• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content







Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    REFERENCES.doc.doc REFERENCES.doc.doc Document Transcript

    • REFERENCES References [Abe01] Abelin, A.; Allwood, J.: Department of Linguistics, Göteborg University. In ICSA Workshop on Speech and Emotion. Belfast, 2001. [Aha91] Aha , D. W.; Kibler, D.; Albert, M. K.: Instance based learning algorithms. Machine Learning, 6:37–66, 1991. [Alm92] Almuallim, H.; Dietterich, T.G.: Learning with many irrelevant features. In Proceedings of 9th National Conference on Artificial Intelligence, MIT Press, Cambridge, Massachusetts, 547–552, 1992. [Alt99] Alter K.; Rank E.; Kotz S.A.; Pfeifer E.; Besson M.; Friederici A.D.; Matiasek J.: On the relations of semantic and acoustic properties of emotions. In Proceedings of the 14th International Conference of Phonetic Sciences (ICPhS-99), San Francisco, California, p.2121, 1999. [Alt00] Alter, K.; Rank, E.; Kotz, S.A.; Toepel, U.; Besson, M.; Schirmer, A.; Friederici, A.D.: Accentuation and emotions – Two different systems? In ICSA Workshop on Speech and Emotion. Belfast, 2000. [Ami00] Amir, N.; Ron, S.; Laor, N.: Analysis of an emotional speech corpus in Hebrew based on objective criteria. ICSA Workshop on Speech and Emotion. Belfast, 2000. [Ami01] Amir, N.: Classifying emotions in speech: a comparison of methods. Holon Academic Institute of technology, EUROSPEECH 2001, Escandinavia. [Ban96] Bance, R.; Scherer, K.: Acoustic Profiles in Vocal Emotion expression, in Journal of Personality and Social Psychology, 1996. [Bat00] Batliner, Anton; Fischer, Kerstin; Huber, Richard; Spilker, Jörg; Nöth, Elmar: Desperately Seeking Emotions: Actors, Wizards, and Human Beings. In: Proceedings of the ISCA-Workshop on Speech and Emotion. Belfast, 2000. [Bob88] Bobrowski, L.: Feature selection based on some homogeneity coefficient. In Proceedings of 9th International Conference on Pattern Recognition, 544–546, 1988. [Boe93] Boersma, Paul.: Accurate short-term analysis of the fundamental frequency and the harmonics-to- noise ratio of a sampled sound", Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam 17: 97-110. 1993. [Bra65] Bracewell, R. N.: The Fourier Transform and Its Applications, New York: McGraw-Hill Book Company, 1965. 35
    • REFERENCES [Bre83] Brenner, M.; Shipp, T.; Doherty, E.; Morrisey, P.: Voice Measures of Physiological Stress – Laboratory field data. In Titze & Scherer (Eds.): Vocal Fold Physiology: Biomechanics, Acoustics, and Phonatory Control. Dencer, Colorado, USA. 1983. [Bri96] Breiman, L.: Machine Learning. Bagging predictors 1996. [Cah90] Cahn, J. E.: Generating expression in synthesized speech. Technical Report Boston: MIT Media Lab. 1990. [Cam00] Campbell, N.: Databases of Emotional Speech. In Cowie, R. Douglas-Cowie, E. & Schröder, M. (Eds.) Proceedings of the ICSA Workshop on Speech and Emotion. Belfast, 2000. [Cam01] Campbell, N.: Building a corpus of natural speech – and Tools for the Processing of Expressive Speech – The JST CREST ESP Project. In Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001. [Car92] Carlson, R.; Granström, B.; Nord, L.: Experiments with emotive speech - Acted utterances and synthesized replicas. In Proceedings of the International Congress on Spoken Language Processing. 1992. [Car93] Cardie, C.: Using decision trees to improve case-based learning. In: Proceedings of 10th International Conference on Machine Learning, 25–32, 1993. [Car94] Caruana, R.; Freitag, D.: Greedy attribute selection. In Proceedings of 11th International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28–36, 1994. [Che98] Chen, L.S.; Tao, H.; Huang, T.S.; Miyasat, T.; Nakatsu, R.: Emotion Recognition From Audiovisual Information. In Proceedings IEEE Workshop on Multimedia Signal Processing, pp. 83-88. Los Angeles, CA, USA, 1998. [Che01] Cheveigné Alain de; Kawahara, Hidaki : Comparative evaluation of F0 estimation algorithms. In Proceedings of Eurospeech 2001, Aalborg, Denmark, 2001. [Cos83] Cosmides L: Invariances in the acoustic expression of emotion in speech, in Journal of Experimental Psychology: Human Perception and Performance, 9, 6, 864-881. 1983. [Cow95] Cowie, R.; Douglas-Cowie, E.: Speakers and hearers are people: Reflections on speech deterioration as a consequence of acquired deafness in “Profound Deafness and Speech Communication”. London, 1995. [Cow99a] Cowie, R.; Douglas-Cowie, E.; Romano, A.: Changing Emotional Tone in Dialogue and its Prosodic Correlates. In Proc. ESCA Workshop on Dialogue and prosody, Eindhoven, The Netherlands, 1999. [Cow99b] Cowie, R.; Douglas-Cowie, E.; Apolloni, B.; Taylor, J.; Fellenz, W.: What a neural net needs to know about emotion words in Proc. 3rd World Multiconf. On Circuits, Systems, Comms. And Computers. Athens, Greece, July 1999. [Cow00] Cowie, R.; Douglas-Cowie, E.; Savvidou, S.; McMahon, E.; Sawey, M.; Schröder, M.: FEELTRACE’: An Instrument for Recording Perceived Emotion in Real Time. In, ISCA Workshop on Speech and Emotion, Belfast 2000. [Cow01] Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; G. Taylor, J.: Emotion recognition in human-computer interaction in “IEEE signal processing magazine”, pp. 32-80. January 2001. 36
    • REFERENCES [Dav75] Davis, M.; College, H.: Recognition of facial expresions. New York: Amo Press, 1975. [Dat64] Davitz, J.R: Auditory correlates of vocal expression of emotional feeling. In The communication of emotional meaning, ed J.R. Davitz, 101-112. New York: McGraw-Hill, 1964. [Dar65] Darwin, C.: The Expresion of Emotions in Man and Animals, John Murray, Ed.1872. Reprinted by univ. Chicago Press, 1965. [Das97] Dash, M.; Liu, H.: Feature Selection for Classification. Intelligent Data Analysis - An International Journal, Elsevier, Vol. 1, No. 3, 1997 [Del96] Dellaert, F.; Polzin, T.; Waibel, A.: Recognizing Emotion in Speech ICSLP’96 Conference Proceedings, Delaware. 1996. [Dev82] Devijver, P.A.; Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, 1982. [Doa92] Doak, J.: An evaluation of feature selection methods and their application to computer security. Technical report, Davis, CA: University of California, Department of Computer Science, 1992. [Dom96] Domingos, P.: Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 1996. [Dov97] Doval, B.; d'Alessandro, C.: Spectral correlates of glottal waveform models: an analytic study in Proc. ICASSP 97, Munich, pp 446-452. [Duc97] Duch, W.; Adamczak, R.; Jankowski, N.: Initialization and optimization of multilayered perceptrons. Third Conference on Neural Networks and Their Applications, Kule, October 1997, pp. 105-110 [Duc01] Duch, W.; Jankowski, N.: Transfer functions: hidden possibilities for better neural networks. 9th European Symposium on Artificial Neural Networks (ESANN), Brugge 2001. De-facto publications, pp. 81-94. [Ekm73] Ekman, P.: Darwin and Facial Esxpresions. New York: Academic, 1973. [Fer01] Fernández-Redondo, M; Hernández-Espinosa, C.: Weight Initialization Methods for Multilayer Feedforward. ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 25-27 April 2001, [Fri62] Friedhoff, A. J.; Alpert, M.; Kurtzberg, R. L.: An effect of emotion on voice. Nature, 193.Hansen, J. (1999): Speech Under Simulated and Actual Stress (SUSAS). LDC 99S78. 1962. [Gam97] Gamberger, D; Lavrac, N.: Conditions for Occam’s Razor applicability and noise elimination. In Proccedings of the Ninth European Conference on Machine Learning, 1997. [Gen89] Gennari, J.H.; Langley, P.; Fisher, D.: Models of incremental concept formation. Artificial Intelligence, (40):11–61, 1989. [Gil01] McGilloway, S.; Cowie, R.; Doulas-Cowie, E.; Gielen, S.; Westerdijk, M.; Stroeve S.: Approaching Automatic Recognition of Emotion from Voice: A Rough Benchmark. 37
    • REFERENCES [Gra96] Graf, H.; Cossato, D.; Gibbon, D.; Kocheisen, Petajan, E.; Multi-modal system for locating heads and faces, in Proc. Int. Conf. On automatic Face and Gesture recognition. Vermont, Oct, 1996, pp.88-93. [Gre95] Greasley, P.; Setter, J.; Watterman, M. Sherrard, C.; Roach, P.; Arnfield, S.; Horton, D.: Representation of prosodic and emotional features in a spoken language database. Proceedings of the 13th International Congress of Phonetic Sciences. Stockholm. 244-245. 1995. [Gui64] Ghiselli, E. E.: Theory of Psychological Measurement. McGrawHill, New York, 1964. [Gus01] Gustafson-Capková, S.: Emotions in Speech: Tagset and Acoustic Correlates. Speech technology, term paper. Autumn 2001. [Hag95] Hagen, A.: Analyse verschiedenerGrundfrequenzenverfahren an unterschiedlichen Sprachmaterial, Studentwork, Lehrstuhl fuer Mustererkennung (informatics 5), Erlangen- Nuernberg University. [Hal99] Hall, M. A.; Smith, L. A.: Feature Selection for Machine Learning: Comparing a Correlation- based Filter Approach to the Wrapper. In Proceedings of the Florida Artificial Intelligence Symposium, FLAIRS-99. [Har94] Harbeck, S.: Entwicklung eines robusten Systemszum periodensynchronen Analyse der Grundfrequenz von Sprachsignalen, Diploma Thesis, Lehrstuhl fuer Mustererkennung (Informatics 5), Erlangen-Nuernberg University. [Hec68] Hecker M.; Stevens, K.; von Bismarck, G.; Williams, C. E.: Manifestations of task-induced stress in the acoustic speech signal. Journal of the Acoustical Society of America. 1968. [Hen01] Henrich, N.; d'Alessandro, C.; Doval, B.: Spectral correlates of voice open quotient and glottal flow asymmetry: theory, limits and experimental data. In EUROSPEECH 2001, Denmark, Sept.2001. [Hes83 ] Hess, W.: Pitch Determination of Speech Signals, Bd.3 from Springer Series of Information Sciences, Springer-Verlag, Berlin, 1983. [Hog77] Hogarth, R. M.: Methods for aggregating opinions. In H. Jungermann and G. de Zeeuw, editors, Decision Making and Change in Human Affairs. D. Reidel Publishing, Dordrecht-Holland, 1977. [Hub98] Huber, R: Prosodische Linguistische Klassifikation von Emotionen. PhD Thesis. [Hub98] Huber, R.; Nöth, E.; Batliner, A.; Buckow, J.; Warnke, V.; Niemann, H.: You BEEP Machine – Emotion in Automatic Speech Understanding Systems”. TSD’98, Brno, Masaryc University. [Ichi84] Ichino, M.; Sklansky, J.: Feature selection for linear classifier. In: Proceedings of the Seventh International Conference on Pattern Recognition, volume 1, 124–127, July–Aug 1984. [Ichi84b] Ichino, M.; Sklansky, J.: Optimum feature selection by zero-one programming. IEEE Trans. on Systems, Man and Cybernetics, SMC-14(5):737–746, September/October 1984. [Jan01] Jankowski, N.; Duch, W.: Optimal transfer function neural networks. In 9th European Symposium on Artificial Neural Networks (ESANN), Brugge 2001. De-facto publications, pp. 101-106. [Iid98] Iida, A.; Campbell, N.; Yasamura, M.: Design and Evaluation of Synthesised Speech with Emotion. Journal of Information Processing Society of Japan, 40 (2). 1998. 38
    • REFERENCES [Iwa95] Iwano, Y.: Extraction of Speaker’s Feeling using Facial Image and Speech in Proceedings IEEE International Workshop on Robot an Human. Tokio, Japan, 1995. [Joh99] Johnstone, T.; Scherer, K.: The effects of emotions on voice quality. University of Geneva. Proceedings of the XIVth Internationl Congress of Phonetic Sciences, 1999, San Francisco. [Kap01] Kappas, A.: What is emotion? Department of Psychology, University of Hull. United Kingdom, 2001. [Kie96] Kiessling, A.; Kompe, R.; Batliner, A.; Niemman, H,; Nöth, E: Classification of Boundaries an accents in Spontaneous Speech in proceedings of the CRIM/FORWISS Workshop, Montreal, Oct 1996. [Kie97] Kiessling, A.: Extraktion und Klassifikation prosodischer Merkmale in der automatischen Sprachverarbeitung, Berichte aus der Informatik, Shaker, Aachen, 1997. [Kie00] Kienast, M.: Sendlmeier, W.F.: Acoustical analyisis of spectral and temporal changes in emotional speech. Queen’s University. In Proceedings of ISCA Workshop on Speech and Emotion. Belfast, 2000. [Kir92] Kira, K.; Rendell, L.A.: The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of Ninth National Conference on Artificial Intelligence, 129–134, 1992. [Kla97] Klasmeyer, G.: The Perceptual Importance of Selected Voice Quality Parameters in Proceedings of ICASSP'97, Munich, Germany, 1997. [Kla00] Klasmeyer, G.; Sendlmeier, W.F.: Voice and emotional states. In Kent, R.D. & Ball, M.J. (eds.): Voice quality measurement. San Diego, 2000. [Kle81] Kleinginna, P.R.; Kleinginna, A.M.: A categorized list of emotion definitions with suggestions for a consensual definition. Motivation and Emotion, 5, 345-379. 1981. [Koh95] Kohavi, R.: Wrappers for Performance Enhancement and Oblivious Decision Graphs. PhD thesis, Stanford University, 1995. [Koh96] Kohavi, R.; John, G.: Wrappers for feature subset selection. Artificial Intelligence, special issue on relevance, 97(1–2): 273–324, 1996. [Kol96] Koller, D.; Sahami, M.: Toward optimal feature selection. In: Proceedings of International Conference on Machine Learning, 1996. [Kom89] Kompe, R.: Ein Mehrkanal verfahren zur Berechnung der Grungfrequenzkontour unter Einsatz der Dinamischen Programmierung, Diploma Thesis, The Chair for Pattern Recognition (Informatics 5), Erlangen-Nuernberg University, 1989. [Kon94] Kononenko, Igor: Estimating Attributes: Analysis and Extensions of RELIEF. In Proceedings of European Conference on Machine Learning, 171–182, 1994. [Lan94a] Langley, P.; Sage, S.: Oblivious decision trees and abstract cases. In Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, Seattle, W.A, 1994. AAAI Press. [Lan94b] Langley, P.; Sage, S.: Scaling to domains with irrelevant features. In R. Greiner, editor, Computational Learning Theory and Natural Learning Systems, volume 4. MIT Press, 1994. [Lan94c] Langley, P.; Sage, S.: Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, W.A, 1994. Morgan Kaufmann. 39
    • REFERENCES [Lat92] Lathi, B. P.: Linear Systems and Signals. Carmichael, Calif: Berkeley-Cambridge Press, 1992. [Lee01] Lee, C.M.; Narayanan, S.; Pieraccini, R.: Recognition of Negative Emotion in the Human Speech Signals, Workshop on Auto. Speech Recognition and Understanding, Dec 2001. [Liu96] Liu, H.; Setiono, R.: A probabilistic approach to feature selection—a filter solution. In: Proceedings of International Conference on Machine Learning, 319–327, 1996. [Liu96b] Liu, H.; Setiono, R.: Feature selection and classification—a probabilistic wrapper approach. In: Proceedings of Ninth International Conference on Industrial and Engineering Applications of AI and ES, 284–292, 1996. [Mar97] Marasek, K.: Electroglottographic Description of Voice Quality. Phonetic AIMS, 1997. [Meh74] Mehrabian, A.; Russel, J.: An approach to environmental psychology. Cambridge: MIT Press. 1974. [Mil90] Miller, A. J.: Subset Selection in Regression. Chapman and Hall, New York, 1990. [Mja01] Mjahed, M.: Classification of Multi-jet Topologies in e+ e - collisions using Multivariate Analysis Methods and Morphological Variables. 2001. [Mod93] Modrzejewski, M.: Feature selection using rough sets theory. In: Proceedings of the European Conference on Machine Learning (P. B. Brazdil, ed.), 213–226, 1993. [Mon02] Montero, J.M.; Gutiérrez-Arriola, J.; de Córdoba, R.; Enríquez, E.; Pardo, J.M.: The Role of Pitch and Tempo in Spanish Emotional Speech. E. Keller, G. Bailly, A. Monaghan, J. Terken, M. Huckvale (eds) pp 246-251, John Wiley and Sons, ISBN 0471-49985-4, 2002 [Moo94] Moore, A.W.; Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 190–198, 1994. [Moz00] Mozziconacci, S. J. L.: The expression of emotion considered in the framework of an intonational model. Keynote paper for ITRW ‘Speech and Emotion: A conceptual framework for research’, Newcastle, Northern Ireland, 2000. [Mrp94] Murphy, P. M.; Aha, D. W.: UCI Repository of Machine Learning Databases. Irvine, CA: University of California, Department of Information and Computer Science. 1994. [Muc71] Mucciardi, A.N.; Gose, E.E.: A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Transactions on Computers, C-20:1023–1031, September 1971. [Mur93] Murray, I.; Arnott, J.L.: Towards the Simulation of emotion in Synthetic Speech: A review of the Literature on Human Vocal Emotion,.in Journal of the Acoustic Society of America, 1993, pp. 1097-1108. [Nar77] Narendra, P.M.; Fukunaga, K.: A branch and bound algorithm for feature selection. IEEE Transactions on Computers, C-26(9):917–922, September 1977. [Nie83] Niemann, H.: Klassification von Mustern, Springer-Verlag, Berlin, 1983. [Not91] Noeth, E,: Prosodische Information in der automatischen Spracherkennung – Berechung und Anwendung, Niemeyer, Tubingen, 1991. 40
    • REFERENCES [Oli92] Oliveira, A. L.; Vincentelli, A.S.: Constructive induction using a non-greedy strategy for feature selection. In: Proceedings of Ninth International Conference on Machine Learning, 355–360, Morgan Kaufmann, Aberdeen, Scotland, 1992. [Osg57] Osgood, C.E.; Suci J.G.; Tannenbaum P.H.: The measurement of meaning. University of Illinois Press: Urbana. 1957. [Pae00] Paeschke, A.; Sendlmeier, W.F.: Prosodic Characteristics of Emotional Speech: Measurements of Fundamental Frequency Movements. Technical University Berlin, Germany. In Proceedings ICSA Workshop on Speech and Emotion. Belfast, 2000. [Par86] Parsons, T.: Voice and Speech Processing. McGraw-Hill. 1986. [Pen93] Penkiaitis, W.: Ein integriertes, sequentielles, robustes Verfahren zur Ermittlung der der Spachgrundfrequenz in Sprachsinalen, Studentwork, The Chair for Pattern Recognition (Informatics 5), Erlangen-Nuernberg, 1993. [Per00] Pereira, C.: Dimensions of Emotional Meaning in Speech. ISCA workshop on Speech and Emotion, Belfast 2000. [Pet99] Petrushin, V.A.: Emotion in speech: Recognition and Application to Call Centers”. Artificial Neu. Net. In Engr. (ANNIE’99), pp. 7-10, Nov. 1999. [Pet00] Petrushin, V.A.: Emotion Recognition in Speech Signal: Experimental Study, Development and Application. ICSLP 2000, Beijing. [Pin90] Pinto, N. B.: Unification of perturbation measures in speech signals. JASA, vol.87, nr.3, pp.1278-1289. 1990. [Pit93] Pittam, J.; Scherer, K. R.: Vocal expression and communication of emotion. In M. Lewis & J. M. Haviland (Eds.), Handbook of emotions (pp. 185-198). New York: Guilford Press. 1993. [Pre92] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical Recipes in C: the art of scientific computing, Second Edition, Cambridge University Press. 1992. [Prm96] Parmanto, B.; Munro, P.W.; Doyle, H.R.: Improving committee diagnosis with resampling techniques In D.S. Touretzky, M.C. Mozer, and M. Hesselmo (eds.) Advances in Neural Information Processing Systems 8, Cmbridge, Mass: MIT Press, 882-888. 1996. [Que84] Queiros, C.E.; Gelsema, E.S.: On feature selection. In: Proceedings of Seventh International Conference on Pattern Recognition, 1:128–130, July-Aug 1984. [Qui86] Quinlan, J.R.: Induction of decision trees. Machine Learning, 1:81–106, 1986. [Qui93] Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, Los Altos, California, 1993. [Rab78] Rabiner, L.; Schafer, R.: Dogital Processing of Speech Signals, prentice Hall Inc., Englewood Cliffs, New Jersey, 1978. [Ros74] Ross, M.: Shaffer, H.: Cohen, A.: Freudberg, R.; Manley, H.: Average magnitude difference function pitch extractor, IEEE Trans. on Acoustics, Speech and Signal Processing, Bd. ASSP-22, Nr.5, 1974, S.353-362. 41
    • REFERENCES [Roy96] Roy, D.; Pentland, A.: Automatic Spoken Affect Analysis and Classification in Proceedings of the International Conference of Automatic Face and Gesture Recognition, Killington, VT. 1996. [Rum86] Rumelhart, D.E.; McClelland, J. L.: Parallel Distributed Processing, volume 1. MIT Press, 1986. [Rus94] Russell, A.: Is there universal recognition of emotion from facial expression? A review of cross- cultural studies. Psychol. Bull. 1994. [Sca97] Scalaidhe, O.S.P; Wilson, F.A.W.; Goldman Rakic, P.D.: Science, vol.278, pp. 1135-1108, 1997. [Sch93] Schlimmer, J.C.: Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In: Proceedings of Tenth International Conference on Machine Learning, 284–290, (1993). [Seg84] Segen, J.: Feature selection and constructive inference. In: Proceedings of Seventh International Conference on Pattern Recognition, 1344–1346, 1984. [Sen78] Sennef, S.: Real-Time harmonic pitch detector, IEEE Trans. on Acoustics,Speech and signal Processing, Bd. ASSP-26, Nr.4, 1978, S. 358-365. [Seh90] Sheinvald, J.; Dom, B.; Niblack, W.: A modelling approach to feature selection. In: Proceedings of Tenth International Conference on Pattern Recognition, 1:535–539, June 1990. [Ski35] Skinner, E. R.: A calibrated recording and analysis of the pitch, force and quality of vocal tones expressing happiness and sadness. Speech Monographs. 1935. [Slu95] Sluijter, A.: Phonetic Correlates os Stress and Accent. Holland institute of Generative Linguistics. 1995. [Sch84] Scherer, K.; Ekman, P.: Approaches to Emotion. Mahwah, NJ: Lawrence Erlbaum associates, 1984. [Sch94] Scherer, K. R.: Affect Bursts in Emotions (S.H.M. van Goozen, N. E van de Poll, & J. A. Sergeant, eds.) . hillsdale, NJ: Lawrence Erlbaum.. [Sch00] Scherer, K.: A Cross-Cultural Investigation of Emotion Inferences from Voice and Speech: Implications for Speech Technology. In ICSLP 2000, Beijing, China, Oct. 2000. [Sci94] Schiffmann, W.; Joost, M.; Werner, R.: Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons. September 29, 1994 [Scö00] Schröder, M.: Experimental Study of Affect Bursts in ISCA Workshop on Speech and Emotion, Northern Ireland, 2000. [Scö01] Schröder, M.; Cowie, R.; Douglas-Cowie, E.; Westerdijk, M.; Gielen, S.: Acoustic Correlates of Emotion Dimensions in View of Speech Synthesis. [Ska94] Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, 293–301, 1994. [Sti01] Stibbard, R. M.: Vocal Expression of Emotions in Non-laboratory Speech: An Investigation of the Reading/Leeds Emotion in Speech Project Annotation Data. Unpublished PhD thesis. University of Reading, UK. 2001. 42
    • REFERENCES [Tat02] Tato, R.; Santos, R.; Kompe, R.; Pardo, J.M.: Emotional Space Improves emotion Recognition. To appear. [Tar80] Tartter, V.C.: Happy talk: Perceptual and acoustic effects of smiling on speech. Perception and Psychophysics. 1980. [Tic00] Tickle, A.: English and Japanese Speakers’ Emotion Vocalisation and Recognition: A Comparison Highlighting Vowel Quality in ICSA Workshop on Speech and Emotion, Northern Ireland 2000, p104-109. [Tol90] Tollenaere, T.: SuperSAB: Fast Adaptive Backpropagation with Good Scaling Properties, Neural Networks 3, 561 (1990). [Tra96] Trask, R. L.: A Dictionary of phonetics and Phonology. Routledge, London, 1996. [Vaf94] Vafaie, H.; Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search. In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems, 1994. [Wea89] Weaver, H. J.: Theory of Discrete and Continuous Fourier Analysis. WILEY-Europe, 1989. [Wil69] Williams, C. E.; Stevens, K. N.: On determining the emotional state of pilots during flight: An exploratory study. Aerospace Medicine, 40. 1969. [Wil72] Williams, C. E.; Stevens, K. N.: Emotions and speech: Some acoustical factors in Journal of the Acoustical Society of America, 52, 1238-1250. 1972. [Wit82] Witten, I.: Principles of Computer Speech, Academic Press Inc. 1982. [XuL88] Xu, L.; Yan, P.; Chang, T.: Best first strategy for feature selection. In: Proceedings of Ninth International Conference on Pattern Recognition, 706–708, 1988. [Yan01] Yang, L.: Linking Form to Meaning: The Expression and Recognition of Emotions Through Prosody in Proceedings on fourth ISCA Workshop on Speech Synthesis, 2001. [Zaj62] Zajonic, R. B.: A note on group judgements and group size. Human Relations, 15:177–180, 1962. [Zel95] Andreas Zell, Günter Mamier, Michael Vogt, Niels Mache, Ralf Hübner, Sven Döring, Kai-Uwe Herrmann, Tobias Soyez, Michael Schmalzl, Tilman Sommer, Artemis Hatzigeorgiou, Dietmar Posselt, Tobias Schreiner, Bernward Kett, Gianfranco Clemente, Jens Wieland: (SNNS Stuttgart Neural Network Simulator, User Manual Version 4.1. University of Stuttgart, 1995. [Zet01] Zetterholm, E.: Prosody and voice quality in the expression of emotions. Lund University. In SST Proceedings of the 7th Australian International conference on SPEECH SCIENCE AND TECHNOLOGY. Sydney, 1998. [Zwi67] Zwicker, E.; Feldtkeller, R.: Das Ohr als Nachrichtenempfaenger, Hirzel Velag, Stuttgart, 1967. 43