Your SlideShare is downloading. ×
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Chapter 14 R2 - ClassJump.com - free websites for teachers
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Chapter 14 R2 - ClassJump.com - free websites for teachers

654

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
654
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Memmler’sThe Human Body in Health and Disease11th edition
    Chapter 14
    The Heart and Heart Disease
  • 2. Circulation and the Heart
    Circulation
    Continuous one-way circuit
    of the blood vessels
    Propelled by heart
  • 3. Location of the Heart
    Between the lungs
    Left of the midline of the body
    In mediastinum
    Apex pointed toward left
  • 4. Location of the Heart
    Mediastinum
    The mediastinum is a non-delineated group of structures in the thorax, surrounded by loose connective tissue. It is the central compartment of the thoracic cavity. It contains the heart, the great vessels of the heart, esophagus, trachea, phrenic nerve, cardiac nerve, thoracic duct, thymus, and lymph nodes of the central chest.
  • 5. Structure of the Heart
    Three tissue layers
    Endocardium lines heart’s interior
    Myocardium is thickest layer; the heart muscle
    Epicardium is thin outermost layer
  • 6. The Pericardium
    The sac that encloses the heart
    Fibrous pericardium holds heart in place
    Serous membrane
    Parietal layer
    Pericardial cavity
    Visceral layer (epicardium)
  • 7. The Pericardium
  • 8. Layers of the heart wall and pericardium. The serous pericardium covers the heart and lines the fibrous pericardium.
    • Which layer of the heart wall is the thickest?
  • 9. Special Features of the Myocardium
    Cardiac muscles
    Are lightly striated (striped)
    Have single nucleus cells
    Are controlled involuntarily
    Have intercalated disks
    Have branching muscle fibers
  • 10. Divisions of the Heart
    Double pump
    Right side pumps blood low in oxygen to the lungs
    Pulmonary circuit
    Left side pumps oxygenated blood to remainder of body
    Systemic circuit
  • 11. Four Chambers
    Right atrium
    Receives low-oxygen blood returning from body tissue through superior vena cava and inferior vena cava
    Left atrium
    Receives high-oxygen blood from lungs
    Right ventricle
    Pumps blood from right atrium to lungs
    Left ventricle
    Pumps oxygenated blood to body
    The Latin word atrium referred to the open central court, from which the enclosed rooms led off, in the type of large ancient Roman house known as a domus.
    Middle English, from Old French ventricule, from Latin ventriculus, diminutive of venter, belly
  • 12. Four Chambers
    There are four chambers in the heart: the top two chambers are called the right and left atria, and the bottom two chambers are the right and left ventricles.
  • 13. Pathway of blood through the heart.
    Blood from the systemic circuit enters the right atrium (1) through the superior and inferior venae cavae, flows through the right AV (tricuspid) valve (2), and enters the right ventricle (3). The right ventricle pumps the blood through the pulmonary (semilunar) valve (4) into the pulmonary trunk, which divides to carry blood to the lungs in the pulmonary circuit.
    Blood returns from the lungs in the pulmonary veins, enters the left atrium (5), and flows through the left AV (mitral) valve (6) into the left ventricle (7). The left ventricle pumps the blood through the aortic (semilunar) valve (8) into the aorta, which carries blood into the systemic circuit.
  • 14. The heart as a double pump. The right side of the heart pumps blood through the pulmonary circuit to the lungs to be oxygenated; the left side of the heart pumps blood through the systemic circuit to all other parts of the body.
    ZOOMING IN
    • What vessel carries blood into the systemic circuit?
  • 15. The heart and great vessels.
    ZOOMING IN
    • Which heart chamber has the thickest wall?
  • 16. Four Valves
    Atrioventricular valves
    Entrance valves
    Right atrioventricular (AV) valve (tricuspid valve)
    Left atrioventricular (AV) valve (bicuspid valve)
    Semilunar valves
    Exit valves
    Pulmonary valve
    Aortic valve
  • 17. Valves of the heart (superior view from anterior, atria removed). (A) When the heart is relaxed (diastole), the AV valves are open and blood flows freely from the atria to the ventricles. The pulmonary and aortic valves are closed. (B) When the ventricles contract, the AV valves close and blood pumped out of the ventricles opens the pulmonary and aortic valves.How many cusps does the right AV valve have? The left?
  • 18. Blood vessels that supply the myocardium. Coronary arteries and cardiac veins are shown. (A) Anterior view. (B) Posterior view.
  • 19. Opening of coronary arteries in the aortic valve (anterior view). (A) When the left ventricle contracts, the aortic valve opens. The valve cusps prevent filling of the coronary arteries. (B) When the left ventricle relaxes, backflow of blood closes the aortic valve and the coronary arteries fill.
  • 20. Function of the Heart
    Left and right sides of heart work together in cardiac cycle (heartbeat)
    Systole (active phase, contraction)
    Diastole (resting phase)
  • 21. The cardiac cycle.
    ZOOMING IN • When the ventricles contract, what valves close? What valves open?
  • 22. Cardiac Output
    Calculating cardiac output
    Cardiac output (CO)
    Stroke volume (SV)
    Heart rate (HR)
    CO = HR 3 SV
  • 23. Cardiac Output
  • 24. The Heart’s Conduction System
    Electrical energy stimulates heart muscle
    Nodes
    Sinoatrial (SA) node (pacemaker)
    Atrioventricular (AV) node
    Specialized fibers
    Atrioventricular bundle (bundle of His)
    Purkinje fibers (conduction myofibers)
    Intercalated disks
  • 25. The Heart’s ConductionSystem
    a, Normal rhythm;
    b, atrial fibrillation. Representative action potentials are shown from the sinoatrial node (SAN), atrium, AV node and ventricles. The vertical line on each action potential recording corresponds to a common time reference. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.
  • 26. Conduction system of the heart. The sinoatrial (SA) node, the atrioventricular (AV) node, and specialized fibers conduct the electrical energy that stimulates the heart muscle to contract.
    • What parts of the conduction system do the internodal pathways connect?
  • 27. The Conduction Pathway
    Sinus rhythm
    Sinoatrial (SA) node
    Atria
    Atrioventricular (AV) node
    Internodal pathways
    Bundle of His
    Bundle branches and Purkinje fibers
    Ventricles
  • 28. Control of the Heart Rate
    Influences that allow heart to meet changing needs rapidly
    Autonomic nervous system (ANS)
    Sympathetic nervous system
    Parasympathetic system
    Cranial nerve X
  • 29. Control of the Heart Rate
    Autonomic nervous system.
    The autonomic nervous system is a part of the nervous system that non-voluntarily controls all organs and systems of the body. As the other part of nervous system ANS has its central (nuclei located in brain stem) and peripheral components (afferent and efferent fibers and peripheral ganglia) accessing all internal organs.
    There are two branches of the autonomic nervous system - sympathetic and parasympathetic (vagal) nervous systems that always work as antagonists in their effect on target organs.
  • 30. Control of the Heart Rate
    Sympathetic nervous system
    For most organs including heart the sympathetic nervous system stimulates organ's functioning. An increase in sympathetic stimulation causes increase in HR, stroke volume, systemic vasoconstriction, etc. The heart response time to sympathetic stimulation is relatively slow. It takes about 5 seconds to increase HR after actual onset of sympathetic stimulation and almost 30 seconds to reach its peak steady level.
  • 31. Control of the Heart Rate
    Parasympathetic nervous system
    In contrast, the parasympathetic nervous system inhibits functioning of those organs. An increase in parasympathetic stimulation causes decrease in HR, stroke volume, systemic vasodilatation, etc. The heart response time to parasympathetic stimulation is almost instantaneous. Depending on actual phase of heart cycle it takes just 1 or 2 heartbeats before heart slows down to its minimum proportional to the level of stimulation.
  • 32. Control of the Heart Rate
    At rest both sympathetic and parasympathetic systems are active with parasympathetic dominance. The actual balance between them is constantly changing in attempt to achieve optimum considering all internal and external stimuli.
  • 33. Control of the Heart Rate
  • 34. Variations in Heart Rates
    Bradycardia - a heart rate below 60 beats/min) is not infrequently found during a routine physical examination. Visualizing the conduction system of the heart recalls the sick sinus syndrome
    Tachycardia
    Sinus arrhythmia
    Premature beat
    (extrasystole)
  • 35. Variations in Heart Rates
    Early repolarisation syndrome
  • 36. Variations in Heart Rates
    Sinus bradycardia
  • 37. Variations in Heart Rates
    Bradycardia - a heart rate below 60 beats/min) is not infrequently found during a routine physical examination. Visualizing the conduction system of the heart recalls the sick sinus syndrome
    Tachycardia -rapid resting heart rate initiated within the ventricles, typically at 160 - 240 beats per minute (normal resting rate is 60 - 100 beatsper minute).
    Sinus arrhythmia
    Premature beat
    (extrasystole)
  • 38. Variations in Heart Rates
    Sinus bradycardia
  • 39. Variations in Heart Rates
    Bradycardia - a heart rate below 60 beats/min) is not infrequently found during a routine physical examination. Visualizing the conduction system of the heart recalls the sick sinus syndrome
    Tachycardia - rapid resting heart rate initiated within the ventricles, typically at 160 - 240 beats per minute (normal resting rate is 60 - 100 beatsper minute).
    Sinus arrhythmia is what can be defined as the anxious state of the slowing down of the heart while breathing out or during expiration and increasing of the heart beat while inhaling or during inspiration. This abnormality could prove to be dangerous and if remained uncured might as well lead to the death of the patient.
    Premature beat
    (extrasystole)
    systematic failure of the medulla oblongata results in the condition which is termed as sinus arrhythmia
  • 40. Variations in Heart Rates
    Sinus Arrhythmias
  • 41. Variations in Heart Rates
    Bradycardia - a heart rate below 60 beats/min) is not infrequently found during a routine physical examination. Visualizing the conduction system of the heart recalls the sick sinus syndrome
    Tachycardia - rapid resting heart rate initiated within the ventricles, typically at 160 - 240 beats per minute (normal resting rate is 60 - 100 beatsper minute).
    Sinus arrhythmia is what can be defined as the anxious state of the slowing down of the heart while breathing out or during expiration and increasing of the heart beat while inhaling or during inspiration. This abnormality could prove to be dangerous and if remained uncured might as well lead to the death of the patient.
    Premature beat describes beats arising from the atrium and occurring before the expected sinus beats. Premature beats can occur randomly or in a pattern.
  • 42. Variations in Heart Rates
    Atrial Premature Beat (APB) is an abnormal P wave As P waves are small
    and rather shapeless the difference in an APB is usually subtle. The one shown here is a clear example.
    occurs earlier than expectedfollowed by a compensatory pause - but not a full compensatory pause
  • 43. Heart Sounds
    Lub
    Dup
    Murmurs
    Organic
    Functional
  • 44. Heart Sounds
    The first heart sound(S1) as recorded by a high-resolution phonocardiography consist of 4 sequential components: 
(1) small low frequency vibrations, usually inaudible, that coincide with the beginning of left ventricular contraction and felt to be muscular in origin;

(2) a large high- frequency vibration, easily audible related to mitral valve closure (M1);

(3) followed closely by a second high frequency component related to tricuspid valve closure T1;
  • 45. Heart Sounds
    (4) small frequency vibrations that coincide with the acceleration of blood into the great vessel ( see below). The two major components audible at the bedside are the louder M1 best heard at the apex followed by T1 heard best at the left lower sternal border. They are separated by only 20-30ms and at the apex are only appreciated as a single sound in the normal subject.
  • 46. Heart Disease
    Most common cause of death in industrialized countries is heart and circulatory system disease
    Chest pain or discomfort (angina) is the most common symptom. You feel this pain when the heart is not getting enough blood or oxygen. How bad the pain is varies from person to person.
    It may feel heavy or like someone is squeezing your heart. You feel it under your breast bone (sternum), but also in your neck, arms, stomach, or upper back.
    The pain usually occurs with activity or emotion, and goes away with rest or a medicine called nitroglycerin.
    Other symptoms include shortness of breath and fatigue with activity (exertion).
  • 47. Classifications of Heart Disease
    Anatomical classification
    Endocarditis
    Myocarditis
    Pericarditis
    Causative factors classification
    Congenital heart disease
    Rheumatic heart disease
    Coronary artery disease
    Heart failure
  • 48. Classifications of Heart Disease
    Anatomical classification
    Endocarditis
    Myocarditis
    Pericarditis
    Causative factors classification
    Congenital heart disease
    Rheumatic heart disease
    Coronary artery disease
    Heart failure
    Inflammation of the heart muscle can be caused by:
    * Infections, bacterial viruses, or fungi.
* Rheumatic fever, which can occur when the body sends antibodies to fight a throat infection attacks the joints and heart tissue.
* Drug or chemical poisoning.
* Connective tissue diseases like lupus or rheumatoid arthritis.
  • 49. Classifications of Heart Disease
    Anatomical classification
    Endocarditis
    Myocarditis
    Pericarditis
    Causative factors classification
    Congenital heart disease
    Rheumatic heart disease
    Coronary artery disease
    Heart failure
    Iinflammation of the pericardium, or sac-like membrane that envelopes the heart.
  • 50. Classifications of Heart Disease
    Causative factors classification
    Congenital heart disease - Congenital heart disease refers to a problem with the heart's structure and function due to abnormal heart development before birth. Congenital means present at birth.
    Rheumatic heart disease - Rheumatic heart disease is a condition in which the heart valves are damaged by rheumatic fever.
    Coronary artery disease - Coronary heart disease (CHD) is a narrowing of the small blood vessels that supply blood and oxygen to the heart. CHD is also called coronary artery disease.
    Heart failure - Heart failure, also called congestive heart failure, is a condition in which the heart can no longer pump enough blood to the rest of the body.
  • 51. Classifications of Heart Disease
    Congestive heart failure (CHF), or heart failure, is a condition in which the heart can't pump
    enough blood to the body's other organs. This can result from
    narrowed arteries that supply blood to the heart muscle — coronary artery disease
    past heart attack, or myocardial infarction, with scar tissue that interferes with the heart
    muscle's normal work
    high blood pressure
    heart valve disease due to past rheumatic fever or other causes
    primary disease of the heart muscle itself, called cardiomyopathy.
    heart defects present at birth — congenital heart defects.
    infection of the heart valves and/or heart muscle itself — endocarditis and/or myocarditis
  • 52. Congenital Heart Disease
    Congenital heart disease often results from fetal development defects
    Atrialseptal defect
    Patent (open) ductusarteriosus
    Ventricular septal defect
    Coarctation of the aorta
    Tetralogy of Fallot
  • 53. Patent DuctusArteriosus
  • 54. Tetralogy of Fallot
  • 55. Coarctation of the Aorta
  • 56. Rheumatic Heart Disease
    Streptococci release toxins during infection
    Antibodies that combat toxin also attack heart valves
    Heart valves become inflamed
    Valve cusps thicken and harden
    Pulmonary congestion occurs
  • 57.
  • 58. Congenital Heart Disease
    Preductalcoarctation: The narrowing is proximal to the ductusarteriosus. If severe, blood flow to the aorta distal to the narrowing (supplying lower body) is dependent on a patent ductusarteriosus, and hence its closure can be life-threatening. This is the type seen in approximately 5% of infants with Turner Syndrome.
    Ductalcoarctation: The narrowing occurs at the insertion of the ductusarteriosus. This kind usually appears when the ductusarteriosus closes.
    Postductalcoarctation: The narrowing is distal to the insertion of the ductusarteriosus. Even with an open ductusarteriosus blood flow to the lower body can be impaired. This type is most common in adults.
  • 59. Coronary Artery Disease
    Coronary arteries can degenerate
    Myocardial infarction
    Creatine kinase released upon any muscle damage. Tests for certain forms of CK indicate whether an MI occurred.
    Angina pectoris
    Abnormalities of heart rhythm
    Treatment of heart attacks
  • 60. Heart Failure
    Heart is unable to pump sufficient blood
    Heart chambers enlarge
    Blood backs up into lungs
    Ventricular muscles have decreased ability
    Fluid accumulates in lungs, liver, abdomen, legs
  • 61. Heart Failure
  • 62. The Heart in the Elderly
    How the heart can age
    Heart shrinks
    Decreased contraction strength
    Valves become less flexible
    Murmur develops
    Cardiac output decreases
    Abnormal rhythms
    Heart block
  • 63. Prevention of Heart Disease
    Risk factors that cannot be modified
    Age
    Gender
    Heredity
    Body type
    Risk factors that can be modified
    Smoking
    Physical inactivity
    Weight
    Diet
    Blood pressure
    Diabetes, gout
  • 64. Prevention of Heart Disease
    Thiamine is involved in the breakdown of energy molecules such as glucose and is also found on the membranes of neurons. Symptoms of beriberi include severe lethargy and fatigue, together with complications affecting the cardiovascular, nervous, muscular, and gastrointestinal systems
  • 65. Heart Studies
    Stethoscope
    Electrocardiograph (ECG or EKG)
    Electrodes
    Catheterization
    Fluoroscope
    Echocardiography (ultrasound cardiography)
    Oscilloscope
  • 66. Heart Studies
    Stethoscope
    Electrocardiograph (ECG or EKG)
    Electrodes
    Catheterization
    Fluoroscope
    Echocardiography (ultrasound cardiography)
    Oscilloscope
  • 67. Complications
    Irregular heart rhythm
    Infection
    Bleeding at the catheter insertion site
    Continued chest pain or angina
    Mild to moderate skin reactions (like sun-burn) from X-ray exposure
    Kidney Failure
    Heart attack, blood clots, stroke or death
    Acute closure of coronary artery 
    Emergency coronary artery bypass graft (CABG) surgery
  • 68. Treatment of Heart Disease
    Medical approaches
    Surgical approaches
    Combined approaches
  • 69. Medications
    Digitalis
    Nitroglycerin
    Beta-adrenergic blocking agents (beta-blockers)
    Antiarrhythmic agents
    Slow calcium-channel blockers
    Anticoagulants
    Aspirin
  • 70. Treatment of Heart Disease
    Digitalis - Cardiac glycosides are used therapeutically mainly in the treatment of cardiac failure, due to their anti-arrhythmic effects. These are caused by the ability to increase cardiac output by increasing force of contraction by prolonging the plateau phase of cardiac depolarization thus slowing ventricular contraction and allowing more time for ventricular filling. subsiding of chest pain
    Medicines from foxgloves are called "Digitalin". The use of Digitalis purpurea extract containing cardiac glycosides for the treatment of heart condition
  • 71. Treatment of Heart Disease
    Nitroglycerin will dilate veins more than arteries because dilation of the veins help so that the heart does less work and requires less oxygen and blood. It also lowers the pressure in the arteries against which the heart must pump. Dilating the veins, decreases cardiac preload and leads to the following therapeutic effects during episodes of angina pectoris:
    subsiding of chest pain
    decrease of blood pressure
    increase of heart rate.
    orthostatic hypotension
  • 72. Correction of Arrhythmias
  • 73. Correction of Arrhythmias
    Artificial pacemaker
    Set rate
    Only when heart skips beat
    Adjustable pacing rate
    Implantable cardioverter-defibrillator (ICD)
  • 74. Correction of Arrhythmias
  • 75. Correction of Arrhythmias
    ECG rhythm strip of a threshold determination in a patient with a temporary (epicardial) ventricular pacemaker. The epicardial pacemaker leads were placed after the patient collapsed during aortic valve surgery. In the first half of the tracing, pacemaker stimuli at 60 beats per minute result in a wide QRS complex with a right bundle branch block pattern. Progressively weaker pacing stimuli are administered, which results in asystole in the second half of the tracing. At the end of the tracing, distortion results from muscle contractions due to a (short) hypoxic seizure. Because decreased pacemaker stimuli do not result in a ventricular escape rhythm, the patient can be said to be pacemaker-dependent and needs a definitive pacemaker.
  • 76. Correction of Arrhythmias
    An ECG in a person with an atrial pacemaker. Note the circle around one of the sharp electrical spike in the position were one would expect the P wave
  • 77. Heart Surgery
    Coronary artery bypass graft (CSBG)
    Angioplasty
    Valve replacement
    Surgical transplantation of heart or heart and lungs
    Artificial heart

×