Evidence.ppt

970 views
853 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
970
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
23
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • An automated external defibrillator or DESA is a type of defibrillator which analyzes the patient's rhythm and advises the operator when a shockable rhythm is detected. It is not necessary for the DESA operator to be skilled in rhythm recognition. DESA should only be applied to patients who are unconscious, pulseless and not breathing. 16
  • Evidence.ppt

    1. 1. Evidence Base Medicine Newborn and Child Dominique Biarent Hôpital Universitaire des Enfants Urgences et Soins Intensifs
    2. 2. Consensus on Sciences and Treatment Recommendations http://www.c2005.org/presenter.jhtml?identifier=3022512 Your Guide to the 2005 International CoSTR Conference What is the purpose of the evidence evaluation process? The endpoint of this process is the preparation of the International Consensus on CPR and ECC Science with Treatment Recommendations.                                                     
    3. 3. What is the purpose of the International CoSTR Conference? ILCOR is conducting systematic reviews and updates of scientific evidence  supporting ECC treatment recommendations.  More than 300 CPR and ECC  scientific topics  will undergo evidence-based review  This process represents the most comprehensive, systematic review of the resuscitation literature to date
    4. 4. Who's in charge? ILCOR - the International Liaison Committee on Resuscitation.  includes 7 international resuscitation organizations American Heart Association  (AHA),  European Resuscitation Council (ERC),  Heart and Stroke Foundation of Canada  (HSFC), Resuscitation Council of Southern Africa (RCSA), Australia  and  New Zealand  Council on Resuscitation  (ANZCOR), InterAmerican Heart Foundation  (IAHF). Japan Resuscitation Council  JRC : international observer to ILCOR.   China (Ministry of Health) : international observer to the C2005 Conference. 
    5. 5. C2005 Evidence Evaluation Worksheets « Vasopressine leads to better outcome from pediatric cardiac arrest than epinephrine »
    6. 6. Level of Evidence (LOE)
    7. 7. Rating
    8. 8. Direction
    9. 9. Search Strategy <ul><li>Vasopressin and cardiac arrest, children, ventricular fibrillation , resuscitation, asystole and children (MeSH term and textwords) </li></ul><ul><li>Pubmed 244 hits (19 Aug 2004) </li></ul><ul><li>Embase141 hits (19 Aug 2004) </li></ul><ul><li>Cochrane Library 1 hit (15 Aug 2004) </li></ul><ul><li>Update 24 Jan 2005 : 1 hit </li></ul>
    10. 10. Supporting evidence table denotes key article     Quality of Evidence Underlined: peds Quality of Evidence     Excellent       Wenzel 2004 ABC (Nolan 2004 )         Mayr 2001 AE Voelckel 2002 E           Good         Lindner 1997 A               Ito 2004 E Lindner 1992 E Lindner 1996a E         Fair           Morris 1997 E     Lindner 1996b ABCD Mann 2002 ABCD Voelckel 2000b B       Paradis 1993 E       1 2 3 4 5 6 7 8     Level of Evidence A = Return of spontaneous circulation C = Survival to hospital discharge B = Survival of event C = Survival to hospital discharge D = Intact neurological survival ²E = Other endpoint Supporting evidence Vasopressin leads to better outcome from paediatric cardiac arrests than epinephrine
    11. 11. denotes key article     Quality of Evidence Neutral/opposing evidence table Neutral/opposing evidence table     Excellent         Stiell 2001 ABCD       Kono 2002 AB Voelckel, 2000c AE         Good         Biondi-Zoccai 2003A                       Fair                 Voelckel 2000b A           1 2 3 4 5 6 7 8     Level of Evidence A = Return of spontaneous circulation C = Survival to hospital discharge B = Survival of event C = Survival to hospital discharge D = Intact neurological survival ²E = Other endpoint Neutral / Opposing evidence Vasopressin leads to better outcome from paediatric cardiac arrests than epinephrine
    12. 12. <ul><li>Wenzel V, Krismer AC, Arntz HR, Sitter H, Stadlbauer KH, Lindner KH. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med 2004;350(2):105-13. </li></ul><ul><li>LOE1 excellent RCT (intention to treat) </li></ul><ul><li>1189 patients (no children) </li></ul><ul><li>Similar rate of survival to hospital admission for VF /PEA </li></ul><ul><li>Better survival for asystolic patients treated with vasopressin </li></ul><ul><li>In absence of ROSC with study drug, additional epinephrine improved survival in VP group not in EPI group </li></ul>
    13. 13. 1.7 % 4/10 20.3% 1.5% 0 30.5% 8.6 % 43% 19.2% EPI 0.3 (0.1-0.6) (p0.002*) (ns) 6.2 % 10/40 H discharge Intact neurol Additional epinephrine w/o ROSC 0.6 (0.4-0.9) (p0.02*) 0.3 (0.1-1.0) (p0.04*) (p0.008*) 29% 4.7% 3.8% H admission H discharge H discharge after epi ASYSTOLE 0.8 (0.5-1.8) (p0.65) 1.4 (0.5-4.7) (p0.47) 33.7% 5.9 % H admission H discharge PEA 0.9 (0.6-1.3) (p0.48) 1.1 (0.7-1.8) (p0.7) 46.2 % 17.8 % H admission H discharge VF RR–CI 95% AVP Wenzel 2004
    14. 14. <ul><li>Voelckel WG, Lurie KG, McKnite S, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest. Crit Care Med 2000;28(12):3777-83. </li></ul><ul><li>Paediatric piglet model of asphyxial arrest </li></ul><ul><li>Epi or VP+Epi : higher myocardial BF </li></ul><ul><li>VP+Epi : higher cerebral BF </li></ul><ul><li>ROSC Epi 6/6* VP+Epi 5/6 VP 1/6 </li></ul><ul><li>Limitation : use of high dose Epi (200 mcg/kg) </li></ul>
    15. 15. <ul><li>Voelckel WG, Lurie KG, McKnite S, et al. Effects of epinephrine and vasopressin in a piglet model of prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 2002;30(5):957-62. </li></ul><ul><li>Paediatric piglet model of prolonged VF (8 min + 20 min CPR), </li></ul><ul><li>Combination VP (0.8 IU/kg) +Epi (45  g/kg) : higher left ventricular myocardial blood flow than VP or Epi alone </li></ul><ul><li>VP+Epi and VP alone : higher cerebral blood flow than Epi alone </li></ul><ul><li>ROSC ns VP + Epi 6/6 VP5/6 Epi 2/6. </li></ul>
    16. 16. <ul><li>Mann K, Berg RA, Nadkarni V. Beneficial effects of vasopressin in prolonged pediatric cardiac arrest: a case series. Resuscitation 2002;52(2):149-56. </li></ul><ul><ul><li>6 long lasting CA in 4 children after > 2 doses adrenaline </li></ul></ul><ul><ul><li>VP as rescue therapy </li></ul></ul><ul><ul><li>3 ROSC (>1h) </li></ul></ul><ul><ul><li>1 withdrawal therapy (>24 h) </li></ul></ul><ul><ul><li>1 survivor </li></ul></ul>
    17. 17. High dose versus low dose adrenaline <ul><li>Author A </li></ul><ul><li>« High dose of adrenaline is harmful in children with in-hospital and out-of-hospital cardiac arrest » </li></ul><ul><li>Search strategies </li></ul><ul><li>209 articles excluded </li></ul><ul><li>40 articles analysed : 25 human and 15 animal model studies </li></ul><ul><li>Author B </li></ul><ul><li>« The recommended resuscitation dose of adrenaline for children (0.01 mg/kg) should be increased </li></ul><ul><li>Search strategies </li></ul><ul><li>Age less than 18 years </li></ul><ul><li>5 articles met full criteria </li></ul>
    18. 18. <ul><li>Goetting MG, Paradis NA. High dose epinephrine in refractory pediatric cardiac arrest. Crit Care Med. 1989;17:1258-62 </li></ul><ul><li>7 children received 0.2 mg/kg adre : 6 ROSC Compared to 20 historic controls (SDE): no ROSC </li></ul><ul><li>LOE 5 (fair) </li></ul><ul><li>Goetting MG, Paradis NA. High-dose epinephrine improves outcome from pediatric cardiac arrest. Ann Emerg Med. 1991;20:22-6. </li></ul><ul><li>Prospective intervention group versus historic control group (20 in each). HDE : 14 ROSC (70%), 8 long term survival, 3 intact </li></ul><ul><li>LOE 3 </li></ul>Refractory CA is > 2 doses of adrenaline
    19. 20. <ul><li>No difference in survival at discharge </li></ul><ul><li>LOE1 (excellent) </li></ul>
    20. 21. Compression / Ventilation Ratio <ul><li>Author A </li></ul><ul><li>A universal compression-ventilation ratio should be used for infants and children irrespective of their age, etiology of arrest and number of rescuers </li></ul><ul><li>Search strategies </li></ul><ul><li>9 articles </li></ul><ul><li>Author B </li></ul><ul><li>Scientific evidence supports the superiority of a 5:1 CV ratio in children rather than the 15:2 CV ratio recommended for adults </li></ul><ul><li>Search strategies </li></ul><ul><li>20 articles used for discussion </li></ul><ul><li>9 articles in grid </li></ul>
    21. 22. In children <ul><li>Metabolic rates, CO2 production, ventilatory needs are higher in the non-arrest setting </li></ul><ul><li>Pediatric CA are precipitated by asphyxia or shock </li></ul><ul><li>In-hospital HCP are accustomed to a 5:1 rather than 15:2 </li></ul><ul><li>time to BLS in asphyxial CA vs Time to defibrillation in VF are crucial </li></ul>
    22. 23. <ul><li>Rescue breathing is critically important for asphyxial arrest (inadequate O2 content and high CO2 in the lungs at the time of CA) but not necessary for VF </li></ul><ul><li>VF has a normal O2 / CO2 content in lungs and hyperventilation is deleterious </li></ul><ul><li>BLS not necessary fort short duration VF </li></ul><ul><li>BLS crucial for prolonged duration VF </li></ul>
    23. 24. Evidence Of Science <ul><li>Manikin studies or animal studies (LOE 6) </li></ul><ul><li>Mathematical model (LOE 6) </li></ul>
    24. 25. <ul><li>Berg RA, Sanders AB et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for VF cardiac arrest. Circ 2001;104:2465-2470 </li></ul><ul><li>Interrupting CC for rescue breathing decreases mean coronary perfusion, LV blood flow & number of compression in swine. </li></ul>
    25. 26. <ul><li>Dorph E, Wik L, Steen PA. Effectiveness of ventilation-compression ratios 1:5 and 2:15 in simulated single rescuer paediatric resuscitation. Resuscitation. 2002;54:259-64 </li></ul><ul><li>1 lay rescuer – child sized manikin – 2 ratios 5:1 or 15:2 </li></ul><ul><li>Same minute ventilation; Better compression with 15:2 </li></ul>
    26. 27. Kinney SB, Tibballs J. An analysis of the efficacy of bag-valve-mask ventilation and chest compression during different compression–ventilation ratios in manikin-simulated paediatric resuscitation. Resuscitation 2000;43:115-120. 84.6 84.6 84.6 % effective chest compression 83.7 78.9 87.9 Total compressions/min 1.4 2.0 2.2 MV 12 17 18 Breaths/min 115 117 121 Tidal volume 15:2 10:2 5:1 C/V ratios
    27. 28. J. L. Greingor. Quality of cardiac massage with ratio compression–ventilation 5/1 and 15/2. Resuscitation 2002; 55:263-267 Mean number of correct compression                                  34 56 Min 5 47 60 Min 4 40 53 Min 3 41 55 Min 2 59 58 Min 1 Ratio 15/2 Ratio 5/1
    28. 29. Optimum C/V ratios in pediatric basic life support 5 + AGE for Pro 5 + AGE/2 for LAY <ul><li>Babbs CF, Nadkarni V. Optimizing chest compression to rescue ventilation ratios during one-rescuer CPR by professionals and lay persons: children are not just little adults . Resuscitation 2004;61:173-81. </li></ul>
    29. 30. <ul><li>Oxygen delivery function of C/V ratio </li></ul><ul><li>professionally trained rescuers (2 rescue breaths in 5 s) </li></ul><ul><li>lay rescuers, (2 rescue breaths in 16 s) </li></ul>Babbs CF, Kern KB. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation. 2002 Aug;54(2):147-57. Blood flow DO2 Blood flow DO2 Alv O2 Alv O2
    30. 31. Optimal combined flow/DO2
    31. 32. For 10 000 simulations OPTIMAL RATIO between 30:2 and 50:2
    32. 33. <ul><li>Simplicity of teaching is crucial </li></ul><ul><li>Do we need an universal ratio? </li></ul>
    33. 35. Biphasic defibrillation                                                   Number of shocks that failed to terminate the initial VF episode for monophasic weight-based and attenuated adult biphasic shocks in the 4, 14 and 24 kg weight categories. * P <0.01.
    34. 36. ROSC and 4 & 24 h survival Berg RA, Chapman FW et al Attenuated adult biphasic shocks compared with weight-based monophasic shocks in a swine model of prolonged pediatric ventricular fibrillation. Resuscitation 2004, 61: 189-197
    35. 37. Ventricular function
    36. 38. Automated External Defibrillator (AED) <ul><li>Evaluates the victim’s ECG </li></ul><ul><li>Determines if a “shockable” rhythm is present </li></ul><ul><li>Charges the “appropriate” dose </li></ul><ul><li>When activated by operator, delivers a shock </li></ul><ul><li>Provides synthetised voice prompts to assist the operator </li></ul>
    37. 39. AED in children? <ul><li>Experience limited </li></ul><ul><li>Recommended (Class IIb) for children older than 1 year in the pre-hospital setting (circulation 2003) </li></ul><ul><li>Remember: </li></ul><ul><ul><li>Most arrests in children are respiratory in origin </li></ul></ul><ul><ul><li>The most frequent arrest rhythms are Asystole and PEA </li></ul></ul><ul><ul><li>Prompt defibrillation is the definitive treatment for VF and pulseless VT </li></ul></ul><ul><ul><li>Basic life support sequence </li></ul></ul>
    38. 40. Conclusion <ul><li>Ongoing process </li></ul><ul><li>Evidence of science </li></ul><ul><li>Guidelines </li></ul><ul><li>Courses </li></ul><ul><li>Evidence Based Medicine </li></ul>

    ×