Your SlideShare is downloading. ×
0
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Artificial Intelligence AI Topics History and Overview
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Artificial Intelligence AI Topics History and Overview

313

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
313
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  1. Artificial Intelligence
  2. AI Topics <ul><li>History and Overview </li></ul><ul><li>Machine Learning </li></ul><ul><li>Games and AI </li></ul><ul><li>The Turing test </li></ul><ul><li>Computer Vision </li></ul>
  3. AI Pioneers <ul><li>Alan M. Turing </li></ul><ul><ul><li>“ Computing Machinery and Intelligence” </li></ul></ul><ul><li>Marvin Minksy </li></ul><ul><ul><li>Constructed the first neural net machine </li></ul></ul><ul><li>Herbert Simon, Allen Newell, J.C. Shaw </li></ul><ul><ul><li>Developed the first AI computer program </li></ul></ul>
  4. AI Terms <ul><li>Artificial Intelligence: The capability of a machine to imitate intelligent human behavior </li></ul><ul><li>Artificial Neural Network: A network of neurons with connections of varying strength </li></ul><ul><li>Fuzzy Logic: A superset of Boolean logic which includes truth values between true and false </li></ul><ul><li>Knowledge Base: A collection of knowledge expressed using some formal knowledge representation language </li></ul><ul><li>AI-complete: Describes a problem which presupposes a solution to the “strong AI problem” </li></ul>
  5. Famous AI Programs <ul><li>ELIZA (Joseph Weizenbaum) </li></ul><ul><ul><li>Psychologist </li></ul></ul><ul><li>Deep Blue (IBM) </li></ul><ul><ul><li>Chess program </li></ul></ul><ul><li>Cyc (MCC and Cycorp) </li></ul><ul><ul><li>Multi-contextual knowledge base and inference engine </li></ul></ul><ul><li>HAL (Arthur C. Clarke) </li></ul><ul><ul><li>Space explorer </li></ul></ul>
  6. Machine Learning
  7. What Is Machine Learning? <ul><li>Enabling machines to process data in such a way that it can be to make future decisions </li></ul><ul><li>ML been studied for many years </li></ul><ul><li>ML has many applications in a variety of fields </li></ul>
  8. Methods of Learning <ul><li>Genetic algorithm </li></ul><ul><li>Inductive logic </li></ul><ul><li>Computational learning </li></ul>
  9. Dimensions of Study <ul><li>Representation of experience </li></ul><ul><ul><li>Most learning is based on experience </li></ul></ul><ul><ul><li>Storage values </li></ul></ul><ul><ul><ul><li>Attribute values (length) </li></ul></ul></ul><ul><ul><ul><li>Binary values (yes/no) </li></ul></ul></ul><ul><ul><li>Relations (Difficult) </li></ul></ul><ul><li>Representation of acquired knowledge </li></ul><ul><ul><li>Generalizations </li></ul></ul><ul><ul><li>Logical/discrete vs. numeric/continuous </li></ul></ul>
  10. Dimensions of Study <ul><li>Supervised and unsupervised learning </li></ul><ul><ul><li>Supervised </li></ul></ul><ul><ul><ul><li>Feedback given immediately after an action is taken </li></ul></ul></ul><ul><ul><ul><li>Easy to give examples of correct vs. incorrect behavior </li></ul></ul></ul><ul><ul><li>Unsupervised </li></ul></ul><ul><ul><ul><li>Machine learns on its own with no conditioning </li></ul></ul></ul><ul><li>Inductive learning vs. analytic learning </li></ul><ul><ul><li>Inductive – take all data, make generalizations </li></ul></ul><ul><ul><li>Analytic – offer explanations for new data based on previous data, then simplify </li></ul></ul>
  11. Dimensions of Study <ul><li>Incremental vs. Non-Incremental Learning </li></ul><ul><ul><li>Incremental </li></ul></ul><ul><ul><ul><li>Examine results one-by one </li></ul></ul></ul><ul><ul><ul><li>Less information retained, but faster </li></ul></ul></ul><ul><ul><li>Non-Incremental </li></ul></ul><ul><ul><ul><li>Examine all results at once </li></ul></ul></ul><ul><ul><ul><li>More information retained, but slower </li></ul></ul></ul>
  12. Tasks For Machines <ul><li>Pattern recognition </li></ul><ul><li>Grouping/classification </li></ul><ul><ul><li>Create general descriptions for classes of instances </li></ul></ul><ul><li>Strategizing </li></ul><ul><li>Generating heuristics </li></ul><ul><li>Problem solving </li></ul>
  13. Problem Solving <ul><li>Take a similar problem with a known solution and try to find the answer (analogies) </li></ul><ul><li>Simplify the problem and find a solution that can be used to solve the main problem </li></ul><ul><li>Thresholds </li></ul><ul><li>Decision trees </li></ul><ul><li>Macro-operators (AND, OR) </li></ul>
  14. Issues in Machine Learning <ul><li>Computational complexity </li></ul><ul><li>Ethics </li></ul><ul><li>Correctness </li></ul><ul><ul><li>Would the exact desired learning be constructed? </li></ul></ul><ul><ul><li>What if there is an error in learning? </li></ul></ul>
  15. Games AI <ul><li>Min-Max Trees </li></ul><ul><ul><li>Builds a level of maximizing moves followed by a level of minimizing moves </li></ul></ul><ul><ul><li>Uses evaluate functions to analyze situation </li></ul></ul><ul><li>Alpha Beta Trees </li></ul><ul><ul><li>Like Min-Max Trees </li></ul></ul><ul><ul><li>Discards paths it knows to be useless </li></ul></ul>
  16. Chess Algorithms <ul><li>Most use Alpha-Beta trees to make moves </li></ul><ul><li>Trees helped by additional knowledge </li></ul><ul><ul><li>Transposition Tables </li></ul></ul><ul><ul><li>Endgame Database </li></ul></ul><ul><ul><li>Human Literature </li></ul></ul><ul><li>Deep Blue </li></ul><ul><ul><li>First championship caliber chess player </li></ul></ul>
  17. Other Games <ul><li>Othello – Logistello </li></ul><ul><ul><li>Deep search algorithm </li></ul></ul><ul><ul><li>Can solve most endgames </li></ul></ul><ul><ul><li>Large opening book </li></ul></ul><ul><li>Checkers – Chinook </li></ul><ul><ul><li>Extremely deep search depth </li></ul></ul><ul><ul><li>8 piece endgame database </li></ul></ul>
  18. The Turing Test <ul><li>Motivated to identify intelligence in a computer program. </li></ul><ul><li>Proposed in 1950 by Alan Turing. </li></ul><ul><li>Original Proposal: </li></ul><ul><ul><li>Given a person X, a computer Y, and an interrogator C, C isolated from X and Y. </li></ul></ul><ul><ul><li>C must determine who is the person </li></ul></ul><ul><ul><li>X is intelligent if it can fool C. </li></ul></ul>
  19. Problems with the Turing Test <ul><li>Intelligence may be considered as a continuum. The Turing test only identifies one (very strong) type of intelligence, and thus offers no means to measure . </li></ul><ul><li>Does fooling C really imply intelligence? </li></ul>
  20. Our Proposal <ul><li>Motivated to allow: </li></ul><ul><ul><li>a measure of intelligence. </li></ul></ul><ul><ul><li>more rigid definitions. </li></ul></ul><ul><ul><li>more flexible admission of programs. </li></ul></ul>
  21. Our Proposal <ul><li>Define D as the set of all problems. </li></ul><ul><ul><li>This may be restricted for practical considerations. </li></ul></ul><ul><li>P(D) is therefore the partially ordered set (under inclusion) of all subsets of problems. </li></ul>
  22. Our Proposal <ul><li>Let R be the set of all responses </li></ul><ul><li>P(R) is therefore the partially ordered set of subsets of R. </li></ul><ul><li>Define the Turing Test T as a function between P(D) and P(R). </li></ul><ul><li>Those programs which mimic T on some subset X (pre-image) of P(D) are said to pass T restricted to X . </li></ul>
  23. Our Proposal <ul><li>As P(D) is partially ordered, and by the way D was defined, there are several maximal elements M i in P(D). </li></ul><ul><li>A program that is said to pass T restricted to an M i is said to be an expert in M i . </li></ul><ul><li>In specific applications, one may identify an expert program as intelligent. </li></ul>
  24. Examples <ul><li>Consider the set of Arithmetic Problems </li></ul><ul><li>If a program can solve these problems, it is said to pass T restricted to Arithmetic Problems . </li></ul><ul><li>In practice, one would need to restrict this set. </li></ul>
  25. Examples <ul><li>The set of all Math Problems is a maximal element. </li></ul><ul><li>If a program can solve these problems, it is said to be an Expert in Math Problems . </li></ul>
  26. Sources <ul><li>Encyclopedia of Artificial Intelligence 2 nd ed. Ed. Stuart C. Shapiro. John Wiley & Sons, Inc. New York City, NY, 1992. </li></ul><ul><li>R. Miikkulainen and D. Moriarity. Discovering Complex Othello Strategies Through Evolutionary Neural Networks. University of Texas, USA, 1995. </li></ul><ul><li>B. Moreland. Basic Search Techniques. http://www.seanet.com/~brucemo/topics/topics.htm. USA, 2001. </li></ul><ul><li>J. Schaffer. The Games Computers (And People) Play. University of Alberta, Canada, 2000 </li></ul>

×