Upcoming SlideShare
×

Scale Space: The Gaussion Approach

576 views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

Views
Total views
576
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
2
0
Likes
0
Embeds 0
No embeds

No notes for slide

Scale Space: The Gaussion Approach

1. 1. Scale Space The Gaussian Approach Li Hui bugway@gmail.com July 8, 2009Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 1 / 17
2. 2. 1 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
3. 3. 12 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
4. 4. 123 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
5. 5. 1234 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
6. 6. 12345 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
7. 7. 123456 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
8. 8. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
9. 9. Tt t ≥0 {Tt }t∈R + ,Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
10. 10. Tt t ≥0 {Tt }t∈R + ,Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t " " . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
11. 11. Tt t ≥0 {Tt }t∈R + ,Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t " " . ( 10m 10cm ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
12. 12. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
13. 13. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
14. 14. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) 1986 Canny [4] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
15. 15. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) 1986 Canny [4] σ (0 ≤ σ < ∞) 1 −(x 2 +y 2 ) Gσ (x, y) = e 2σ2 4Πσ 2 . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
16. 16. Koenderink [3] Hummel [5] t ∂u(x, y, t) = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 ∂t u(x, y, 0) = u0 (x, y), (x, y) ∈ ω Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 5 / 17
17. 17. Koenderink [3] Hummel [5] t ∂u(x, y, t) = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 ∂t u(x, y, 0) = u0 (x, y), (x, y) ∈ ω u0 (x, y) ω = (xa , xb )x(ya , yb )t ,∇2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 5 / 17
18. 18. :Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
19. 19. : +∞ +∞ u(x, y, t) = u(x, y, 0) · Gt (x, y)dxdy −∞ −∞ −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2tLi Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
20. 20. : +∞ +∞ u(x, y, t) = u(x, y, 0) · Gt (x, y)dxdy −∞ −∞ −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2t u(x,y,t) ( )t u0 (x, y) Gt (x, y)Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
21. 21. .Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
22. 22. .Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
23. 23. .Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
24. 24. .Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
25. 25. .Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
26. 26. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
27. 27. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
28. 28. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
29. 29. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
30. 30. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
31. 31. 1Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
32. 32. 12Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
33. 33. A ( )e(x,t) = ( ) = e(x,y)A∆x( ∆x ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
34. 34. A ( )e(x,t) = ( ) = e(x,y)A∆x( ∆x ) : x ∆x ∂[ex,t]A∆x x ∂t = + Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
35. 35. A ( )e(x,t) = ( ) = e(x,y)A∆x( ∆x ) : x ∆x ∂[ex,t]A∆x x ∂t = +φ(x, t) = ( ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
36. 36. Qx,t = ( ) Q(x, t)A∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
37. 37. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
38. 38. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x∂e∂t = lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t) ∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
39. 39. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x∂e∂t = lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t) ∆x∂e ∂φ∂t = − ∂x + Q Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
40. 40. ,u(x,t) = ( t )Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
41. 41. , u(x,t) = ( t )c= ( ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
42. 42. , u(x,t) = ( t )c= ( )ρ(x) = Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
43. 43. , u(x,t) = ( t )c= ( )ρ(x) = Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
44. 44. , u(x,t) = ( t )c= ( )ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
45. 45. , u(x,t) = ( t )c= ( )ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t)c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
46. 46. , u(x,t) = ( t )c= ( )ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t)c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x φ = −K0 ∂u ∂x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
47. 47. , u(x,t) = ( t )c= ( )ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t)c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x φ = −K0 ∂u ∂xcρ ∂u = ∂t ∂ ∂u ∂t (K0 ∂(x) ) + Q Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
48. 48. 2∂u∂t = k∂ u ∂x 2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
49. 49. 2∂u∂t = k∂ u ∂x 2 K0k= cρ Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
50. 50. 2∂u∂t = k∂ u ∂x 2 K0k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
51. 51. 2∂u∂t = k∂ u ∂x 2 K0k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt u(x, 0) = u0 (x) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
52. 52. 2∂u∂t = k∂ u ∂x 2 K0k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt u(x, 0) = u0 (x) x 2 +∞u(x, t) = √1 − 4kt 4Πt −∞ u0 (x)e dx Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
53. 53. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
54. 54. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
55. 55. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω +∞ +∞ u(x, y, t) = −∞ −∞ u(x, y, 0) · Gt (x, y)dxdy Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
56. 56. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω +∞ +∞ u(x, y, t) = −∞ −∞ u(x, y, 0) · Gt (x, y)dxdy −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2t Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
57. 57. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
58. 58. Hummel [6] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
59. 59. Hummel [6]P-M Perona Malik [7] . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
60. 60. Hummel [6]P-M Perona Malik [7] . Alvarez,Lions,Morel [8] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
61. 61. [1]Marr D,and Hildreth E,Theory of edge detection.Proc.Roy.Soc.Lond,B207 p187-217,1980[2]A.P.Witkin.Space-scale ﬁltering.In Proc.Of IJCAI,p1019-1021 1983[3]J.Koenderink.The structure of images.Biological Cybernation,Vol 50,p262-270 1984[4]A.Canny.A computational approach to edge detection.IEEE Trans.PAMI,vol 8,p769-698 1986[5]R.A.Hummel,Representations based on zero crossing in scale-space.CVPR p204-209 1986[6]R.A.Hummel,B.Kimia,Zucker,De-blurring Gaussian blur[J],1987[7]P.Perona,J.Malik,Scale-Space and edge detection using anisotropic diffusion. PAMI p629-639 1990 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 16 / 17
62. 62. ! Email/Gtalk: bugway@gmail.comLi Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 17 / 17