Kammen
Upcoming SlideShare
Loading in...5
×
 

Kammen

on

  • 539 views

New grid e grid systems to meet development challenges

New grid e grid systems to meet development challenges

Statistics

Views

Total Views
539
Views on SlideShare
519
Embed Views
20

Actions

Likes
0
Downloads
5
Comments
0

1 Embed 20

http://www.canaleenergia.com 20

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Kammen Kammen Presentation Transcript

  • New Grid and Smart Grid S t G id Systems to Meet Development ChallengesProfessor Daniel M. KammenChief Technical Specialist for Renewable Energy and Energy Efficiency p gy gy yThe World BankJuly, 2011Rome, ItalyAlso: Founding Director of the gRenewable and Appropriate Energy Laboratory, University of California, Berkeleyhttp://rael.berkeley.edu
  • WORLD BANK LENDING ENERGY PORTFOLIO Medupi RSA 2010: Portfolio is 2010 P tf li i 65% non-fossil f l f il fuel 2011: New Energy Strategy (in review)
  • CONTENTS • Building up expanded grid / smart grid capacity • Short‐term impacts of variable power generation • Variable generation technologies and planning • Information management for the new / smart grid • Transmission Planning and Renewable Energy 2
  • PLANNING AFTER DEREGULATION • Planning was forgotten by many agencies for years… • Indicative planning used to check if the market (independent decisions by  investors) is delivering the required investment • Planning as the basis to determine investments in non‐competitive areas:  transmission and distribution • Other applications: determine capacity payments or long‐term marginal  cost reference price signals used in different forms of private sector  contracting • Rebirth of planning with the introduction of new market designs to ensure  supply adequacy based on long‐term organized markets: Competition for  the market and not in the market (e.g. Brazil, Colombia) • Most important: systems assessments and integration key to managing  costs and carbon
  • TODAY’S GRID Top‐down control Demand drives generation >230kV Day/night and seasonal demand  D / i ht d ld d predictable to better than 3% Conservative design and operation to  accommodate failures d t f il >69kV ISO managed Utility managed Operates well with one Operates well with one‐ Operates well with one‐ way flow and static  conditions
  • THE FUTURE GRID HAS NEW NEEDS Variable wind and solar generation Wind variable at minutes timescale >230kV Solar variable at seconds timescale S l i bl d i l Solid state inverters reduce  inertia in system Complicated demand  l dd d Potential for charging 1 million  plug‐in electric vehicles (PEVs) to >69kV overload the distribution system overload the distribution system Demand response (DR) Generation behind the meter Significant generation and storage at the  f d h distribution level There will exist a very  Th ill i t complex dynamic interaction  +- between load and generation  +- +- +- +- +- with unknown results with unknown results Solar PV & PEVs Storage
  • TEAM DEVELOPS NEW TECHNIQUES TO SCALE AND ENHANCE ELECTRIC GRIDPLANNING AND OPERATIONS MODELS Increasing grid complexity and dynamics (e.g., variable renewable, 100X data rates, 100X nodes). Existing planning codes use single-processor environments Research focus on algorithms  and approaches  for scaling selected codes and methods Task 1: Develop high resolution models of grid, including Solar thermal distribution system Task 2: Use dynamic techniques to model wind, solar, demand response variability Task 3 T k 3: Scale t h ti S l stochastic optimization algorithms to exploit parallel hardware Task 4: Implement on HPC platforms Solar PV and wind Use of HPC is novel within electric industry and could  revolutionize grid design and operation revolutionize grid design and operation 6
  • UNDERSTANDING PLANNING: SCREENING CURVE ANALYSIS • Traditional generation planning has similarities with short term economic  dispatch operations: definite the least‐cost generation schedule and new  additions program for the next 5‐20 years. • The main difference is that in generation planning a decision has to be  made with regard to the new generation plants that should be added to  the system to meet expected long‐run demand at least‐cost the system to meet expected long run demand at least cost ~ 6 % annual demand MW growht 20,000 6,000 MW 6,000 09 10 11 12 13 14 15 16 29 16.. 4,500 Long-term demand projection (20 years) Generation PlanningMW Jan/09 July/09 Jan/10 July/104,500 Yearly load-curve (1.5 years) Operations planning Daily load curve (24 hrs) Short-term dispatch
  • LOCAL SCALE:CONCEPT OF OPEN ARCHITECTURE SMART HOME 8
  • FIRST STEP TO NATIONAL GRID ‐ TRESAMIGAS INTERCONNECT SUPERSTATIONCONNECTS THE 3 MAJOR GRIDS OF U.S. Site information hyperlink 9
  • LARGE SCALE:DIRECT CURRENT INTERCONNECT – RESOLVES AC PHASING ISSUES AND ENABLES RE FROM SOUTHWEST TO EASTERN LOAD CENTERS Site information hyperlink 10
  • EMERGING APPROACHES TO TRANSMISSION DEVELOPMENT• Renewable energy zones rapid change is possible  (planning/economics) RE‐zones approved in 2008 Source: National Renewable Energy  Laboratory &  US DOE 11
  • Increased Renewables with Diversified Sources I dR bl ith Di ifi d S ‐ with benefit of long distance and intelligent gridAverage Load NATURAL GAS SOLAR/PV Base Load WIND COAL HYDRO + OTHER NUCLEAR 12
  • UNDERSTANDING PLANNING: SIMPLIFIED SCREENING CURVE ANALYSIS • Long term generation planning and smart systems integration Long run planning to answer: What, when, and how to add new MW generation capacity to 20,000 20 000 meet future demand ? 6,000 2009 2010 2011 2012 …. 2027 2028 2029
  • SUSTAINABLE ENERGY PLANS IN CHINA / SMART SYSTEMS PLANNING Renewable 6% CCP Scenario (2,336 GW) 16 Hydro 16% 14 Energy gy Nuclear Efficiency 4% Coal 60% Oil & gasCO2 emissions  (Gton) 12 14% Low‐ carbon  10 technology 8 ENV Scenario (1,975 GW) 6 e Renewa Coal, 30 4 ble, 23 % % 2 Hydro,  Oil &  23% Gas, 16 0 % 2009 2012 2015 2018 2021 2024 2027 2030 Nuclear, 8% World Bank Group  
  • CHALLENGES OF GRID ENVIRONMENT IN CHINA RenewableEnergy SecurityEnergy Security 6% BAU Scenario Coal, oil & gas, nuclear (2,336 GW) Hydro 16% Grid integration, reliability and stability Nuclear Load demand to double by 2030 4% Coal 60% Oil & gasUrbanization 14% Increasing density of load demand Increasing density of load demand Increasing demand for high quality of  power supply (work and life‐style) Increasing environmental sensitivity Increasing environmental sensitivity SD ScenarioGreen Growth and Climate Change (1,975 GW) Renewab le, 23% Coal, 30% • Shift to less energy‐intensive and  higher value‐added economy Hydro, 23 Oil &  % • Costs of local and global emissions Gas, 16% Nuclear,  8% World Bank Group 
  • SUSTAINABLE DEVELOPMENT (SD) SCENARIO IS OUTLOOK INCREASINGLY AFFORDABLE AS THE ECONOMY CONTINUES TO GROW, BUT THE INCREMENTAL COST IS LARGE INITIALLY Investments Costs as a share of GDP (3 year moving average; Capex Investment )2,0% SD1,5%1,0% BAU0,5%0,0% 2010 2015 2020 2025 2030 World Bank Group
  • OUTLOOKSTRONG AND SMART GRIDS WILL PLAY A KEY ROLE INENABLING SAFE, SECURE AND EFFICIENT TRANSITIONTOWARDS SUSTAINABLE ENERGY DEVELOPMENT Accelerating energy efficiency (EE) through Smart Metering, Time-based Tariff Systems/ Dynamic Pricing Net Metering and Distributed Power Generation DSM, DSM EE trade and services Scaling-up renewable energy (RE) through DSP (e.g. phasor measurements) and wide-area stability control Flexible Fl ibl AC/DC transmission system (l d fl i i (load flow control) l) Energy storage, network management and RE trading Integration of New/Advanced Technologies g g • Off-shore wind, Concentrated Solar Power and advanced solar PV • Electric vehicles • “Zero emission” buildings World Bank Group  
  • TOWARDS SUSTAINABLE DEVELOPMENT Pricing reforms are key for smart energy grid Energy Renewable New Technologies CO2 Abatemen cost Efficiency Energy A nt STRONG AND SMART GRID •Regulations and •Feed-in Tariff or RE • Support for R&D financial incentives Portfolio Standard • Financing (e.g. tariffs) • Tax on fossil fuel incremental cost • Financing • Cap and trade CO2 • Technology mechanisms transfer and pilot • Institutional reforms projects World Bank Group
  • LOAD AREAS AND TRANSMISSION Load areas are parts of the grid: 50 Load  • Within which there is significant  Areas existing distribution • Between which there is limited  existing transmission • Congested transmission paths are  retained • Defined predominantly by  existing borders • Control areas, load serving  entities, country and state  borders, urban areas,  mountain ranges, etc. Transmission in SWITCH: • Is built between major substations of adjacent load  areas along existing lines when possible • Minimizes ecological impact and citing difficulties • Costs $1000/MW‐km to build • Obeys thermal limits • Does not yet capture differences between AC and DC
  • EXISTING GRID AREAS • Existing Generators Existing Generators: • Are given the option to run or  be mothballed in each  investment period • Mixed integer linear program! • Have plant‐primemover  Have plant primemover specific heat rates • Are retired after their  operational lifetime • Use historical monthly flows  used to constrain daily  used to constrain daily Hydroelectric   67 GW Nuclear               9 GW DC Line hydroelectric generation 500 kV Coal 38 GW • Existing hydroelectric is must‐ Geothermal       2 GW run Gas                    82 GW G 82 GW Wind                 10 GW 20 Source: Ventyx EV Energy Map
  • Technologies SWITCH Can Currently Build Compressed Air Energy Storage Energy Storage 21
  • 22
  • RPS Enabled and No Carbon Tax Dispatch in 2026‐2029 Dispatch in 2026‐2029 • No new policy case • Represents lowest cost system operation under above assumptions R t l t t t ti d b ti • Coal increases to from 33%  to 47% of generation • Emissions increase to 197% of 1990 Levels Emissions increase to 197% of 1990 Levels • Solar makes a small appearance at 2% of generation • Biomass solid, biogas and geothermal are installed to meet RPS targets A 225 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec RPS Enabled 200 $0/tCO2 175 tion (GW) 150 Solar 125 Wind HydroelectricGenerat 100 Gas 75 Geothermal 50 Biomass Solid 25 Biogas Coal 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 Nuclear 16 20 0 4 8 12 Hour of Day (PST) Load 23
  • RPS Enabled and No Carbon Tax Generation and Transmission in 2026‐2029 and Transmission in 2026‐2029• Cheap coal in  2026-2029 Wyoming is shipped  W i i hi d RPS E bl d Enabled west $0/tCO2• Wind in the Rocky  Mountains is  M i i consumed locally Average• Solar in the  Transmission Flow (GW) generated and used  < 0.5 in the Desert  0.5 – 2 2–5 Southwest >5• Biomass is consumed  Average locally on the coast Generation• Hydro is shipped  5 GW south to California Solar Wind• California has highest  Geothermal Biomass Solid RPS target of 33% Biogas • Most diverse  Hydroelectric Gas generation  Coal portfolio Nuclear 24
  • Cost of Conserved Carbon in 2026‐2029 800 100 RPS reduces emissions by 23% 90 700 Cost of Power per MWh p With RPS and 80 CO2 Emissio (MtCO2/yr) Without RPS 600 70 7) Cos ($2007 500 CO2 Emissions Cost of Conserved Carbon 60 With RPS and per tCO2 With RPS and ons Without RPS Without RPS st 400 50 40 300 1990 CO2 Emissions 30 200 20 100 10 0 0 0 10 20 30 40 50 60 70 80 90 100CCC reduction aided Carbon Cost ($2007/tCO2) 1990 levels reachedby small carbon cost at higher carbon costs 25
  • Generation Mix is Highly Sensitive to  Nuclear Capital Cost Nuclear Capital Cost• Optimal grid changes drastically as a function of nuclear capital  cost at carbon taxes of > $50/tCO2 b f $ / • Increasing nuclear capital cost by $1/W tips the power mix far  away from new nuclear away from new nuclear • Solar, wind, and natural gas substitute $4/W Nuclear, RPS Enabled, 2026-2029 Nuclear Enabled 2026 2029 $5/W Nuclear RPS Enabled, 2026-2029 Nuclear, Enabled 2026 2029 26
  • Dispatch in2026‐2029 @ $60/tCO2 225B Jan Feb Mar Apr May Jun Jul Aug Sep Oct 200 Nov Dec $4/W Nuclear RPS Enabled 175 $60/tCO2 GW) 150 Solar neration (G 125 Wind 100 Hydroelectric Gas 75 GeothermalGen 50 Biomass Solid 25 Biogas Coal 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 Nuclear 16 20 0 4 8 12 Hour of Day (PST) Load 225C Jan Feb Mar Apr May Jun Jul Aug Sep Oct 200 Nov Dec $5/W Nuclear RPS Enabled 175 $60/tCO2Generatio (GW) 150 Solar 125 Wind on 100 Hydroelectric Gas 75 Geothermal 50 Biomass Solid 25 Biogas Coal 0 Nuclear 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 20 0 4 8 12 Hour of Day (PST) Load 27
  • Geographic Build‐Out of Low Carbon Scenarios • @ $4/W nuclear capital cost • New nuclear dominates eastern generation and consumption • Also uses existing transmission to send power west • @ $5/W nuclear capital cost @ $5/W nuclear capital cost • Solar and gas increase in the Desert Southwest • 9% and 30% of WECC‐wide generation, respectively • In both, wind power is deployed in the Rocky Mountains In both wind power is deployed in the Rocky Mountains $4/W Nuclear $5/W Nuclear $60/tCO2 $60/tCO2 RPS Enabled RPS Enabled 2026-2029 2026-2029 Average Generation 5 GW Solar Wind Average GeothermalTransmission Biomass Solid Flow (GW) ( ) Biogas < 0.5 Hydroelectric 0.5 – 2 Gas 2–5 Coal >5 Nuclear 28
  • VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING • The cost of short‐term impacts.. Source: IEA Task 25 Design and Operation of Power Systems with Large Amounts of Power 29
  • VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING• The cost of short‐term impacts.. Source: IEA Task 25 Design and Operation of Power Systems with Large Amounts of Power 30
  • VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING • Emerging evidence Wind integration costs are manageable For levels below 10% of energy penetration costs are  small For levels 10% to 15% more impact on operative reserves,  and other services. Detailed studies recommended d th i D t il d t di d d For levels 15% to 30% more flexibility will be required,  large interconnected areas, wind diversity. Studies  large interconnected areas wind diversity Studies highly recommended 31
  • Multiple windows fo energy e or $ trade/dispatch: rea time mark al kets, day ahe markets ead s… High interconn hly nected systtem: conn nect to mult tiple market ts Flexible ge eneration: Good G ramping caapab: GT, CCGT C Generatio with stora on age: hydro, pum mped hydroo D Diversify/agg gregate win nd VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING po ower: acros different ss ar reas Other, most expen nsive, storage solutions eSolutions 32 Flexibility  is the key to accommodate variable sources • Flexibility is the key to accommodate variable sources
  • VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING Critical conditions: how transmission flexibility has helped Denmark ? • During high wind conditions: excess traded to NORDEL or Germany •During rapid wind decrease, large balancing area permit imports from Germany • Grid stability is improved by interconnections Source Energinet.dk Denmark s Denmark’s TSO Wind power generation 22.22 % of total consumption in 2007 33 33
  • SOLAR RESOURCE MANAGEMENT 85% Dow Spike in <5 min 8 wn (a) Ten second resolution Global Horizontal Incidence cloudy and clear day (b) Ten second resolution power production cloudy and clear day [ 25 MW field, Florida w/tracking] Observed i Ob d impacts of T t f Transient Cl d O Utilit scale PV Fields i t Clouds On Utility l Fi ld Kankiewicz, Sengupta& Moon www.ases.org/papers/112.pdf 34
  • 10% OF CARS EV IN THE US …. When to Charge EVs? When to Charge EVs? Charging at night could increase need for Base Load Daytime charging can be done with Solar ‐ Optimal charging requires information feedback and pricing tools Optimal charging  requires information feedback and pricing tools EV LoadAverage To Scale Load NATURAL GAS SOLAR/PV Base Load WIND COAL HYDRO + OTHER NUCLEAR 35
  • TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES Mexico: Wind potential in Oaxaca 10 GW First 1,895 MW of privately‐developed wind power require a new framework to  expand the publicly‐owned transmission system with 271 km of double circuit 400 Kv  lines plus 2,125 MVA substation are needed *Source: CRE (2009) and CFE (2009) • Average wind velocity above 15  m/s / • Average plant load factor > 50% • Location: remote, far from  f f consumption centers and the  transmission system • Smart system critical to use  current and then future grid  y effectively 36
  • TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES Mexico: Open for Private Wind Power Producers: Reducing and Sharing  Mexico: Open for Private Wind Power Producers: Reducing and Sharing Transmission Costs Wind power operating and committed Source: CFE 37
  • TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES Mexico: Open Season process flow Mexico: Open Season process flow 38
  • CONCLUSIONS / DIRCTIONS New Planning Tools Are Needed For Local Management and  Long‐term regional planning • Developing a  new generation of tools • Co‐evolution of generation technology, energy efficiency and demand‐side  planning • Low‐carbon options at least cost require coordination and integration b l d d • A secure energy, low‐cost set of products to assist all nations 39