions <ul><li>More Websites: </li></ul><ul><ul><li> </li></ul></ul><ul><ul><li>Compares food intake to DRI’s for most micronutrients </li></ul></ul><ul><ul><li> </li></ul></ul><ul><ul><li>Provides list of individual micronutrient content of foods (either alphabetically or by highest to lowest content) </li></ul></ul>
    92. 92. Conlusions <ul><li>If your client is taking a supplement – ask them to bring it in so you can look at it! </li></ul><ul><ul><li>Check nutrients provided </li></ul></ul><ul><ul><li>Check % RDA provided </li></ul></ul><ul><ul><li>Check form of nutrient </li></ul></ul>
    93. 93. Conclusions <ul><li>Important to know when supplementation is indicated and when it is contraindicated </li></ul><ul><ul><li>Fe supplements in non-iron deficient men </li></ul></ul><ul><ul><li>Beta-carotene in smokers </li></ul></ul><ul><ul><li>Vitamin E before surgery </li></ul></ul>
    94. 94. Conclusions <ul><li>Pay attention to drug-nutrient interactions </li></ul><ul><ul><li>Fe supplements inhibit Zn absorption </li></ul></ul><ul><ul><li>Zn supplements inhibit Cu absorption </li></ul></ul><ul><ul><li>Anticonvulsants may increase need for folate </li></ul></ul><ul><ul><li>Steroids may deplete Ca++ and impair Vitamin D metabolism </li></ul></ul>
    95. 95. Conclusions <ul><li>As RD’s we should own micronutrient management in ANS! </li></ul>
    96. 96. Questions?