Your SlideShare is downloading. ×
0
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Los Numeros Enteros
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Los Numeros Enteros

2,469

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,469
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
21
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. ESCUELA NORMAL SUPERIOR DEL SUR DE TAMAULIPAS<br />TRABAJO:<br />Números enteros:<br />Origen e historia <br />PROFESOR: <br />JOSÉ CALIXTO SALAS GONZÁLEZ<br /> SEMESTRE: ESPECIALIDAD: <br />3° MATEMÁTICAS<br />
  • 2. LA NOCIÓN DE CANTIDAD, NÚMERO Y SISTEMA NUMÉRICO<br />Desde la era primitiva el hombre siempre buscó respuestas a sus inquietudes. La inquietud permitió la aparición de conceptos abstractos en la mente del hombre primitivo ya evolucionado.<br />
  • 3. Cuando el hombre desarrolla la capacidad de darle sentido racional a las cosas, nace el concepto de cantidad.<br /> Inicialmente no utilizábamos la notación indo – arábiga, sino representábamos, las cantidades, con marcas en los árboles, con un montón de piedras, nudos en sogas, etc. <br />Los recursos que utilizábamos dependían de la cultura donde estábamos ubicados.<br />
  • 4. Diversas culturas representan la noción de cantidad según su desarrollo lo permitía. Fruto de esta diversidad nacen las notaciones de cantidad como la romana, babilónica, griega, etc. <br />Se sabe que los babilonios utilizaron simples enteros positivos para tratar de contar unas pocas ovejas, mientras que hoy en día los enteros positivos no satisfacen el complejo mundo de las matemáticas. <br />Desde luego el significado que cada grupo social asigna a un determinado conocimiento o idea, implica mucho en su visión de vida.<br />
  • 5. Los pitagóricos tenían una explicación de la realidad basada en los números. <br />Filolao Crotona, 480 a. de C. <br />Filósofo, médico y astrónomo griego. Discípulo de Pitágoras y de Lisis; fue maestro de Arquitas, Simmias y Cebes. Difundió la doctrina pitagórica en Tebas y Tarento. Filósofo pitagórico, resume perfectamente el papel tan importante que se le otorgaba:<br /> “El número reside en todo lo que es conocido. Sin él es imposible pensar nada ni conocer nada.”<br />
  • 6. EL NÚMERO NATURAL<br /> Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. Los números naturales son infinitos. <br />El conjunto de todos ellos se designa por N: <br />N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}<br />
  • 7. El cero, a veces, se excluye del conjunto de los números naturales. Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:<br />1º (primero), 2º (segundo),…, 16º (decimosexto),…<br /> Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.<br />
  • 8. La representación simbólica de los números naturales, se presupone que surgió antes del nacimiento de las palabras para “representarlos”, seguramente porque es más fácil contar muescas en un palo que establecer una frase para identificar un número concreto. <br />Los símbolos que representan a los números no han sido siempre los mismos.<br />
  • 9. EN EGIPTO MEDIANTE JEROGLÍFICOS (BASE 10)<br />
  • 10. EN GRECIA MEDIANTE EL ALFABETO GRIEGO<br />
  • 11. EN CHINA MEDIANTE IDEOGRAMAS<br />
  • 12. EN BABILONIA MEDIANTE MARCAS<br />
  • 13. LOS MAYAS UTILIZABAN NOTACIONES PARTICULARES<br />
  • 14. En Roma las letras como indicador de cantidad<br />
  • 15. EN LA ACTUALIDAD, LA NOTACIÓN INDO – ÁRABE<br />
  • 16. Finalmente se estableció el conjunto de los números naturales, con la notación adoptada por la letra N, y es el siguiente:<br />Ν = {0,1,2,3,4,...,100,101,....}<br />Se observa que los números están ordenados, entonces podemos relacionarlo con puntos mediante la recta numérica, cumpliendo una relación de punto a número, siendo así un ejemplo de la característica infinita de los naturales.<br />
  • 17. Estamos incluyendo el cero en los números naturales tomando como referencia al aporte de Giuseppe Peano (1858 – 1932); que fue un matemático y filósofo Italiano, conocido por sus contribuciones a la Teoría de conjuntos. <br />
  • 18. LOS NÚMEROS NEGATIVOS<br />Los números negativos antiguamente conocidos como “números deudos” o “números absurdos”, datan de una época donde el interés central era la de convivir con los problemas cotidianos a la naturaleza.<br /> En oriente se manipulaban números positivos y negativos, estrictamente se utilizaba los ábacos, usando tablillas o bolas de diferentes colores.<br />
  • 19. Corresponde a los Indios la diferenciación entre números positivos y negativos, que interpretaban como créditos y débitos, respectivamente, distinguiéndolos simbólicamente.8. Además el cero también es atribuida a esta cultura, hacia el año 650 d. C.<br />Los griegos utilizaban magnitudes negativas en sus teoremas del álgebra geométrica, pero este siempre referido a las propiedades de la operación de restar, tales como, por ejemplo:<br />(a – b).(c – d) = ac + bd –ad –bc; <br />
  • 20. Los números naturales junto con los negativos formarán luego el conjunto de los números enteros; es decir los números naturales complementados con los naturales.<br />Donde:<br />• Los enteros positivos (positivos en el gráfico), se denota con Ζ+ <br />• Los enteros negativos (negativos en el gráfico), se denota con Ζ− <br />• El cero no tiene signo, es neutro.<br />

×